Homework Set Seven

Due Thursday, June 16.
Question 1. Let p be an odd prime. Prove that

$$
\left(\frac{p-1}{2}\right)!^{2} \equiv(-1)^{\frac{p-1}{2}}(p-1)!\quad(\bmod p)
$$

Question 2. Let k and m be non-negative integers.
(a) Prove that if $n=8 k+7$ then $n \neq x^{2}+y^{2}+z^{2}$ for any integers x, y, z.
(b) Prove that if $n=4^{m}(8 k+7)$, then $n \neq x^{2}+y^{2}+z^{2}$ for any integers x, y, z.

Question 3. For a non-negative integer n, set $E_{n}:=\sum_{k=0}^{n-1} 10^{k}=1+10+\cdots+10^{n-1}$.
(a) Show that

$$
E_{n}=\frac{10^{n}-1}{9}
$$

(b) Show that E_{33} is not prime. (Hint: show 67 divides E_{33}.)

Question 4. For $n \in \mathbb{N}$ set $F_{n}:=2^{2^{n}}+1$.
(a) Prove that if F_{n} is prime, then $3^{\frac{F_{n}-1}{2}} \equiv-1\left(\bmod F_{n}\right)$.
(b) Prove that if $3^{\frac{F_{n}-1}{2}} \equiv-1\left(\bmod F_{n}\right)$, then F_{n} is prime.
(Note: The result just proved, that is, that F_{n} is prime if and only if $3^{\frac{F_{n}-1}{2}} \equiv-1$ $\left(\bmod F_{n}\right)$, is often referred to as Pépin's Theorem.)

Question 5. Let p_{1}, \ldots, p_{r} be odd primes. Prove that

$$
\frac{p_{1}-1}{2}+\frac{p_{2}-1}{2}+\ldots+\frac{p_{r}-1}{2} \equiv \frac{p_{1} p_{2} \cdots p_{r}-1}{2} \quad(\bmod 2) .
$$

