Homework Set Nine

Due Thursday, June 30.
Question 1. Recall the quaternions $B=\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{Z}\}$ which are governed by the relations

$$
i^{2}=j^{2}=k^{2}=i j k=-1, \quad \text { and } \quad a x=x a \text { for any } x \in\{i, j, k\}, a \in \mathbb{Z} .
$$

(a) Show that $\overline{\lambda \mu}=\bar{\mu} \bar{\lambda}$ for $\lambda, \mu \in B$. (Note: In general, $\overline{\lambda \mu} \neq \bar{\lambda} \bar{\mu}$ for $\lambda, \mu \in B$.)
(b) Show that $N(\lambda \mu)=N(\lambda) N(\mu)$ for $\lambda, \mu \in B$.
(c) Show that for integers a, b, c, d, A, B, C, D there exists integers $\alpha, \beta, \gamma, \delta$ such that

$$
\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(A^{2}+B^{2}+C^{2}+D^{2}\right)=\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2} .
$$

Additionally, provide the integers $\alpha, \beta, \gamma, \delta$ in terms of a, b, c, d, A, B, C, D.
Question 2. The continued fraction of π^{2} is

$$
[a, b, c, d, e, f, 1,8,1,1,2,2,1,1,8,3,1,10,5,1,3,1,2,1,1,3,16,1,1,2, \ldots] .
$$

(a) Find the values of a, b, d, e, and f.
(b) For $n \in\{0,1,2,3,4\}$ compute the nth convergent to π^{2}.

Question 3. Let

$$
\frac{p_{0}}{q_{0}}, \frac{p_{1}}{q_{1}}, \frac{p_{2}}{q_{2}}, \ldots
$$

be the convergents to the continued fraction $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$. Prove the following theorem.
Theorem. For all $n \in \mathbb{N}$,

$$
p_{n-1} q_{n}-p_{n} q_{n-1}=(-1)^{n} .
$$

Equivalently, for all $n \in \mathbb{N}$,

$$
\frac{p_{n-1}}{q_{n-1}}-\frac{p_{n}}{q_{n}}=\frac{(-1)^{n}}{q_{n-1} q_{n}} .
$$

Question 4. Assume the notation from the previous problem. Let $a=34$ and $b=49$.
(a) Find the continued fraction $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ for $\frac{b}{a}$.
(b) Find the convergents $\frac{p_{0}}{q_{0}}, \frac{p_{1}}{q_{1}}, \ldots, \frac{p_{n-1}}{q_{n-1}}, \frac{p_{n}}{q_{n}}=\frac{b}{a}$ for $\frac{b}{a}$.
(c) Use Question 3 to find an integral solution $\left(x_{0}, y_{0}\right)$ for the equation $34 x+49 y=-13$.

Question 5 (Bonus). Suppose $M, N \in \mathbb{Z}$ and $M>N$. Let a_{0}, r_{0} and a_{1}, r_{1} be the integers from the Euclidean Algorithm such that

$$
M=a_{0} N+r_{0} \quad \text { and } \quad N=a_{1} r_{0}+r_{1} .
$$

Let $a_{j+1}, r_{j+1}, 0 \leq j \leq n$, be the remaining values of the Euclidean Algorithm so that $\operatorname{gcd}(M, N)=r_{n}$. That is, $r_{j-1}=a_{j+1} r_{j}+r_{j+1}$ and $r_{n+1}=0$.
(a) Provide the continued fraction for $\frac{M}{N}$.
(b) Set $Q_{0}=1, P_{0}=-a_{0}, Q_{1}=-a_{1}$, and $P_{1}=1+a_{0} a_{1}$ so that

$$
r_{0}=Q_{0} M+P_{0} N \quad \text { and } \quad r_{1}=Q_{1} M+P_{1} N .
$$

Find a recursive formula for the expressions Q_{k} and P_{k} such that $r_{k}=Q_{k} M+P_{k} N$.
(c) Show that $Q_{k}=(-1)^{k} q_{k}$ and $P_{k}=(-1)^{k+1} p_{k}$, where q_{k}, p_{k} are as in the previous problems.

