Homework Set Four

Due Monday, May 23.

Question 1. For an integer n, let $\sigma(n)$ denote the sum of divisors of n. That is, $\sigma(n)=\sum_{d \mid n} d$. Find the smallest n such that there exists another $m \neq n$ satisfying $\sigma(n)=\sigma(m)$.

Question 2. A positive integer N is a perfect number if $\sigma(n)=2 n$ (that is, n is the sum of its proper divisors). For example, $6=1+2+3$ is perfect. Prove that if $2^{m}-1=p$ is prime, then $2^{m-1} p$ is perfect.

Question 3.

(a) If m and n are integers with $\operatorname{gcd}(m, n)=1$, prove that $\sigma(m n)=\sigma(m) \sigma(n)$.
(b) If p is prime and $k \geq 1$, prove that

$$
\sigma\left(p^{k}\right)=\frac{p^{k+1}-1}{p-1}
$$

Question 4. Prove that if $2^{n}-1$ is prime, then n is prime.

Question 5. Suppose N is an even perfect number.
(a) Explain why $N=2^{k} m$ for some $k \geq 1$ and odd m. Then use the results of the previous problem to show $\sigma(N)=\left(2^{k+1}-1\right) \sigma(m)$.
(b) Show that 2^{k+1} divides $\sigma(m)$. (Hint: Use the definition of a perfect number to deduce $\sigma(N)=2^{k+1} m$.)
(c) Show that there is an integer r such that $m=\left(2^{k+1}-1\right) r$ and $\sigma(m)=2^{k+1} r$.
(d) Assume there is an integer r such that $m=\left(2^{k+1}-1\right) r$ as in part (c). Show that if $r>1$ this would imply

$$
\begin{equation*}
\sigma(m) \geq 1+2^{k+1} r \tag{1}
\end{equation*}
$$

(Hint: Consider some distinct divisors of m.)
(e) Show why we cannot have (1), and conclude that $r=1$.
(f) Show that $\sigma(m)=m+1$ and that m must then be prime.
(g) Use the previous questions to prove the following theorem.

Theorem. If N is an even perfect number, then $N=2^{p-1}\left(2^{p}-1\right)$ for some prime p.

