Homework Set Three

Due Monday, May 9.
Question 1. Suppose $N=\sum_{n=0}^{j} a_{n} 10^{n}$ with $0 \leq a_{j}<10$. Show that 11 divides $\sum_{n=0}^{j}(-1)^{n} a_{n}$ if and only if 11 divides N.

Question 2. Recall that a group (G, \star) is a set G with binary operation $\star: G \times G \rightarrow G$ which satisfies
(i) (associativity) $(a \star b) \star c=a \star(b \star c)$ for any $a, b, c \in G$,
(ii) (identity) there is an element $e \in G$ such that $e \star a=a=a \star e$ for any $a \in G$, and
(iii) (inverse) there exists an element x_{a} for any $a \in G$ such that $x_{a} \star a=e=a \star x_{a}$.
(a) Prove that the identity element $e \in G$ is unique. (Hint: suppose $e, e^{\prime} \in G$ are identity elements and consider $e \star e^{\prime}$.)
(b) Prove that inverses are unique. That is, suppose $g \in G$ and $x_{g}, x_{g}^{\prime} \in G$ satisfy $g \star x_{g}=g \star x_{g}^{\prime}=e$. Prove that $x_{g}=x_{g}^{\prime}$.
(c) Let $G=\mathbb{Q} \backslash\{1\}$. Show that the binary operation $x \odot y:=x+y-x y$ makes G a group.

Question 3. Prove that 1105 is a pseudoprime, meaning 1105 is not prime, yet $2^{1104} \equiv 1$ (mod 1105). (Hint/Suggestion: Use the method of successive squares.)

Question 4.

(a) Use the method of successive squares to compute $7^{7386}(\bmod 7387)$. Can you deduce from your answer whether or not 7387 is prime? Explain your answer.
(b) It is true that $7^{7392} \equiv 1(\bmod 7393)$. Is it possible to deduce from this that 7393 is prime or not? Explain your answer.

Question 5. (bonus) Suppose $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ are such that $30 \mid \sum_{j=1}^{n} a_{j}$. Show that

$$
30 \mid \sum_{j=1}^{n} a_{j}^{5} .
$$

