Elementary Number Theory: Practice Final Exam Summer 2016

July 31, 2016

Name: \qquad Student ID: \qquad

Instructions

- This exam consists of 6 problems on 9 pages. The final two pages are for scratch work. If you need extra paper, it will be provided.
- Show all necessary steps. A solution without sufficient justification will not receive full credit.
- You may use Theorems from the lecture, unless stated otherwise. Please state clearly and explicitly any such results.
- Please write the solution in the space provided going to the back side if necessary.
- Write clearly and legibly. Points will be deducted if the solution or the logical sequence is not understood.
- A scientific calculator is allow as long as it can not be programmed.

Problem:	1	2	3	4	5	6	Total
Score:							

1. Show that 1105 is a Carmichael number.
2. Find all solutions $(x, y) \in \mathbb{Q}^{2}$ to each of the following or prove that none exist.
(a) $x^{2}+y^{2}=2$
(b) $x^{2}+y^{2}=3$
3. Let p be prime. In this problem do not use that $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ is a field. (You will essentially prove this result here.)
(a) For each $a \in \mathbb{Z}$ let \bar{a} denote the equivalence class of a in $\mathbb{Z} / p \mathbb{Z}$. What exactly is \bar{a} ? (You may find it helpful to recall the definition of $\mathbb{Z} / p \mathbb{Z}$.)
(b) Let $a, b \in \mathbb{Z}$. We define $\bar{a} \cdot \bar{b}=\overline{a b}$. Prove that this notion is well-defined.
(c) Let $a \in \mathbb{Z}$ such that $p \nmid a$. Prove that there exists $b \in \mathbb{Z}$ such that $a b \equiv 1(\bmod p)$.
4. In this problem you may use the fact that $p=53=2^{2} \cdot 13+1$ is prime.
(a) Show that $\left(\frac{7}{p}\right)=1$.
(b) Show that 3 is not a square modulo p.
(c) Describe Tonelli's algorithm and use it to find all solutions to $x^{2} \equiv 7(\bmod p)$.
5. Suppose that $x \in \mathbb{R} \backslash \mathbb{Q}$. Let α_{n} be as in the continued fraction expansion algorithm, meaning that if $a_{n}=\left\lfloor\alpha_{n}\right\rfloor$ then $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ is the continued fraction expansion of x.
(a) Suppose that $\alpha_{j}=\alpha_{\ell}$ for some $j>\ell$. Prove that this implies that the continued fraction expansion of x is periodic.
(b) Find the continued fraction expansion of $\sqrt{7}$.
6. Show that $y^{2}=x^{3}+1$ defines an elliptic curve E over the field \mathbb{Q} of rational numbers. Recall that if E is given by $y^{2}=x^{3}+a x^{2}+b x+c$ then $\Delta(E)=-4 a^{3} c+a^{2} b^{2}+18 a b c-$ $4 b^{3}-27 c^{2}$ is the discriminant of E.
(a) Does the given equation define an elliptic curve over the finite field \mathbb{F}_{p} of p elements, for each $p \in\{2,3,5\}$? If so, determine the set $E\left(\mathbb{F}_{p}\right)$.
(b) Find $E(\mathbb{Q})_{\text {tor }}$.
