Homework Set Five (graded)

Due Thursday, June 2.
Question 1. Solve

$$
x^{131} \equiv 758 \quad(\bmod 1073)
$$

(Hint: Need $\phi(n)$.)

Question 2. Use the (proof of the) Chinese Remainder Theorem to find an integer that leaves a remainder of 9 when it is divided by either 10 or 11, but that is divisible by 13 .

Question 3.

(a) Prove that if $f: \mathbb{Z} \rightarrow \mathbb{C}$ is multiplicative (that is, $f(m n)=f(m) f(n)$ whenever $\operatorname{gcd}(m, n)=1)$ then $F(m):=\sum_{d \mid m} f(d)$ is also multiplicative.
(b) Consider $F(m):=\sum_{d \mid m} \phi(d)$, where ϕ is the Euler function. Prove that $F(m)=m$.

Question 4. Let k be a field and $f \in k[x]$ an irreducible polynomial. We define an equivalence relation \sim on $k[x]$ by $g \sim h$ if $f\lfloor g-h$. For $g \in k[x]$, let $\bar{g}=\{h \in k[x] \mid g \sim h\}$ be the equivalence class of g. Defining $\bar{g}+\bar{h}:=\overline{g+h}$ and $\bar{g} \cdot \bar{h}=\overline{g \cdot h}$, one can show that the set of equivalence classes $K:=k[x] / \sim$ is a (commutative) ring.
Consider the field \mathbb{F}_{3} and the irreducible polynomial $f=x^{2}+x-1 \in \mathbb{F}_{3}[x]$. Let $k=$ $\mathbb{F}_{3}[x] / \sim$, where if $g, h \in \mathbb{F}_{3}[x]$ we have $g \sim h$ when $f \mid g-h$.
(a) Prove that if $\bar{g} \in K \backslash\{\overline{0}\}$ then there exists $\bar{h} \in K$ such that $\bar{g} \bar{h}=\overline{1}$. (Since K is a commutative ring, this implies that it is in fact a field.) Hint: Euclidean Algorithm.
(b) In the special case that $k=\mathbb{F}_{3}$, give a complete multiplication table for the multiplicative group k^{\times}. Is k^{\times}cyclic? Explain/justify your answer.

Question 5. Suppose $p>2$ is prime such that $p \equiv 1(\bmod 8)$.
(a) Show $x^{4} \equiv-1(\bmod p)$ has a solution.
(b) Show that a solution to the previous part satisfies $\left(x+x^{-1}\right)^{2} \equiv 2(\bmod p)$.
(c) Use the previous parts to prove $\left(\frac{2}{p}\right)=1$.

