
GROSS-ZAGIER FORMULA

NOTES TAKEN BY MIKE WOODBURY

These are notes taken in Tonghai Yang’s course titled “The Gross-Zagier For-
mula” at the University of Wisconsin Fall 2009. The main goal of the course was
to understand the recent paper of Yuan-Zhang-Zhang [7].

1. Wenesday, September 2, 2009

1.1. Birch’s story. In “Heegner Points and Rankin L-functions,” Birch has an
interesting article about the history of the Gross-Zagier formula. It says something
interesting about working on problems that aren’t necessarily state of the art.

Heegner proved two big problems in number theory.

Theorem 1 (Heegner). • (The Gauss class problem) For imaginary qua-
dratic fields K = Q(

√
−D), the only values of D for which hK = 1 are

D = 3, 4, 7, 8, 11, 19, 43, 67, 163.
• (Congruence number problem) A prime p is congruent if ...

It is now accepted that his result on the congruence number problem was cor-
rect, and that the work on the class number problem was essentially correct with
only a “gap” (that was later filled by Stark.) However, he was not a professional
mathematician and his prose was unpolished and his notation was unorthodox. As
a result very few people paid it much attention.

1.2. Some history. The idea of what Gross was trying to do is quite simple: find
rational solutions to certain equations. In other words, if f(x, y) ∈ Q[x, y], find
rational solutions to f(x, y) = 0. For example:

i Quadratics like 3x2 + 5y2 + 6xy = 10.
ii Cubics: x3 + y3 = p.
iii Higher order equations

If f(x, y) is smooth of degree d, the genus of the associated curve C : f(x, y) = 0
is g(C) = d(d − 1)/2. So (i) has g = 0, in which case there are either no solutions
or infinitely many. If there is one solution (x0, y0), then any rational line through
(x0, y0) intersects in one more place which must also be rational.

With respect to curves with g ≥ 2, Faltings has proved that #C(Q) < ∞. In
the case of (iii) there have been at least two Annals papers on the topic. One by
Lieman [4] and another by Tian and Diaclo (sic?).

Item (ii) is the case of g = 1. What is so nice about curves E with g = 1? In
analogy to the g = 0 case one can consider the line L through any point P on the
curve E. This line must intersect at two other points Q, R. One can then define
P + Q + R = 0. One can check that this definition gives a valid group law on the
set of points E(F ) for any field F .
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2 NOTES TAKEN BY MIKE WOODBURY

Theorem 2 (Mordell). The set E(Q) is a finitely generated abelian group.

(Weil proved the analogous statement for abelian varieties, so sometimes this is
called the Mordell-Weil theorem.)

As a consequence of this,

E(Q) ' E(Q)tor ⊕ Zr

where E(Q)tor is finite. Number theorists want to know what the number r (called
the rank) is. One way to do this is the method of descent which for a given elliptic
curve gives a method of finding points. This is discussed in [6] chapter 9.

Birch and Swinnerton-Dyer studied, rather than #E(Q), the numbers Np(E) =
#E(Fp). Computationally, they found that∑

p≤X

Np(E)
p

≈ CE(log X)r

where CE is a constant depending on E and r is the rank. One can define an
L-function associated to E using the values ap = p + 1 − Np.

L(s,E) =
∏
p

Lp(s, E) Lp(s,E) = (1 − app
−s + pp2s)−1.

Their computational results lead them to the conjecture:

Conjecture 3 (BSD). (0) L(s,E) has analytic continuation and a functional
equation F (s,E) = L(2 − s,E).

(1) ords=1 L(s,E) = rank(E).
(2) L(r)(1, E)/r! = “arithmetic infomation” on E.

Even the fact that L(s,E) has analytic continuation was not at all clear. This
was known to be the case for CM elliptic curves, but up to quadratic twist there
are only a finite number of such curves. Shimura, in the 1960s, proved the following
theorem, which established many more examples for which (0) could be proved.

Theorem 4 (Shimura). The curve X0(N) = Γ0(N)\H ∪ {cusps} is defined over
Q. One can define an L-function L(s,H1(X0(N)) =

∏
Lp such that

L(s,H1(X0(N)) =
∏
f

L(s, f)

where f ranges over a basis of modular forms of weight 2 and level N . Moreover,
given f one obtains a map

J(X0(N)) −→ Af

such that L(s, Af ) =
∏

σ:Q(f)→↪→C L(s, fσ).

Since Q(f) = Q(am(f)), if f has coefficients in Q then Af is an elliptic curve.
(In general if f is weight two cusp form, [Q(f) : Q] = dimAf .) Since the L-
functions of modular forms were known to have functional equations and analytic
continuation, this then proved that for curves which are modular, meaning there is
a map π : X0(N) → E, the BSD conjecture makes sense.

This leads naturally to the question: “Which curves are modular?”
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2. Friday, September 4, 2009

2.1. More stories. The problem in the BSD conjecture is to determine first of all
when L(s,E) is defined at s = 1. Shimura’s work implies that L(s,E) = L(s, f)
if and only if there exists a so-called Weil parametrization π : X0 → E. In this
case, E is called modular. At first, people doubted that many curves were modular
until Weil proved his converse theorem that said if L(s,E) and it’s twists have a
functional equation and analytic continuation then it is modular. At that point the
Taniyama-Shimura conjecture that every elliptic curve is modular seemed probable.

(Remark: Two elliptic curves are isogenous if and only if their L-functions are
the same.)

Birch recognized that Heegner’s method to find points could be generalized and
simplified by working on X0(N) instead of E. He studied the curves

ED = Dy2 = x3 − 1728

and deduced from them the conjectural formula

d

ds
(L′(s,E)L(s,E))|s=1 = 2A3BΩĥ(Heegner)

where ĥ(Heegner) is the height of the Heegner point.
It was recognized that the LHS is related to the Rankin L-function, and from

here Gross started his work.

2.2. Start to define things. We have the modular curves

Γ0(N)\H = Y0(N) ↪→ X0(N) = Γ0(N)\H ∪ {cusps}.

Question: How do we know that X0(N) is defined over Q?
• Classically. Consider the modular polynomial j(τ) which is a rational func-

tion on X0(N). Since jN (τ) = j(Nτ) is as well, and X0(N) is a curve,
there must be some relation ΦN (x, y) ∈ C[x, y] such that ΦN (j, jN ) = 0.
The projective curve defined by ΦN is isomorphic to X0(N). Since ΦN is
defined over Z this gives the result.

• Another way. Think of Y0(N) as the moduli space of cyclic isogenies of
elliptic curves. In other words, a point x of Y0(N) is a triple (ϕ,E,E′)
where ϕ : E → E′ is a degree N morphism whose kernel is cyclic. If one
can show that E, E′ and ϕ are all defined over F , then x is as well.

How does the moduli space condition relate to the upper half plane description
of Y0(N)? In the special case that N = 1, a point x corresponds to an elliptic
curve, so the map

SL2(Z)\H → {elliptic curves} τ 7→ Eτ = C/(Z + Zτ)

gives the isomorphism. In general

τ 7→ (ϕ : ENτ → Eτ )

where ϕ is the obvious map.
Question: For a given [τ ] ∈ Y0(N), over what field is [τ ] defined? The answer

depends on j(τ) and jN (τ).

Theorem 5. If τ ∈ H is algebraic then [τ ] ∈ Y0(N) is algebraic if and only if τ is
(imaginary) quadratic. (Such a point is called a CM point.
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Complex multiplication: Let K = Q(
√

D) for D < 0, OK = Z[D+
√

D
2 ]. A CM

elliptic curve/L is a pair (E, ι) where E is an elliptic curve over L together with an
action ι : OK → EndL(E).

Propostion 6. Every CM elliptic curve by OK over C is of the form (C/a, ι) where
ι : K → C acts on C/a by multiplication.

The idea of the proof is to write E/C as C/Λ where Λ = Zω1 + Zω2. Since C is
the universal cover of C/Λ we get

C //____

²²

C

C/Λ
ι(a) // C/Λ

OO

The induced map from C to C must be multiplication by some number α. Therefore,
αΛ ⊂ Λ for all choices of a ∈ OK . Thus Λ is an OK-module of rank 2 as a free
Z-module. In other words, Λ is a projective OK-module of rank 1. One concludes
that Λ ' a an ideal of K.

We have the following facts.
• (C/a, ι) is defined over H, the Hilbert class field of K.
• Denote the image of [a] in Gal(H/K) by σa. Then (C/a)σa = (C/ab−1).
• H = K(j(C/a)) = K(j(D+

√
D

2 )).
These facts lead to the theorem in one direction: if τ is imaginary quadratic the

[τ ] ∈ Y0(N) is defined over a number field.

3. Wednesday, September 9, 2009

We have X0(N) ⊃ Y0(N) = Γ0(N)\H = {(ϕ : E → E′) | · · · }.

3.1. Fricke involution. We will define a group of actions indexed by d | N on
Y0(N). Let x = (φ : E → E′) ∈ Y0(N). In particular, we have

wN (x) = (ϕ∨ : E′ → E).

More generally, if d | N and C ⊂ ker φ has order d then wd(x) is the composition

E/C → E′ → E′/C ′

where the first map is that induced by φ and C ′ ⊂ kerφ∨ is such that the degree
of the composition is N . In other words, the size of φ−1(C ′)/C is N .

We denote by W the group generated by wd in either End(J0(N)) or in End(X0(N)).

3.2. Hecke operators. For m ≥ 1, Tm(φ : E → E′) be the formal sum
∑

C xC ∈
Z1(X0(N)) where C ⊂ E[m] is cyclic of order m and C ∩ kerφ = {0} and

xC = (φ : E/C → E′/φ(C)

This is called the Hecke correspondence.
As an exercise, lets calculate Tm[τ ] where [τ ] ∈ Y0(N). Recall the notations

Λα = Z + Zα, Eα = C/Λα. Then

[τ ] = (φ : E = Eτ = C/Λτ → C/Λτ/N = E′)

Take m = p a prime not dividing N . Note that

Eτ [p] = (
1
p

Z +
τ

p
Z)/Λτ ' Z/p × Z/p.
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Since Z/p × Z/p has p + 1 cyclic subgroups:

C∞ = 〈1
p
, 0〉, Cj ' 〈 j

p
,
1
p
〉 (0 ≤ j ≤ p − 1).

So the corresponding points on Y0(N) are

xCj = (C/(Z + Z[
j

p
+

τ

p
]) → C/φ(· · · )

xC∞ = (C/(Z
1
p

+ Zτ) → C/φ(· · · )

and

Tp([τ ]) =



n−1∑
j=0

[
τ + j

p
] + [pτ ] if p - N

n−1∑
j=0

[
τ + j

p
] if p | N

Remark: Hecke operators act on modular forms:

Tpf =
∑
j=0

p − 1f(
τ + j

p
) + δp,Nf(pτ).

The Hecke correspondence on X0(N) bives an action on J0(N):

Tm((x) − (∞)) = Tmx − deg Tm(∞) ∈ J0(N).

We denote by T ⊂ End(J0(N) the subgroup generated by all of the Tm and W .
This is the Hecke algebra.

Theorem 7 (Eichler-Shimura,Shimura (?)). Given f ∈ Snew
2 (N), Tmf = amf for

all n. Thus there exists a unique abelian variety Af ⊂ J0(N) (understood up to
isogeny) which is stable by Tm action and Tma = ama for all a ∈ Af .

3.3. Complex multiplication. Fix K = Q(
√

D), OK = Z[D+
√

D
2 ]. A pair (E, ι)

is a called a CM elliptic curve by OK if E is an elliptic curve and ι : OK ↪→ End(E).
Note that to write down abelian extension of a number field L, we know how to

do this explicitly if L = Q, in which case we adjoint all values of e2πiz where z is
rational. The only other case we can do is when L = Q(j(D+

√
D

2 ), D+
√

D
2 ) in which

case we can use the theory of complex multiplication.

Theorem 8 (The Theorem of Complex Multiplication). Every CM elliptic curve
over C is of the form Ea = (C/a, ι) where a is an ideal of K and ι : K → C is the
standard embedding.

(i) (C/a, ι) ' (C/b, ι) if and only if a = αb which is equivalent to the statement
that [a] = [b] in Cl(K).

(ii) Ea is defined over H = Q(j(D+
√

D
2 ), D+

√
D

2 ), the Hilbert class field of K.
(iii) For all σb ∈ Gal(H/K) ' Cl(K), [Ea]σb = Eab−1 .
(iv) Let ρ denote complex conjugation. Then (C/a, ι)ρ = (C/a, ι) = (C/a, ι).

If Ea ∈ Y0(1), then this implies that j(Ea) ∈ H and j(Ea)σb = j(Eab−1).
Consider the map

π : Y0(N) → Y0(1)
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which has degree [SL2(Z) : Γ0(N)]. If (E, ι) ∈ Y0(1) then

π∗(E, ι) =
∑

x|π(x)=(E,ι)

x

is defined over H even though each x need not be defined over H. When they are
defined over H, they are called Heegner points.

So x = (φ : E → E′) is a Heegner point (by OK) if there exists an OK-action
ι : OK ↪→ Endx where Endx consists of all pairs of endomorphisms (f, f ′) such
that

E
φ //

f

²²

E′

f ′

²²
E // E′

commutes. Endx can be described in terms of just endomorphisms f on E such
that f(kerφ) ⊂ kerφ.

Propostion 9. Assume (D,N) = 1. Then there exists a Heegner point if and only
if D is a square modulo 4N . In particular, both E,E′ have CM by OK .

The way to prove this is to consider x = (φ : E → E′). Then, by the theorem
on complex multiplication,

E = C/a → E′ = C/b a ⊂ b,

b/a is cyclic and b = aN with N(N ) = N and OK/N is cyclic.

4. Friday, September 11, 2009

So Heegner points exist only if D ≡ ¤ (mod 4N). Assume (D, 4N) = 1. One
question we can ask is “how many Heegner points are there?” We must have
N = NN and (N ,N ) = 1. Recall that O/N ' Z/N .

For every [a] ∈ Cl(K) we have a point

x[a] = (C/mfa → C/aN−1).

The class group acts on the set of Heegner points which we denote by Heeg(D,N)
as does W . Write d | N and (d,N/d) = 1. Then

wd(x[a]) = (φ∨ : C/mfaN−1 → C/a) ' (C/mfaN−1 → C/aN−1).

Lemma 10. Cl(K) × W ats transitively on Heeg(D,N).

Question: Does Tm act on Heeg(D,N)? We decided that the answer is no
because once you mod out by cyclic subgroups the resulting elliptic curves may
only have complex multiplication by a smaller order of OK .

Let χ : Gal(H/K) → C× be an ideal class character, f ∈ Snew
2 (N), x ∈

Heeg(D,N), c = (x) − (∞) ∈ J0(N)(H). Define

cχ =
∑

σ∈Gal(H/K)

χ−1(σ)σ(c) ∈ J0(N)(H,µ∞).

This can be projected to cχ,f ∈ Af which is an abelian variety over Q, or at least
over Q.
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Example: χ = 1 and Af = E an elliptic curve. Then

cχ =
∑

σ∈Gal(H/K) σ(c) ∈ J0(N)(K)
↓ πf

cχ,f = π(cχ) ∈ E(K)

Question: When is cχ,f non-torsion? To answer this question we use the height
pairing.

4.1. Height pairing (Neron Tate height). Tate proved that globally there ex-
ists a canonical positive definite quadratic form1

hcan : J(L)/J(L)tor → R≥0

when J is any abelian variety. So cχ,f is torsion if and only if hcan(cχ,f ) = 0.
The problem with Tate’s pairing is that is hard to calculate. Let H a number

field and v a prime of H. Locally, Neron proved2 the following. Let X be a curve
over H, and Z1(X)0 divisors of degree zero.

(1) There exists unique biadditive symmetric continuous pairing

〈·, ·, 〉v : Z1(X)0(Hv) × Z1(X)0(Hv) → R
which is well defined only when a, b have no common generic support. More-
over,

〈a, divf〉v = log |f(a)|v =
∑

x∈supp(a)

mx log |f(x)|v.

(2) For all a, b ∈ Z1(X)0(H), 〈a, b〉v = 0 for almost all v. Thus 〈a, b〉 =∑
v〈a, b〉v is a well defined global height pairing. It only depends on the

image of a, b ∈ J(X).

Theorem 11. The two global height pairings (of Tate and Neron) are the same.

For more on this see [1].

4.2. Relation of height to derivative. Birch related hcan(c1,f ) in the case that
Af = E and χ = 1 to

d

ds
(L(f, s)L(fD, s)) |s=1=

d

ds
(L(E, s)L(ED, s)) |s=1 .

The L-function appearing here is a Rankin-Selberg L-function.

4.3. Base change. Let χ : I(f) = {ideals relatively primes to f} → C× be a
group homomorphism such that χ(αOK) = αk−1 for all α ≡ 1 mod f . Define

L(s, χ) =
∑

a⊂OK

χ(a)
(Na)s

=
∏
p

(1 − χ(p)Np−s)−1 =
∞∑

n=1

aχ(n)
ns

.

Theorem 12 (Hecke). There exists a unique fχ ∈ Snew
k (dKN(f)) such that L(s, χ) =

L(s, fχ) if χ 6= 1. (If χ = 1 replace fχ with an Eisenstein series.)

Corollary 13. If χ 6= 1 is an ideal class character of K then fχ ∈ Snew
1 (dK). If

χ = 1 one gets an Eisenstein series of weight 1.

1This means there is a symmetric bilinear form (·, ·) : J×J → R such that hcan(x) = 1
2
(x, x) >

0 whener x ∈ Jtor.
2See Gross[2] for details.
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5. Monday, September 14, 2009

Recall K = Q(
√

D) and D ≡ ¤ (mod 4N). Up to isogeny, J0(N) is equal to

J0(N)old ⊕ J0(N)new J0(N)new =
⊕

f∈Snew
2 (N)

Af .

So, to a point x ∈ J0(N) we can associate to it xf ∈ Af .
The Heegner points are parametrized by [a] ∈ Cl(K) and ideals N such that

NN = N and (N ,N ) = 1. Then

τ[a,N = (E/[a] → E/[Na]).

The action of Cl(K) is given by (τ[a,N )σb = τ[ab−1,N .
To describe the action of W , write N =

∏
p pep . If d | N and (d,N) = 1, write

Nd =
∏

p|(d,N )

pep
∏

p-(d,N )

pep .

Then
wd(τ[a,N ) = (E/[a] → E/[aN 1].

Fix a Heegner point x. Write c = (x)− (∞)
∫

J0(N)(H). As above χ : Cl(K) →
C× is a character. This gives, by Hecke’s Theorem, fχ ∈ Snew

1 (|D| ,
(

D
·
)
) whose

Fourier coefficients are aχ(n) =
∑

a|Na=n χ(a).
For cχ =

∑
σ χ−1(σ)cσ ∈ J0(N)(H,χ) as before we let cχ,f denote its f -isotypic

component in Af (H,χ, f).
In general, if χ 6= 1 is a Hecke character of K = Q(

√
D) of weight k − 1 and

conductor f then fχ ∈ Snew
k (|D|N(f), χ̃) where χ̃(n) =

(
D
n

)
χ(nOK). (If χ = 1 you

get an Eisenstein series.)
Another example. Take E a CM elliptic curve by OK . This gives a Hecke

character χE of K associated to E such that L(s,E/Q) = L(s, χE) if E is defined
over Q and L(s,E/K) = L(s, χE)L(s, χE) if not. Again χE is associated to a
modular form fχE which is a weight 2 modular form. This is the reason it was
known earlier that CM elliptic curves are modular.

The Rankin-Selberg L-function. Let f =
∑∞

n=1 anqn ∈ Sk(N) and g =
∑∞

n=1 bnqn ∈
Sl(N). We can assume that k ≥ l. Define L(s, f, g) =

∑∞
n=1 anbnqn.

Theorem 14. L(s, f, g) has analytic continuation together with a functional equa-
tion. Actually, times some gamma factors L(s, f, g) is equal to∫

X0(N)

fgEk−l(τ, s + a)y∗dµ(τ)

where

E =
∑

γ∈Γ∞\Γ0(N)

ϕ(γ)
(cz + d)k−l |cz + τ |2s .

Moreover, E(τ, s) = E(τ,−s) and L(s, f) =
∏

Lp(s, f).

In our case, Lp(s, f) =.

6. Monday, October 5, 2009

6.1. Theorem of Yuan, Zhang, Zhang.
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6.2. Weil representation. Let F be a local field, (V, q) a quadratic space of
dimension m. Define det V = det([(ei, ej)]) where {e1, . . . , em} is a basis of V over
F . Then det V 6= 0 is a well-defined element of F×/(F×)2. Let

χV = ((−1)m(m−1)/2 detV, )F

be the Hilbert symbol. Fix ψ : F → C× an additive character.
Then we will describe a representation of S̃L2(F )×O(V )(F ) on the space S(V )

of Schwartz functions on V .
Some notation on groups:

GO(V ) = {g ∈ GL(V ) | (gx, gy) = ν(g)(x, y) for all x, y ∈ V }.
The character ν : GO(V ) → C× is called the similitude character.

O(V ) = {g ∈ GO(V ) | ν(g) = 1}.

SO(V ) = {g ∈ O(V ) | det(g) = 1}.
Example: Let E/F be a quadratic extension. For a ∈ F× let V = E and

V a = (V, qq) be the space with quadratic form qa(x) = axx̄. It is easy to see that
E× ⊂ GO(V ) with action z · x = zx and ν(z) = zz̄.

Lemma 15. In this example

GO(V a) ' E×n < σ > O(V a) ' E1n < σ > SO(V ) ' E1

where < σ >= Gal(E/F ) and E1 = {z ∈ E | NE/F (z) = 1}.

Another example: Let B be a quaternion algebra over F , V0 = {x ∈ B | trx =
x+xι = 0}. The map x 7→ xι is the main involution of B. We sometimes denote xι

by x̄. The quadratic form is Q(x) = xxι. Notice that B× acts on V0 by b·x = bxb−1.
Moreover,

Q(b · x) = Q(bxb−1) = bxb−1(bxb−1)ι = bxb−1(b−1)ιxιbι = xxι = Q(x).

So B× ⊂ O(V ).

Propostion 16. The sequence

1 −→ F× −→ B× −→ SO(V ) −→ 1

is exact.

Final example: V = B and Q(x) = xxι = det x. In this case B× × B× acts on
V by (b1, b2) · x = b1xb−1

2 . Can check that Q((b1, b2) · x) = det b1 det b−1
2 Q(x). So

B× × B× → GO(V ) with kernal F× and image of index 2.

7. Wednesday, October 7, 2009

We continue to define the Weil representation. Let F be a local field of char-
acteristic not equal to 2, (V,Q) a quadratic space over F of dimension m. Then
define

(x, y) = Q(x + y) − Q(x) − Q(y).
as above, we get groups GO(V ), O(V ) and SO(V ).

In the third example from above (V = B) the following sequence is exact.

1 −→ F× −→ B× × B×n < σ >−→ GO(V ) −→ 1

where the map F× → B× × B× is given by a 7→ (a, a).
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A fourth example is V = Rm and Q(x) = x2
1 + · · · + x2

m. In this case O(V ) is
the typical orthogonal group consisting of g ∈ GLn such that tgg = 1.

Fix ψ : F → C× a character. We will define wV,ψ a representation.
Let W = F 2 by the symplectic space with (standard) form 〈x, y〉 = x1y2 −x2y1.

From this we obtain the group

Sp(W ) = {g ∈ GL(W ) | 〈gx, gy〉 = 〈x, y〉}
which is isomorphic to SL2.

Let W = W ⊗ V . This has dimension 2n. Defining

〈〈w1 ⊗ v1, w2 ⊗ v2〉〉 = 〈w1, w2〉(v1, v2)

gives W a symplectic structure (meaning that the form is alternating: 〈〈x, y〉〉 =
−〈〈y, x〉〉.) We also have an injection

i : Sp(W ) × O(V ) −→ Sp(W )

with i(g, h)(w ⊗ v) = (gw) ⊗ (hv).
The Weil representation is a (very small, i.e. nearly irreducible) representation

wV,ψ of S̃p(W ) = Mp(W ). We have the diagram

Mp(W ) × O(V ) //

²²

Mp(W )

²²
Sp(W ) × O(V ) // Sp(W )

(See [5] for more discussion of the Weil representation.) If m = dim V is even,
then the representation wV,ψ descends to a representation of Sp(W ) × O(V ). It is
natural to ask what this restriction looks like.

(All of the above works for W any symplectic space of dimension 2n.)
In our special case (n = 1 and m even) we can write down a model (the

Schrodinger model) of the restriction w of wV,ψ to SL2 × O(V ). Then the O(V )
action is given by

w(h)ϕ(x) = ϕ(h−1x) h ∈ O(V ), ϕ ∈ S(V ).

Define the subgroups

N = {n(b) = ( 1 b
1 ) | b ∈ F}, M = {m(a) = ( a

a−1 ) | a ∈ F×},
P = MN and K is a maximal compact subgroup of SL2(F ). (K = SL2(OF ) if F
is nonarchimedean and K = SO2(R) if F = R and K = U(2) if F = C.) We have
the decompositions

SL2 = NMK SL2 = P ∪ PwP

where w =
( −1

1

)
.

We define the action of SL2(F ) via

w(n(b))ϕ(x) = ψ(bQ(x))ϕ(x),

w(m(a))ϕ(x) = χV (a) |a|m/2
ϕ(xa),

w(w)ϕ(x) = γ(V )ϕ̂(x) ϕ̂(x) =
∫

V

ϕ(y)ψ(−(x, y))dy

One can check that this gives a well defined representation so long as m is even.
(If m is odd you have to move to S̃L2 = Mp(W ).
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8. Siegel-Weil formula

Now let F be a number field. We can for a Weil representation w =
⊗

wv on
SL2(A) × O(V )(A) on S(VA) =

⊗′
S(Vv).

Weil define the theta kernel. For ϕ ∈ S(VA) it is defined to be

θ(g, h, ϕ) =
∑

x∈V (F )

w(g, h)ϕ(x) =
∑
x∈V

w(g)ϕ(h−1x).

This is a well defined function on SL2(F )\SL2(A) × O(V )(F )\O(V )(A). In other
words, it is an automorphic form.

The theta integral is

I(g, ϕ) =
∫

[SO(V )]

θ(g, h, ϕ)dh.

For any group G, we write [G] = G(F )\G(A). The theta integral need not be
convergent, but it is for example when F is totally real and V is positive then this
is convergent because it implies that O(V )(F )\O(V )(A) is compact.

Exercise: Try to compute for V = E = Q(i), Q(x) = xx̄ and ϕ = ⊗ϕv with

ϕ∞(z) = e−2πzz̄, ϕv = 1OEv
(if n - ∞).

Let ψ : Q\QA → C be the character such that ψ∞(x) = e2πix and ψp(x) =
e−2πiλp(x) where

λp : Qp/Zp → Q/Z.

(1) Calculate θ(gτ , 1, ϕ) where gτ = n(u)m(
√

v). (Note that gτ i = u + iv = τ .
(2) What is I(gτ , ϕ)?

By definition

θ(gτ , 1, ϕ) =
∑

a+ib∈Q(i)

w(n(u)m(
√

v))ϕ(a + ib)

=
∑

z∈Z(i)

w∞(n(u)m(
√

v))ϕ∞(z) (ϕf (a + ib) = 0 unless a, b ∈ Z)

=v1/2
∑

z∈Z(i)

ψ∞(uQ(z
√

v))ϕ∞(z
√

v) (by the definition of the action)

=v1/2
∑

a,b∈Z

e2πiu(a2+b2)e−2π(a2+b2)v (by the definition of ψ∞ and ϕ∞)

=v1/2
∑

z∈Z[i]

e2πiτzz̄ = v1/2
∞∑

n=0

r2(n)qn

where q = e2πiτ and r2(n) = #{z ∈ Z[i] | zz̄ = n}.
Remark: The reason that the action of O(V ) is so nice, and that of SL2 is messier,

is because in the choice of model we have written W = W ⊗ V = X ⊗ V ⊕ Y ⊗ V
where W = X ⊕ Y is a polarization. The group O(V ) acts on Y , and in this
decomposition it remains nice, but SL2 acts on W and it is split up.

9. Friday, October 9, 2008

We continue to discuss the Siegel Weil formula. The results of Siegel are from
the 1940s, those of Weil are from around 1964, and the contribution of Kudla-Rallis
is from about 1994.
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Recall that (V,Q)/F is a quadratic space of dimension m, ψ : FFA → C× is an
additive character, and w = wV,ψ is a representation of S̃L2 ⊗ O(V )(A) on S(VA).
From this we obtained the theta kernel

θ(g, h, ϕ) =
∑
x∈V

w(g, h)ϕ(x).

Theorem 17 (Weil). The function θ(g, h, ϕ) is an automorphic form on SL2(F )\S̃L2(A)×
O(V )(F )\O(V )(A).

As before we let [G] = G(F )\G(A).
Thus the theta integral

I(g, ϕ) =
∫

[SO(V )]

θ(g, h, ϕ)dh

is an automorphic form on SL2(F )\S̃L2(A) whenever the integral converges.
For example if E = Q(

√
D) for D < 0, V = E and Q(x) = xx̄, then if we define

ϕ and ψ as in the exercise above we get

θ(gτ , 1, ϕ) = v1/2
∑

z∈OK

rOK (n)qn

where rOK
(n) = #{z ∈ OK | zz̄ = n}. Without the factor v1/2 this is a modular

form of weight 1.
We now define the Eisenstein series. Let χ : F×\F×

A → C× be a character. Then
we define

I(s, χ) = IndSL2(A)
PA

(χ |·|s) = {Φ : SL2(A) → C | Φ(n(b)m(a)g) = χ(a) |a|s+1 Φ(g)}

The space I(s, χ) =
⊗

v≤∞ I(s, χv) which is generated by elements of the form
Φ = ⊗Φv. For such an element we define

E(g, s, Φ) =
∑

γ∈P (F )\SL2(F )

Φ(γg, s).

When this converges it is clearly an automorphic form on SL2(F )\SL2(A).

Theorem 18. The map

λ : S(VA) → I(s0, χV ) ϕ 7→ λ(ϕ) : g 7→ w(g)ϕ(0)

is SL2(A)-equivariant. (Here s0 = m/2 − 1.) In other words λ(w(g)ϕ) = ρ(g)λ(ϕ)
where ρ is the right regular action.

Theorem 19 (Siegel-Weil). When the sum and integrals are absolutely convergent
1

vol([O(V )])
I(g, ϕ) = κE(g, s0, λ(ϕ))

where κ = 1 if m > 2 and κ = 2 if m ≤ 2.

If r is the dimension of the maximal isotropic subspace of V , Weil proved that
I(g, ϕ) is absolutely convergent when

(1) r = 0 or r > 0 and m − r > 2.

On the other hand, if (1) holds and m > 4 then E(g, s0, λ(ϕ)) is also absolutely
convergent.
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Kudla and Rallis proved that there is an analytic continuation of E(g, s, λ(ϕ))
if (1) holds in the following way. Given λ(ϕ) ∈ I(s0, χV ), we want to define a
standard section of Φ(g, s) ∈ I(s, χV ) such that Φ(g, s0) = λ(ϕ) and Φ(g, s) |K is
independent of K. Concretely if we write g = n(b)m(a)k for some k ∈ K then we
want to define

Φ(g, s) = λ(ϕ)(g) |a(g)|s−s0

where a(g) = a. Since the decomposition of g in this form is not unique one has to
check that this gives a well defined element of I(s, χV ), but this is the case. This
gives E(g, s, Φ), for which Kudla and Rallis proved that the Siegel-Weil formula
extends.

Remark: Actually, Kudla and Rallis proved even more. When E has a pole at
s, they proved that there is a Siegel-Weil type formula involving the residue. We
will not need this for what we are doing.

9.1. Fourier coefficients. Fix ψ. For any automorphic form f : SL2(F )\SL2(A) →
C, we can write

f(g) =
∑
b∈F

fb(g) fb(g) =
∫

F\A
f(n(x)g)ψ(−xb)dx.

The function fb is called the b-th Fourier coefficient.
When f is an Eisenstein series the following proposition tells us that calculating

the Fourier coefficients is pretty simple.
Remark. This simplicity is mirrored in the classical case. Here

Ek = 1 + ∗
∑

σk−1(n)qn σk−1 =
∑
d|n

dk−1 =
∏

p<∞
σ

(p)
k−1(n)

where σ
(p)
k−1 = 1 + pk−1 + (p2)k−1 + · · · + (pr)k−1 and r = ordp(n). On the other

hand, finding the coefficients of cusp forms is very complicated.

Propostion 20. For all a 6= 0, Ea(g, s, Φ) =
∏

v Ea,v(gv, s, Φv) where

Ea,v(gv, s,Φv) =
∫

Fv

Φv(wn(x)gv, s)ψ(−ax)dx

is the local Whittaker function
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Proof. We use the fact that SL2 = P ∪PwN from which one can easily deduce that
P\SL2 ↔ {1} ∪ wN . Now, using the definitions,

Ea(g, s, Φ) =
∫

F\A
E(n(x)g, s, Φ)ψ(−ax)dx

=
∫

F\A

∑
γ∈P\SL2(F )

Φ(γn(x)g, s)ψ(−ax)dx

=
∫

F\A
Φ(γn(x)g, s)ψ(−ax)dx +

∑
xıF

Φ(wn(b)n(x)g, s)ψ(−ax)dx

=Φ(g, s)
∫

F\A
ψ(−ax)dx +

∫
F\A

∑
b∈F

Φ(wn(x)g, s)ψ(−ax)dx

=Φ(g, s)
∫

F\A
ψ(−ax)dx +

∫
A

Φ(wn(x)g, s)ψ(−ax)dx

=Φ(g, s)
∫

F\A
ψ(−ax)dx +

∏
v

∫
Fv

Φv(wn(x)gv, s)ψv(−ax)dx

To finish the proof we note that
∫

F\A χ(x)dx is zero unless χ is trivial (in which
case it is the volume of F\A which is finite.) ¤

Notice that we have proved more, since we have given the formula even when
a = 0.

Exercise. Check the Siegel Weil formula for V = Q(
√

D), Q(x) = xx̄ in general.
If this is too hard try the cases D = −3,−1,−7 where the class number is 1.

10. Monday, October 12, 2009

Recall that the theta kernel

θ(g, h, ϕ) =
∑
x∈V

w(g, h)ϕ(x)

is an automorphic form on SL2(F )\S̃L2(A) × O(V )(F )\O(V )(A). G
Given f ∈ π an irreducible cuspidal autormophic representation of O(V )(F )\O(V )(A)

and ϕ ∈ S(VA), we define

θ(h; f, ϕ) =
∫

[SL2]

θ(g, h, ϕ)f(g)dg.

This is absolutely convergent because the assumption that π is cuspidal implies
that f has exponential decay.

We get the space

Θ(π) = 〈θ(h; f, ϕ) | f ∈ π, ϕ ∈ S(VA)〉.

This gives the so-called theta lifting from functions SL2 to functions on O(V ). (Can
go in the opposite direction but this isn’t a concern for us.)

The natural questions are
(1) When is Θ(π) 6= 0?
(2) In this case how does Θ(π) decompose as a representation of O(V )?
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It is a fact that in our situation Θ(π) has a unique irreducible subquotient.
Example: Shimura lifting. (due to Waldspurger, Niwa, Shintani, Shimura) Set

V = B0 = {x ∈ B | tr x = 0}, and let Q(x) = axx̄. Here we really need to replace
SL2 by S̃L2 because dim V = 3. For this choice SO(V ) = PB× = B×/F×. In the
special case that B = M2, we have SO(V ) = PGL2, and the associated lift is the
Shimura correspondence.

10.1. Extended Weil representation. Another example (of much interest to us)
is the Shimizu lifting: V = B, Q(x) = xx̄. However, we’d like to enlarge the theory
to treat the case GL2 × GO(V ) instead of SL2 × O(V ). We do this in the next
section.

As normal, we assume dim V is even. The space on which GL2×GO(V ) will act
is S(VA × F×

A ). The action by GO(V ) is simple: w(h)ϕ(x, u) = ϕ(h−1x, ν(h)u).
The GL2 action is more complicated: w(g)ϕ(x) = wu(g)ϕ(x) where

wu(n(b))ϕ(x, u) = ψ(buQ(x))ϕ(x, u)

wu(m(a))ϕ(x, u) = χV (a) |a|m/2
ϕ(xa, u)

wu(w)ϕ(x, u) = γ(V u) |u|m/2
∫

V

ϕ(y)ψ(−uxy)duy

The Shimizu lifting. Let π be an irreducible cuspidal automorphic representation
of GL2(F )\GL2(A), and let (V,Q) be as above. We redefine the theta lift

θ(h; f, ϕ) =
ζ(2)

2L(1, π, Ad)

∫
[GL2]

θ(g, h, ϕ)dg.

Note that this is the same as before, but with a different normalization and we
now are using the extended Weil representation. Since B××B× ⊂ GO(V ), we can
think of Θ(π) as a representation on B× × B×.

Theorem 21. • Θ(π) 6= 0 if and only if πv is not a principal series at all
places such that Bv is a division algebra.

• When Θ(π) 6= 0, we have Θ(π) = JL(π) × J̃L(π) as a representation of
B×

A × B×
A .

• If π is an autormophic representation of B×, can go in opposite direction
and get an irreducible representation of GL2.

Now we have a B× × B× and GL2 equivariant map

θ : π ⊗ S(VA × F×) → π′ ⊗ π̃′ f ⊗ ϕ 7→ θ(h; f, ϕ)

where π′ = JL(π). In other words,

θ ∈ HomGL2×B××B×(π ⊗ S(VA × F×), π′ ⊗ π̃′).

By Jacquet-Langlands this space has dimension 1, so θ is a generator.
We would like to understand what this looks like locally. Since θ =

∏
v θv we

want to find canonical choices of

θv : πv ⊗ S(Vv × F×
v ) → πv ⊗ π̃′

v.

This is tricky because the Siegel-Weil formula given is completely global, and defin-
ing something similar for the local situation is a challenge.
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More concretely, don’t have a good way to construct the decompostion

S(Vv × F×
v ) =

⊕
π∈Irr(GL2)

π ⊗ Θ(π).

11. Wednesday, October 14, 2009

Today we discuss the Shimizu lifting. Let B over F be a quaternion algebra and
ϕ ∈ S(VA × F×

A ). Then we get

θ(g, h, ϕ) −
∑

(x,u)∈V ×F×

w(g)ϕ(h−1x, ν(h)u),

and if f ∈ π an irreducible cuspidal automorphic representation of GL2(F )\GL2(A)
then we can define

θ(h, f ⊗ ϕ) =
ζ(2)

2L(1, π, Ad)

∫
[GL2]

θ(g, h, ϕ)f(g)dg.

As discussed last time, can think of θ as an element of

HomGL2(A)×B×
A ×B×

A
(π ⊗ S(VA × F×

A ), π′ ⊗ π̃′)

which has dimension 1. Since θ 6= 0 there should be θv such that θ =
∏

θv.
We would like to understand θv canonically. To do this we need a local map
πv → π′

v ⊗ π̃′
v.

There is a canonical pairing on π′ ⊗ π̃′. Locally, it is

Fv : π′
v ⊗ π̃′

v → C (x, f) 7→ f(x).

This is just because π̃′ is the space of linear functionals on π′. Globally, the pair-
ing is even more natural. Notice that π′ is always cuspidal hence a subspace of
L2

0(B
×\B×

A ). Since this is a Hilbert space, we have the positive definite inner form

π′ ⊗ π′ → C (f1, f2) 7→
∫

FB×\B×
A

f1(g)f2(g)dg.

This implies that π̃′ = {f | f ∈ π′}, and

F : π′ ⊗ π̃′ → C (f, f̃) 7→
∫

FB×\B×
A

f(g)f̃(g)dg.

11.1. The Whittaker model. This is a local analogue of the Fourier expansion.
Let πv be an irreducible admissible representation of GL2(Fv), ψ : Fv → C a
nontrivial character. The ψ-Whittaker functional on πv is a linear map

` : πv → C such that `(n(b)x) = ψ(b)`(x).

Theorem 22. For fixed nontrivial ψ, a ψ-Whittaker functional exists and is unique
up to scalar.

Corollary 23. For x ∈ πv is as above and ` is a ψ-Whittaker functional, the map
x 7→ W x : g 7→ `(πv(g)x) is a GL2(Fv) equivariant map

πv ↪→ W (GL2, ψ) = {W : GL2(Fv) → C | W (n(b)g) = ψ(b)W (g).

The image of πv is called the ψ-Whittaker model. It is unique.
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Notation. We will always take ψ fixed from here on out, but every other character
is of the type ψa(x) = ψ(ax), and for f ∈ πv we will denote the corresponding ψa-
Whittaker function by W f

a (g).
We can now define θv. It is uniquely determined by the property that

Fvθv(f ⊗ ϕ) = ∗
∫

N(Fv)\GL2(Fv)

W f
−1(g)w(g)ϕ(1, 1)dg

and ∗ is a constant so that for unramified ϕ and f the value is 1.
Globally, the Whittaker model is easier. Take f ∈ π ⊂ L2

0(GL2(F )\GL2(A)).
Then

f 7→ W f
ψ (g) =

∫
N(F )\N(A)

f(n(b)g)ψ(−b)db.

One can easily check that
• f 7→ W f

ψ is injective;

• π(g)f 7→ W
π(g)f
ψ = ρ(g)W f

ψ : h 7→ W f
ψ (hg);

• W f
ψ (n(b)g) = ψ(b)W f

ψ (g).

Since W f
ψ is a function on GL2(A) this gives a local Whittaker model gv 7→ W f

ψ (g).
By the uniqueness of the local models, one sees that the global model must also be
unique.

Theorem 24. θ =
∏

θv.

Proof. Let us write V = B = V0 ⊕ V1 where V0 = {b ∈ B | tr b = 0} and V1 = F .
Define SO(V )0 = {(g1, g2) | det g1 = det g2}. The following diagram commutes.

SO(V0) // SO(V )

F×\B×

'

OO

b7→(b,b)// SO(V )0

OO

So,

Fθ(f ⊗ ϕ) =
∫

F×
A B×\B×

A

θ(g, (b, b), ϕ)dgdb

=
∫

[GL2]

f(g)
∫

F×
A B×\B×

A

θ(g, (b, b), ϕ)dbdg

=
∫

[GL2]

f(g)
∫

[SO(V0)]

θ(g, b, ϕ)dbdg

=
∫

[GL2]

f(g)
∑

(x,u)∈V1×F×

∑
x∈V0

w(g)ϕ(b−1(x0, x1), ν(b)u)dg

=
∫

[GL2]

f(g)
∑

(x,u)∈V1×F×

∑
x∈V0

w(g)ϕ(b−1x0, x1, u)dg

=
∫

[GL2]

f(g)
∑

γ∈P (F )\GL2(F )

∑
(x,u)∈V1×F×

w(g)ϕ(x, u)dg.

In the last step we applied the Siegel-Weil formula. (We are allowed to write
P (F )\GL2(F ) because it is the same as P 1(F )\SL2(F ).) This final integral can be
unfolded. We will do this next time. ¤
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12. Friday, October 16, 2009

Recall that globally we have

π ⊗ S(VA × F×
A ) θ //π′ ⊗ π̃′ F //C

and locally,

πv ⊗ S(Vv × F×
v )

θv //

((PPPPPPPPPPPPPP
π′

v ⊗ π̃′
v

Fv

²²
C

where

Fvθv =
ζv(2)

Lv(1, πv, ad)

∫
N(Fv)\GL2(Fv)

W fv

−1w(g)ϕv(1, 1)dg.

We had started to prove that θ =
∏

θv, by first noting that it suffices to prove
that Fθ =

∏
Fvθv. Then we decomposed V = V1⊕V2 and applied the Siegel-Weil

formula, which says that

E(g, ϕ(·, x2, u)) =
∑

γ∈P 1(F )\SL2(F )

w(γg)ϕ(·, x2, u)

to obtain the following.

Fθ(f ⊗ ϕ) =
∫

B×F×
A \B×

A

∫
[GL2]

f(g)θ(g, (h, h), ϕ)dgdh

=
∫

[GL2]

f(g)
∫

[SO(V1)]

∑
(x1,x2,v)∈V1×V2×F×

w(g)ϕ(h−1x1, x2, u))dhdg

=
∫

[GL2]

f(g)
∑

γ∈P (F )\GL2(F )

∑
(x2,u)∈V2×F×

w(γg)ϕ(x2, u)dg

+
∫

P (F )\GL2(A)

f(g)
∑

(x2,u)∈V2×F×

w(γg)ϕ(x2, u)dg

Note that we have used that f(γg) = f(g). We break up this final integral into two
pieces. Let

I1 =
∑

u∈F×

w(g)ϕ(0, u) I2 =
∑

(x2,u)∈F××F×

w(g)ϕ(x2, u).

Let us recall/derive formulae for the action of

M = {m(a, d) = ( a
d ) | a, d ∈ F×}

under the Weil representation. In the case at hand m = dim V = 4.

w(( 1
d ))ϕ(x, u) = |d|−m/4

ϕ(x, d−1u),

w(( a
a−1 ))ϕ(x, u) = χ(a) |a|m/2

ϕ(xa, u),

w(( a
1 ))ϕ(x, u) = χ(a) |a|m/4

ϕ(xa, a−1u).

So putting this all together we have that

w(( a
d ))ϕ(x, u) = χ(a) |a/d|m/4

ϕ(xa, d−1u).
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Using this, we can write

I1 =
∑

u∈F×

w(( 1
u ) g)ϕ(0, 1), I2 =

∑
(x2,u)∈F××F×

χ−1(x2) w(( x2
u ) g)ϕ(1, 1).

Note that χ |F = 1. So using the fact that P = MN , we have that

J2 =
∫

N(F )M(F )\GL2(A)

∑
m∈M(F )

f(mg)w(mg)ϕ(1, 1)dg

=
∫

N(F )\GL2(A)

f(g)w(g)ϕ(1, 1)dg

=
∫

N(A)\GL2(A)

∫
N(F )\N(A)

f(n(b)g)

ψ(b)w(g)ϕ(1,1)︷ ︸︸ ︷
w(n(b)g)ϕ(1, 1) dbdg

=
∫

N(A)\GL2(A)

w(g)ϕ(1, 1)

W f
−1(g)︷ ︸︸ ︷∫

N(F )\N(A)

f(n(b)g)ψ(b)db dg

=
∏
v

∫
N(Fv)\GL2(Fv)

W f
−1(gv)w(gv)ϕv(1, 1)dgv =

∏
v

Fvθv.

To complete the proof we must show that J1 = 0. We compute in a similar
fashion to above.

J1 =
∫

P (F )\GL2(A)

∑
u∈F×

f(( 1
u ) g)w(( 1

u ) g)ϕ(0, 1)dg

=
∫

N(F )×{( ∗
1 )}\GL2(A)

∫
N(F )\N(A)

∑
u∈F×

f(n(b)g)

ψ(bQ(0))w(g)ϕ(0,1)︷ ︸︸ ︷
w(n(b)g)ϕ(0, 1) dbdg

=
∫

w(g)ϕ(0, 1)
∫

N(F )\N(A)

f(n(b)g)dbdg.

Because f is cuspidal,
∫

N(F )\N(A)
f(n(b)g)db = 0. This completes the proof.

12.1. Section 2.3 of [7]. We want to represent L(s, π, χ) as an integral.
Recall the setup: E/F is a quadratic extension with associated character η,

π is an irreducible cuspidal automorphic representation of GL2(F )\GL2(A) and
χ : E×\E×

A → C is a character such that χ |F×
A

ωπ = 1.
From this date we get a set

Σ = {v | ε(
1
2
, πv, χv) 6= χvηv(−1)}

and an adelic quaternion algebra B such that Bv is division algebra precisely when
v ∈ Σ. (So B is global if #Σ is even and incoherent if odd.) Let

π′ = πB = ⊗JL(πv) = ⊗π′
v.

For fixed EA ↪→ B we get a decomposition

V = B = EA ⊕ EAj = V1 ⊕ V2.

The element j ∈ B satisfies

j2 ∈ A×
F and ja = aj for all a ∈ EA.
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For ϕ ∈ S(V × F×
A ) = S(V1 × V2 × F×

A ) we define the Eisenstein-theta series:

I(g, s, ϕ) =
∑

γ∈P (F )\GL2(F )

δ(γg)s
∑

(x1,u)∈V1×F×

w(γg)ϕ(x1, u)

where δ(n(b)m(a, d)g) =
∣∣a
d

∣∣1/2. This is an Eisenstein series on V2 and a theta
series on V1. We would like to understand its χ-component:

I(g, x, χ, ϕ) =
∫

E×\E×
A

I(g, s,

ϕ(t−1x,Q(t)u)︷ ︸︸ ︷
w(t)ϕ )χ(t)dt.

We define

P : π ⊗ S(V × F×
A ) → C P(f ⊗ ϕ) =

∫
ZAGL2(F )\GL2(A)

I(g, s, χ, ϕ)f(g)dg.

Theorem 25 (Waldspurger). If f = ⊗fv and ϕ = ⊗ϕv then P(f⊗ϕ) = ⊗Pv(fv⊗
ϕv) where

Pv(fv ⊗ ϕv) =
∫

F×
v \E×

v

χ(t)
∫

N(Fv)\GL2(Fv)

δ(g)sW−1,v(g)w(g)ϕ(t−1, Q(t))dgd×t.

Theorem 26 (Waldspurger). When everything is unramified

Pv(fv ⊗ ϕv) =
L((s + 1)/2, πv, χv)

L(s + 1, ηv)
.

13. Monday, October 19, 2009

Today we prove the second theorem of Waldspurger from the end of last time.
To do this we first discuss the local newform of πv = π an irreducible admissible
representation of GL2(Fv).

Let $ ∈ Fv be a uniformizer, and denote the ring of integers by Ov. Define

K1($c) =
{

g =
(

a b
c d

)
∈ GL2(Ov) | g ≡

(
∗ ∗

1

)
(mod $cOv)

}
.

Theorem 27 (New Whittaker function). (a) There exists a unique integer c =
c(π) ≥ 0 such that dim πK1(π

c

) = 1.
(b) There exists and unique W ∈ Wπ such that W (gk) = W (g) for all k ∈

K1($c) and W (1) = 1.
(c) L(s, π) =

∫
F×

v
W (( a

1 )) |a|s−1/2
d×a.

(d) When π = π(µ1, µ2) is an unramified principal series then

W (( a
1 )) =

{
0 if a /∈ Ov,

|a|1/2 µ1(a$)−µ2(a$)
µ1($)−µ2($) if a ∈ Ov.

In the case that c(π) = 0 this theorem describes W completely. Indeed, GL2(Fv) =
NMK where K = GL2(Ov) = K1(π0). We know how N acts because W is a Whit-
taker function, the action of K is trivial by (b) and that of M is given by (d).

Since “everything is unramified,” Bv = M2(Fv), ϕv is the characteristic function
of M2(Ov) ×O×

v , c(πv) = 0 and

Ev =
{

unramified field extension of Fv (inert case)
Fv × Fv (split case)

We’ll do the case Ev an unramified field extension.
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Lemma 28. For this choice of ϕv, the action of K via the Weil representation is
trivial. In other words w(k)ϕ = ϕ for all k ∈ K.

Note that Z(Fv)N(Fv)\GL2(Fv)/Kv ' {m(a, 1) ∈ M}. Let us assume that
vol(Kv) = 1. We are now ready to compute.

Pv(fv ⊗ ϕv) =
∫

Z(Fv)N(Fv)\GL2(Fv)/Kv

∫
E×

v

δ(g)sW−1,v(g)w(g)ϕ(t−1, Q(t))χ(t)d×tdg

=
∫

F×
v

∫
E×

v

|a|s/2
W−1,v(( a

1 )) |a|4/4
ϕ(at−1, Q(t)a−1)χ(at−1)d×t

da

|a|
.

Note that under the injection Ev → M2(Fv), we have that the preimage of M2(Ov)
is precisely OEv . So ϕ(at−1, Q(t)a−1) = 0 unless Q(t)a−1 ∈ O×

v and at−1 ∈ OEv ,
in which case it is identically 1. It is straightforward to check that these conditions
imply that a ∈ $2nO×

v and t ∈ $nO×
Ev

, and our integral becomes

Pv(fv ⊗ ϕv) =
∞∑

n=0

∫
$2nO×

v

∫
$nO×

Ev

q−n(s+1) µ1(a$) − µ2(a$)
µ1($) − µ2($)

χ($)nd×td×a

=
vol(O×

v ) vol(O×
Ev

)
µ1($) − µ2($)


µ1($)

∞∑
n=0

((µ2
1χ)($)q−s−1)n

−µ2($)
∞∑

n=0

((µ2
2χ)($)q−s−1)n


=

(
1

µ1($) − µ2($)

)(
µ1($) − (µ1µ

2
2χ)($)q−s−1 − (µ2($) − (µ2µ

2
1χ)($)q−s−1)

(1 − (χµ2
1)($)q−s−1)(1 − (χµ2

2)($)q−s−1)

)
=

1 + q−s−1

(1 − χ($)µ2
1($)q−s−1)(1 − χ($)µ2

2($)q−s−1)
,

because (χµ1µ2)($) = 1 by assumption.
Since in the case we have ηv($) = 1, Lv(s, η)v = (1 + q−s)−1. Note that, in the

split case (Ev = Fv × Fv) ηv($) = −1.
Exercise: Do the above calculation in the split case.

14. Wednesday, October 21, 2009

Recall that we have the Eisenstein-theta series:

I(s, g, ϕ) =
∑

γ∈P (F )\GL2(F )

δ(γg)s
∑

(x,u)∈V1×F×

w(γg)ϕ(x, u),

I(s, g, χ, ϕ) =
∫

E×\E×
A

I(s, g, w(t, 1)ϕ)χ(t)dt.

We have seen that

P(s, χ, f, ϕ) =
∫

Z(A)GL2(F )\GL2(A)

I(s, g, χ, ϕ)f(g)dg

satisfies

(2) P(s, χ, f, ϕ) =
∏
v

Pv(s, χv, f)v, ϕv)
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where

Pv(s, χv, f)v, ϕv) =
∫

F×
v \E×

v

χ(t)
∫

N(Fv)\GL2(Fv)

δ(g)sW fv

−1(g) w(g)ϕv(t−1, Q(t))︸ ︷︷ ︸
w(g)w(t,t)ϕ(1,1))

dgdt.

When everything is unramified

(3) Pv(s, χv, f)v, ϕv) =
L( s+1

2 , πv, χv)
L(s + 1, ηv)

.

In other words,

P0
v (s, χv, f)v, ϕv) =

L(s + 1, ηv)
L( s+1

2 , πv, χv)
Pv(s, χv, f)v, ϕv)

is 1 for all but finitely many v.

Lemma 29. The map

P0
v (s, χv, ·, ·) : πv ⊗ S(V1 × F×

v ) → C

given by (fv, ϕv) 7→ P0
v (s, χv, f)v, ϕv) factors through π′

v ⊗ π̃′
v.

Proof. We have seen that

Fvθv(f ⊗ ϕ) =
ζv(2)

2L(1, πv, ad)

∫
N(Fv)\GL2(Fv)

W f
−1(g)w(g)w(t, 1)ϕ(1, 1)dgdt.

So, by the above,

(4) P0
v (s, χv, f)v, ϕv) =

2L(s + 1, ηv)L(1, πv, ad)
ζv(2)L( s+1

2 , πv, χv)

∫
F×

v \E×
v

Fvθv(fv ⊗ ϕv)χ(t)dt.

¤

If θv(fv ⊗ ϕv) = f ′ ⊗ f̃ ′ where f ′ ⊗ f̃ ′ ∈ π′
v ⊗ π̃′

v, we have seen that

〈π′
v(t)f ′, f̃ ′〉 = Fv(f ′ ⊗ f̃ ′).

Hence we have the following important corollary.

Lemma 30 (Local Theta Lifting). Define αv : π′
v ⊗ π̃′

v → C by

αv(f ′ ⊗ f̃ ′, χ) = C

∫
F×

v \E×
v

〈π′
v(t)f ′, f̃ ′〉χ(t)dt

where C is the constant appearing in (4). Then

P0
v (s, χv, fv, ϕv) = αv(θv(fv ⊗ ϕv), χv).

We are now ready to prove Waldspurger’s formula. In this case we have #Σ
even, B = B/F is a global quaternion algebra, χ |F×

A
ωπ = 1. Define

`(f ′, χ) =
∫

F×
A E×\E×

A

f ′(t)χ(t)dt `(f̃ ′, χ−1) =
∫

F×
A E×\E×

A

f̃ ′χ−1(t)dt.

Theorem 31 (Waldspurger,YZZ).

`(f ′, χ)`(f̃ ′, χ−1) =
ζF (2)L( 1

2 , π, χ)
2L(1, π, ad)

∏
v

αv(f ′ ⊗ f̃ ′, χ)
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Proof. Step 1: Global theta lifting (Shimizu lifting). This is a surjective map
θ : π ⊗ S(VA × F×

A ) → π′ ⊗ π̃′ given by

θ(f, ϕ) = ∗
∫

GL2(F )\GL2(A)

θ(g, h, ϕ)dg

where h ∈ B×
A × B×

A .
Suppose that θ(f ⊗ ϕ) = f ′ ⊗ f̃ ′. Then

`(f ′, χ)`(f̃ ′, χ−1) =
∫

(F×
A E×\E×

A )2
θ(f ⊗ ϕ)(t1, t2)︸ ︷︷ ︸

R

[GL2] θ(g,t1,t2,ϕ)f(g)dg

χ(t1t−1
2 )dt1dt2.

Step 2: Seigel-Weil formula. Interchange the order of integration and make the
change of variable t1 = tt2 to get∫

[GL2]

f(g)
∫

F×
A E×\E×

A

χ(t)
∫

F×
A E×\E×

A

θ(g, tt2, t2, ϕ)dt2dtdg

Write V = E ⊕ Ej = V1 ⊕ V2. Since SO(V2) = F×\E×, the Seigel-Weil formula
allows us to replace the inner integral:∫

[GL2]

f(g)
∫

F×
A E×\E×

A

χ(t)I(0, g, w(t, 1)ϕ)dtdg

=
∫

[GL2]

f(g)I(0, g, χ, ϕ)dg = P(0, χ, f, ϕ).

This implies that

ell(f ′, χ)`(f̃ ′, χ−1) = CP(0, χ, f, ϕ).

Step 3: Unfolding and Calculation. By (2) and (3) this is equal to

CC ′L(
1
2
, π, χ)

∏
v

P0
v (0, χv, fv ⊗ ϕv)

Step 4: Local Theta Lifting and global to local principal. Lemma 30 now says
that this is

CC ′L(
1
2
, π, χ)

∏
v

αv(θv(fv ⊗ ϕv), χv).

The proof is complete by noting that if f ⊗ ϕ =
⊗

fv ⊗ ϕv then ¤

15. Friday, October 23, 2009

From now on we will assume that #Σ is odd. Since the functional equation is

Λ(s, π, χ) = (−1)#ΣΛ(1 − s, π, χ),

we must have that L( 1
2 , π, χ) = 0. So we’re interested in understanding L′( 1

2 , π, χ).
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15.1. Kernel function. The setup: V = B, Q(x) = xx, V = V1 ⊕ V2, V1 = EA
and V1 = E, V2 = EAj with j2 ∈ A (but j is not defined over F .)

The functions:

I(g, s, ϕ) =
∑

γ∈P (F )\GL2(F )

δ(γg)2
∑

(x,u)∈V1×F×

w(γg)ϕ(x, u),

I(g, s, ϕ, χ) =
∫

E×\E×
A

I(g, s, w(t, 1)ϕ)χ(t)dt.

For f ∈ π we defined

P(s, χ, f, ϕ) =
∫

Z(A)GL2(F )\GL2(A)

I(g, s, χ, ϕ)f(g)dg

which is a functional P : π ⊗ S(V1 × F×
A ) → C.

The theorem: (Waldspurger)

P(s, χ, f, ϕ) =
∏
v

Pv(s, χv, fv, ϕv)

=
L((s + 1/2, π, χ)

L(s, η)

∏
v

P0
v (s, χv, fv, ϕv)

where

P0
v (s, χv, fv, ϕv) =

Lv(s, ηv)
Lv((s + 1/2, πv, χv)

×
∫

F×
v \E×

v

χ(t)
∫

N(Fv)\GL2(Fv)

δ(g)sW fv

−1(g)w(g)w(t, 1)ϕ(1, 1)dgdt

which is equal to 1 for all but finitely many v.
Two corollaries: We defined αv(χv, fv, ϕ) = P0

v (0, χv, fvϕv). Then

• If #Σ is even P(0, χ, f, ϕ) = L(1/2,π,χ)
L(1,η)

∏
v αv(0, χv, fvϕv).

• If #Σ is odd P ′(0, χ, f, ϕ) = L′(1/2,π,χ)
2L(1,η)

∏
v αv(0, χv, fvϕv).

From here on out, we are interested in understanding P ′(0, χ, f, ϕ). The goal
will be to relate it to a height pairing of CM points on a (global) Shimura curve X
associated to B.

15.2. Incoherent Eisenstein series. The definitive reference for this material is
Kudla[3].

When we write V = V1 ⊕ V2 we find that

S(V × F×
A ) = S(V1 × F×

A ) ⊗ S(V2 × F×
A ).

The map (from right to left) is given by

ϕ1 ⊗ ϕ2 7→ (ϕ × ϕ2) : (x, u) 7→ ϕ1(x, u)ϕ2(x, u).

We denote the Weil actions on each part of the right hand side by w1 and w2

respectively. So

wi : GL2(A) × GO(Vi) → Aut(S(Vi × F×
A )).
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Note that GO(V2) = E×
A j which acts by r · x = xr−1, and GO(V1) = E×

A acts
by r · x = rx. These actions come via the action of B× × B× ↪→ GO(V) given by
(h1, h2) · x = h1xh−1

2 . So

(5) w((g, t1 ⊗ t2))(ϕ1 ⊗ ϕ2) = w1(g, t1)ϕ1(x, u) ⊗ w2(g, t2)ϕ2(x, u).

Lemma 32. The function I(g, s, ϕ1 ⊗ϕ2) =
∑

u∈F× θ(g, u, ϕ1)E(g, u, s, ϕ2) where

θ(g, u, ϕ) =
∑
x∈V1

w1(g)ϕ1(x, u), E(g, u, s, ϕ2) =
∑

γ∈P (F )\GL2(F )

δ(γg)sw2(γg)ϕ2(0, u).

This justifies the terminology “theta-Eisenstein series” used above, It is a theta
series in ϕ1 and since δ(γg)sw2(γg)ϕ2(0, u) ∈ I(s + s0, η) = IndGL2(A)

P (A) η it is an
Eisenstein series in ϕ2.

We will give the proof of this later. (Note that actually in the proof we need
the sum to be over P 1(F )\SL2(F ) which is in bijection with P (F )\GL2(F ) but for
which the term E(g, u, s, ϕ2) is actually well-defined.)

Theorem 33. E(g, u, o, ϕ2) = 0 for all ϕ ∈ S(V2 × F×
A ).

The main reason for this is that V2 is incoherent.
Recall the Fourier expansion for Φ(g, u, s) ∈ I(s, η) (s0 = 0 in the present case)

E(g, u, s, Φ) =
∑

γ∈P (F )\GL2(F )

Φ(γg, u, s)

=E0(g, u, s, Φ) +
∑

a∈F×

Ea(g, u, s, Φ)

where the a-th coefficient is

Ea(g, u, s, Φ) =
∫

F\A
E(n(b)g, u, s, Φ)ψ(−ab)db.

Lemma 34. If a 6= 0,

Ea(g, u, s, Φ) =
∏
v

Wa,v(g, u, s, Φ)

and
E0(g, u, s, Φ) = Φ(g, s) +

∏
v

W0,v(g, u, s, Φ)

where

Wa,v(g, u, s, Φ) =
∫

Fv

Φv(wn(b)g, s)ψ(−ab)db.

For our special case Φ = δ(γg)sw2(γg)ϕ(0, u), if a 6= 0 then

Ea(g, u, s, ϕ) = −
∏
v

W̃a,v(g, u, s, ϕv),

and
Ea(g, u, s, ϕ) = δ(g)sw2(g)ϕ(0) −

∏
v

W̃0,v(g, u, s, ϕv)

where

W̃a,v(g, u, s, ϕv) =
∫

Fv

δ(wn(b)g)s

∫
V2,v

w2(g)ϕ(x2, u)ψ(buQ(x2))dx2dg.
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Proof. By definition

Wa,v =
∫

Fv

Φv(wn(b)g, s)ψ(−ab)db

=ψ(−ab)δ(wn(b)g)sw2(wn(b)g)ϕ2(0, u)db

=ψ(−ab)δ(wn(b)g)sγ(V2,v, ψv)
∫

V2,v

w2(wn(b)g)ϕ2(x2, u)︸ ︷︷ ︸
ϕ2(bu,Q(x2)

dx2db.

The proof follows provided that∏
γ(V2,v, ψv) =

{
1 if V2 is coherent,
−1 if V2 is incoherent,

We take this as given. ¤

16. Monday, October 26, 2009

The goal is to show that I(g, 0, ϕ) = 0 and to compute its derivative because

P(s, χ, f, ϕ) =
∫

Z(A)GL2(F )\GL2(A)

f(g)
∫

E×\E×
A

χ(t)I(g, s, w(t, 1)ϕ)dtdg

=
L( s+1

2 , π, χ)
L(s + 1, η)

∏
P0

v (s, χ, fv, ϕv).

which implies that

P ′(0, χ, f, ϕ) =
L′( 1

2 , π, χ)
2L(1, η)

∏
αv(χ, fv, ϕv).

Reall that I(g, 0, ϕ) is a product of a theta series (which is independant of s) and
an Eisenstein series. Today we want to see why the Eisenstein series E(g, u, 0, ϕ2)
is automatically zero. This is an example of an “incoherent Eiesenstein series” and
“incoherent quadratic space.”

The space V2 = EAj for j ∈ B× and j2 = −α ∈ F×
A \ F×NE/F E×

A is isomorphic
to EA via xj 7→ x. With this isomorphism in mind we define

Q(x) = Q(xj) = xjj̄x̄ = αxx̄.

Claim: η(α) =
∏

v η(αv) = −1. The reason for this is class field theory and the
fact that

η : F×\F×
A /NE/F E×

A → {±1}.

Lemma 35. If a ∈ F× then

Ea(g, u, s, ϕ2) = −Wa(g, u, s, ϕ2) := −
∏

Wa,v(g, u, s, ϕ2)

where Wa,v(g, u, s, ϕ2) =
∫

Fv
δ(wn(b))s

∫
V2,v

w2(g)ϕ2(x, u)ψ(bu(Q(x) − a))dadb.

Lemma 36. Assume a ∈ F×.
(a) If V2 does not represent au−1 then Wa,v(g, u, 0, ϕ2) = 0.
(b) If there exists ξ ∈ V2 with Q(ξ) = au−1 then

Wa,v(g, u, 0, ϕ2) = L(1, ηv)−1

∫
E1

v

w2(g)ϕ2(ξx, u)dx.
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For a ∈ F× define

Diff(V2, a) ={v | (V2,v, Q) does not represent a}
={v | ηv(αva) = −1}

To see why, recall V2,v ' Ev and Q(x) = xx̄. So (V2,v, Q) represents a if and
only if there exists x ∈ Ev such that αvxx̄ = a. This happens precisely when
xx̄ = aα−1

v ∈ NEv/Fv
E×

v , which is equivalent to ηv(aα−1
v ) = −1.

Since η(α) = −1, it follows that #Diff(V2, a) is odd. In particular, it is at least
1.

Corollary 37. If v ∈ Diff(V2, a) then Wa,v(g, u, 0, ϕ2) = 0. Moreover E(g, u, 0, ϕ2) =
0.

Proof. The first statement follows from the above. To prove the second statement,
recall

E(g, u, 0, ϕ2) =
∑
a∈F

Ea

and Ea = −
∏

Wa,v(g, u, 0, ϕ2) if a ∈ F×. Since #Diff(V2, a) is odd, some Wa,v =
0.

So we only to check the constant term. There are two ways to do this. One way
is to compute directly. Alternatively, write V2,∞ = ⊗V2,σi where σi : F → R are
distinct embeddings and V2,σi = E ⊗F,σi R = C. The signature of V2,σi is either
(2, 0) or (0, 2) which means that the weight is either 1 or −1. Since E is a modular
form of nonzero weight it follows that the constant term must be zero. ¤

Proof of Lemma 36. To prove (a), we compute (ignoring issues of convergence)

Wa,v(g, u, 0, ϕ2) =
∫

Fv

∫
V2

w2(g)ϕ(x, y)ψ(bu(Q(x) − au−1))dxdb

= lim
m→−∞

∫
$mOv

∫
V2

w2(g)ϕ(x, y)ψ(bu(Q(x) − au−1))dxdb

= lim
m→−∞

∫
V2

w2(g)ϕ(x, y)
∫

$mOv

ψ(bu(Q(x) − au−1))dbdx

As a consequence of the fact that Ov is compact,∫
Ov

ψv(bx)db = vol(Ov) char($n
vOv)(x)

where n = min{m | ψv |$m
v Ov= 1}. Using this, we have∫

$mOv

ψ(bu(Q(x) − au−1))db =
∫
Ov

|$v|m ψ($mb(Q(x) − au−1))db

= |$v|m vol(Ov) char($n(ψv)
v Ov)(u$m

v (Q(x) − au−1))

This will be zero if and only if Q(x)− au−1 /∈ u−1$
n(ψv)−m
v Ov. Since Q(x)− au−1

is never zero and we are taking the limit m → −∞ this must be the case in the
limit. ¤



28 NOTES TAKEN BY MIKE WOODBURY

17. Wednesday, October 28, 2009

We have E/F a quadratic extension with associated character η, π an aut.
representation of GL2(F ) and and χ a character on E. This gives Σ, B = V and
π′. We are assuming that Σ is odd.

Write
V = EA + EAj = V1,A + V2.

Recall that
S(V × F×

A ) = S(V1,A × F×
A ) ⊗ S(V2 × F×

A ).

17.1. Loose ends from before.

Lemma 38. If ϕ = ϕ1 ⊗ ϕ2 ∈ S(V1,A × F×
A ) ⊗ S(V2 × F×

A ), then

I(g, s, ϕ) =
∑

u
R

F×

θ(g, u, ϕ1)E(g, u, s, ϕ2)

where
θ(g, u, ϕ1) =

∑
x∈V1

w(g)ϕ1(x, u),

E(g, u, ϕ2) =
∑

γ∈P 1(F )\SL2(F )

δ(γg)sw(γg)ϕ2(0, u).

Note that in [7] they have the summation of the Einsenstein series over P (F )\GL2(F ).
Although this is in bijection with P 1(F )\SL2(F ), the summand is not invariant by
P (F ) and so their definition is not valid.

Proof. By definition,

I(g, s, ϕ) =
∑

γ∈P 1(F )\SL2(F )

δ(γg)s
∑

(x,u)∈V1×F

w1(γg)ϕ1(x, u)w2(γg)ϕ2(0, u)

=
∑

u∈F×

∑
γ∈P 1(F )\SL2(F )

δ(γg)sw(γg)ϕ2(0, u)

︸ ︷︷ ︸
E(g,u,s,ϕ1)

∑
x∈V1

w2(γg)ϕ1(x, u)︸ ︷︷ ︸
T

.

We need to show that T is not dependent on γ.
Recall that for ϕ ∈ S(V1,A), the theta kernel

θ(g, h, ϕ) =
∑
x∈V1

w(g)ϕ(h−1x)

where g ∈ SL2(A) and h ∈ O(V )(A) is an automorphic form on [SL2] × [O(V )].
Hence θ(γg, h, ϕ) = θ(g, h, ϕ) for any γ ∈ SL2(F ).

In order to extend the Weil representation to GL2 × GO(V ) we defined

w(g)ϕ(x, u) = wu(g)ϕu(x)

for g ∈ SL2(A). The function ϕu(x) ∈ S(V1,A) is equal to ϕ(x, u) and wu is the weil
representation for V u

1 = (V1, uQ).
Therefore, T = θ(γg, 1, ϕu) = θ(g, 1, ϕu). ¤
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17.2. New stuff. We have

V2 = EAj Q(xj) = −j2xx̄ = αxx̄

where α ∈ F×
A and η(α) = −1.

We know that E(g, u, 0, ϕ2) = 0 and we want to understand E′(g, u, s, ϕ2) |s=0.
If a 6= 0 we have the Fourier coefficient

Ea(g, u, s, ϕ2) = −
∏

Wa,v(g, u, s, ϕ2)

and

Wa,v =
∫

Fv

δ(wn(b)g)s

∫
V2,v

w2(g)ϕ2(x, u)ψ(b(uQ(x) − a))dxdb,

and we proved that Wa,v(g, u, 0, ϕ2) = 0 if v ∈ Diff {v | V2,v doesn’t represent a}.

Corollary 39. If #Diff(V2, a) > 1 then E′
a(g, u, 0, ϕ) = 0. If Diff(V2, a) = {v}

then

E′
a(g, u, 0, ϕ) = −W ′

a,v(g, u, 0, ϕ2)
∏
v′ 6=v

Wa,v′(g, u, o, ϕ2) = −W ′
a,v(g, u, 0, ϕ2)

∏
v′ 6=v

W (v)
a (g, u, o, ϕ

(v)
2 ).

Corollary 40. For each v let F (v) = {a ∈ F× | Diff(V2, au−1) = {v}. Then

E′(g, u, 0, ϕ2) = E′
0(g, u, 0, ϕ2) +

∑
v nonsplit

E′(g, u, 0, ϕ2)(v)

where
E′(g, u, 0, ϕ2)(v) =

∑
a∈F (v)

E′
a(g, u, 0, ϕ2).

We denote the neight quaternion algebra of B at v by B(v). This is the quaternion
algebra over F such that B

(v)
v′ = Bv′ if v′ 6= v and B

(v)
v satisfies Hasse(B(v)

v ) =
−Hasse(Bv). We write V (v) = B(v) = E + Ej(v) = V1 + V

(v)
2 . Then

F (v) =
{

a ∈ F×
∣∣∣∣ V2,v doesn’t represent au−1

V2,v′ does if v′ 6= v

}
={a | F× | V

(v)
2 represents au−1 everwhere locally}

={a | F× | V
(v)
2 represents au−1 globally}

The final equality is the Hasse principle.
A quadratic space over Fv is determined by

dimV = m, χV = ((−1)m(m−1)/2 det V, ·)V , and Hasse(V ).

So if we fix χV and m then Hasse(V ) determines V . Take V = Ev and Q(x) = αxx̄
for α ∈ F×

v .
For us, Vα = Ev = Fv + Fv

√
∆ and Q(x + y

√
∆) = αx2 − α∆y2. The Hasse

invariant Hasse(Vα) is equal to the Hilbert symbol

(α,−α∆) = (α, ∆)(α,−α) = (α, ∆) = ηv(α).

Vα represents a means there exists x ∈ E×
v such that αxx̄ = a. This is so if and

only if ηv(aα) = 1.
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We have two cases. First suppose that Ev = Fv ×Fv, ηv = 1. Then there is only
one quadratic space Vα because α ∈ NEv/Fv

E×
v . So in this case every a ∈ F×

v is
represented. From this we see that v ∈ Diff(V2, a) implies that v is nonsplit.

Now assume that Ev/Fv is nonsplit. Choose v ∈ F×
v \ N(E×

v ). Chose α ∈
F×

v \ NE×
v . Thus V1 6' Vα. Then V1 represents a if and only if a ∈ NE×

v and Vα

represents a if and only if a /∈ NE×
v .

18. Friday, October 30, 2009

We want to understand W ′
a,v(g, u, 0, ϕ2). We saw that

E′(g, u, 0, ϕ2) = E′
0(g, u, 0, ϕ2) +

∑
v nonsplit

E′(g, u, 0, ϕ2)(v),

E′(g, u, 0, ϕ2)(v) =W ′
a,v(g, u, 0, ϕ2)W (v)

a (g, u, 0, ϕ
(v)
2 )

=
∑

y2∈E1\(V (v)
2 \{0})

W ′
Q(y2)u,v(g, u, 0, ϕ2,v)W (v)

Q(y2)u
(g, u, 0, ϕ

(v)
2 ).

Lemma 41 (Basic Lemma v - ∞). Assume F/Q is unramified at v. Let ψv be the
unramified additive character (ψv = ψa ◦ trE/Q.) Assume E/F is unramified at v.
Then V2,v ' Ev, Q(x) = αxx̄. assume that α ∈ OFv . Take ϕ2,v = char(OEv×O×

Fv
).

Then

E(1, u, s, ϕ2,v) = L(1, ηv)−1
ord a∑
n=0

(ηv($v)q−s
v )n char(O×

Fv
)(u) char(OFv (a).

In particular Ea(1, u, 0, ϕ2,v) = 0 unless ϕ2,v(a, u) 6= 0.
In the case that Ea(1, u, 0, ϕ2,v) 6= 0,

Wa,v(1, u, 0, ϕ2,v) =L(1, ηv)−1

{
1+(−1)ord a

2 if Ev/Fv is unramified
1 + ord a if Ev ' Fv × Fv.

=0 ⇐⇒ η($v) = −1 and ord a is odd
⇐⇒ V2,v does not represent a

Moreover, when this happens,

W ′
a,v(1, u, 0, ϕ2,v) =

1 + ord a

2
log qv.

Recall that

Wa,v(1, u, s, ϕ2) =
∫

Fv

δ(wn(b))s

∫
OEv

ψ(buQ(x))ψ(−ba)dxdb

=
∫

Fv

δ(wn(b))sf(b)ψ(−ba)db

where f(b) =
∫
OEv

ψ(buQ(x))dx.

Lemma 42. f(b) = 1 if b ∈ OEv and f(b) = ηv(b) |b|−1 otherwise.

We will now drop the v in our notation.
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Proof of Basic Lemma. First, suppose that Ev = Fv × Fv, and write x ∈ Ev as
x = (x1, x2) so that xx̄ = x1x2. Then

f(b) =
∫
O2

Fv

ψ(buαx1x2)dx1dx2

=
∫
OFv

char(OFv
)(buαx2)dx2

=

{ ∫
OFv

dx2 = 1 if b ∈ OFv∫
b−1OFv

dx2 = |b|−1 if b /∈ OFv

Since ηv($) = 1 in this case, we are done.
Now assume that Ev = Fv +

√
∆Fv. Note that ηv(b) = ηv($)ord b = (−1)ord b.

The claim is easy if b ∈ OFv so we assume that b ∈ $−nOFv for some n > 0. Then

f(b) =
∞∑

k=0

∫
$kO×

Ev

ψ(buαxx̄)dx

=
∞∑

k=0

q−2k
v

∫
O×

Ev

ψ(buα$2kxx̄)dx.

We calculate∫
O×

Ev

ψ(buα$2kxx̄)dx =
∫
O×

Ev

ψ(buα$2kxx̄)d×x

=vol(E1
v , d×x)

∫
O×

Fv

ψ(b$2kt)d×t

=vol(E1
v , d×x)

(∫
OFv

ψ(b$2kt)dt −
∫

$OFv

ψ(b$2kt)dt

)
=vol(E1

v , d×x)(char(OFV
)(b$2k) − q−1

v char(OFV
)(b$2k+1))

=vol(E1
v , d×x)

{
1 − q−1

v if b ∈ $−2kOv

−q−1
v if b ∈ $−2k−1OFv \ $−2kOFv

We claim that vol(E1
v , d×x) = 1 − q−1

v . To see this, note that

1 − q−2
v =

∫
O×

Ev

d×x =
∫
OFv

(∫
E1

v

dh

)
d×t = vol(E1

v , d×x)
∫
O×

Fv

d×t.

Since
∫
O×

Fv

d×t = 1 − q−1
v , the claim follows.

Putting all of this together, we get

f(b) =
∞∑

k=0

q−2k
v

{
1 − q−2

v if m ≤ k
−q−1(1 + q−1

v ) if k = m − 1

= − q−1(1 + q−1)q−2(m−1) +
∞∑

k=m

q−2k(1 − q−1)︸ ︷︷ ︸
q−2m

= − q−2m+1 = ηv(b) |b|−1

because ηv(b) = −1 and |b| = q1−2m.
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We have

δ(wn(b)) =

{
1 if b ∈ OFv ⇐⇒ wn(b) ∈ GL2(OFv )

|b|−1 if b /∈ OFv ⇐⇒ wn(b) =
(

b−1 −1
b

) (
1

b−1 1

)
It is now straightforward to derive the formulas. ¤

Lemma 43 (Basic Lemma v | ∞). Assume Fv = R, Ev = C. So V2,v ' C and
Q(x) = αxx̄. Assume that α > 0, and ϕ2,v = e−2π|uQ(x)|. Then Wa(gτ , u, 0, ϕ2,v) =
0 if and only if au < 0, and

W ′
a,v(gτ , u, 0, ϕ2,v) = Ei(4π |ua| v0)e2πuατ

where τ = u0 + iv0 and Ei(g) =
∫ ∞
1

e−tr dr
r .

19. Monday, November 2, 2009

Suppose that v | ∞. Recall that F is totally real. Assume that Bv is a division
algebra, Ev = C. Then

Bv = Ev + Evjv, j2
v ∈ R and j2

v < 0.

In other words, Vv has form Q which is positive definite.
In slightly more generality, we assume that (V,Q) is a positive definite quadratic

space of dimension 2m. Let

ϕ ∈ S(V × R×) = {H(u)P (x)e−2π|u|Q(x) | P is a polynomial on V,H ∈ C∞
c (R×)},

S0(V × R×) = {[P1(uQ(x)) + sgn(u)P2(uQ(x))]e−2π|u|Q(x) | P1, P2 ∈ R[x]}.

Lemma 44. Let

S(V × R×)O(V )(R) = {ϕ ∈ S(V × R×) | w(h)ϕ = ϕ for all h ∈ O(V )(R)}.

Then the map S(V × R×)O(V )(R) → S0(V × R×) given by

ϕ̃ 7→ ϕ(x, u) =
∫

R×
ϕ̃(z−1x, z2u)d×z

is surjective.

Proof. Let ϕ̃ = H(u)P (x)e−2π|u|Q(x) be O(V )(R) invariant. Then if h ∈ SO(V )(R)
then H(u)P (h−1x) = H(u)P (x) implies that P = P̃ (Q(x)) for some polynomial P̃ .
So we may assume ϕ̃ = H(u)P (Q(x))e−2π|u|Q(x). Then

ϕ(x, u) =
∫

R×
ϕ̃(z−1x, z2u)

dz

|z|
=

∫
R×

H(z2u)P (z−2Q(x))e−2π|u|Q(x) dz

|z|

= 2e−2π|u|Q(x)

∫ ∞

0

H(z2u)P (z−2Q(x))
dz

|z|
.

If u > 0 let t = z2u, so that

ϕ(x, u) = e−2π|u|Q(x)

∫ ∞

0

H(t)P (t−1uQ(x))
dt

t
.

Since P,H are polynomials, it follows that ϕ(x, u) = e−2π|u|Q(x)P̃1(uQ(x)).
One can argue similarly if u < 0. ¤
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19.1. Standard Schwartz function (Gaussian). We define

ϕ0
v =

1
2
(1 + sgn u)e−2π|u|Q(x) =

{
e−2πQ(

√
ux) if u > 0

0 if u < 0.

Lemma 45. If Q(x) 6= 0 (which is always the case for us) then

w(g)ϕ(x, u) = WuQ(x)(g) g ∈ GL2(R).

Writing g = ( t
t ) ( y0 x0

1 )
(

cos θ sin θ
− sin θ cos θ

)
,

Wa(g) =

 |y0|m/2
eimθ if a = 0

|y0|m/2
e2πiteimθ if ay0 > 0
0 if au0 < 0.

(Recall that dimV = 2m.)

19.2. Degenerate Schwartz functions at finite places. We assume v is a finite
place, unramified in E. Let ϕv = char(OEv ×OFv ). Let dv be the local different of
F at v.

If v is split in E:

S0(Vv × F×
v ) = {ϕ ∈ S(Vv × F×

v ) | ϕ(x, u) = 0 if ordv(uQ(x)) ≥ − ordv dv}
If v is nonsplit in E:

S0(Vv×F×
v ) = {ϕ ∈ S(Vv×F×

v ) | ϕ(x, u) = 0 if either dvuQ(x) ∈ OFv or dvuQ(x2) ∈ OFv}.
Functions in S0 are called degenerate. Globally, ϕ ∈ S(V× F×

A ) is degenerate at
v if ϕv is degenerate.

Assumption: Fix v1, v2 - ∞ nonsplit in E. We assume that ϕ ∈ S(V × F×
A )

satisfies
(1) ϕ is degenerate at v1 and v2,
(2) ϕ∞ ∈ S0(V∞ × F×

∞).

Propostion 46. I ′(g, s, ϕ) = I ′0(g, 0, ϕ) +
∑

v nonsplit I ′(g, 0, ϕ)(v). Under the as-
sumption above, E′(g, u, 0, ϕ2) = 0 and I ′(g, u, 0, ϕ2) = 0.

20. Wednesday, November 4, 2009

Let ϕ̃ =
⊗

v ϕ̃v ∈ S̃(V × F×
A ),

E(g, s, ϕ̃) =
∑

γ∈P (F )\GL2(F )

δ(γg)s
∑

(x,u)∈V1×F×

w(γg)ϕ̃(x, u).

Assume that if v | ∞ then ϕ̃v = H(u)P (x)e−2π|u|Q(x).
We have that if ϕ̃ = ϕ̃1 ⊗ ϕ̃2 then

(6) I(g, s, ϕ̃) =
∑

u∈F×

∑
γ∈P 1(F )\SL2(F )

δ(γg)sw(g)ϕ̃2(0, u)

︸ ︷︷ ︸
E(g,u,s, eϕ2)

∑
x∈V1

w(g)ϕ̃1(x, u)︸ ︷︷ ︸
θ(g,u,eϕ1)

.

Let ϕ =
⊗

ϕv ∈ S(V × F×
A ). This implies that ϕv(x, u) = [P1(uQ(x)) +

sgn(u)P2(uQ(x))]e−2π|u|Q(x), and ϕf =
⊗

v-∞ ϕv is K-invariant for some open com-

pact K ⊂ GO(V̂). Let KZ = K ∩ A×
f , µK = K ∩ F×. Then set

Ĩ(g, s, ϕ) = ∗
∑

γ∈P 1(F )\SL2(F )

δ(γg)s
∑

(x,u)∈µK\V1×F×

w(γg)ϕ(x, u).
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(To make this independent of the choice of K one should have ∗ = [A×
v : F×

∞Kz].)
Set

Ĩ(g, s, χ, ϕ) =
∫

E×\E×
A

χ(t)Ĩ(g, s, w(t, 1)ϕ)χ(t)dt.

(The assumption that χ |F×
A

ωπ = 1 implies that χ |F∞ ωπ,∞ = 1 but the assump-
tions at infinite places imply that ωπ,∞ is trivial. Hence χ |F∞= 1.)

Propostion 47. I(g, s, χ, ϕ̃) = Ĩ(g, s, χ, ϕ) where ϕ =
∫

F×
∞

w(g)ϕ̃dz.

The proof is not difficult. This proposition implies that

(7) Ĩ(g, s, ϕ) =
∑

u∈µ2
K\F×

∑
γ∈P 1(F )\SL2(F )

δ(γg)sw(g)ϕ2(0, u)

︸ ︷︷ ︸
E

∑
x∈V1

w(g)ϕ1(x, u)︸ ︷︷ ︸
θ

.

Propostion 48.

Ĩ ′(g, s, χ, ϕ) = −
∑

v nonsplit

Ĩ ′(g, 0, ϕ)(v) + I ′0(g, o, ϕ)

where

Ĩ ′(g, o, ϕ)(v) = 2
∫

E×F×
A \E×

A

K (v)
ϕ (g, (t, t))dt,

K (v)
ϕ (g, (t1, t2)) = K (v)

ϕ (g, (t1, t2)) = ∗
∑

u∈µ2
K\F×

∑
y∈V (v)\V1

kw(t1,t2)ϕv
(g, y, u)w(g)w(t1, t2)ϕ(v)(y, u),

kv(g, y, u) =
L(1, η)
vol(E1

v)
w(g)ϕ1(y1, u)W ′

uQ(y2),v
(g, u, 0, ϕ2),

and y = y1 + y2 ∈ V (v) = V1 + V
(v)
2 .

Recall that theta function looks like

θ(g, h, ϕ) = ∗
∑

u∈µ2
K\F×

∑
x∈V

w(g)w(h)ϕ(x, u)

where ϕ ∈ S(V (v)
A ×F×

A ). So, in the preceding proposition we would like kv(g, y, u)
to be a Schwartz function. (However, it is not, as can be seen below because
ordv(Q(y2)) is not a locally constant function.)

Propostion 49 (3.4.1). (1) If everything is unramified then

kϕv (1, y, u) = char(OBv )(y) char(OF×
v

)(u) log Nv · 1
2
(ordv(Q(y2)) + 1).

(2) If ϕv ∈ S0(Bv × F×
v ) is degenerate then kϕv (1, y, u) extends to a Schwartz

function on B
(v)
v × F×

v .
(3) If v is nonsplit such that ϕ is degenerate at v (in addition to being degenerate

at v1, v2) then

K v
ϕ (t1, t2) = θ(g, (t1, t2), kϕv ⊗ ϕv)

for g ∈ P (Fv)P (Fv1)P (Fv2)GL2(Av,v1,v2).

In the third statement, kϕv ⊗ ϕv ∈ S(B(v)
A × F×

A ). Also the limitation on g isn’t
a big assumption because of strong approximation.
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21. Monday, November 9, 2009

We will discuss holomorphic projection as in section 3.6 of [7].

21.1. Classically. Let Sk(N) be the space of cuspidal modular forms of weight k
and level N . This space has a perfect pairing (i.e. a positive definite Hermitian
form)

〈·, ·〉Pet : Sk(N) × Sk(N) → C 〈f, g〉Pet =
∫

X0(N)

f(τ)g(τ)vkdµ(τ).

In particular, this implies that Sk(N) ' Sk(N)∧ = HomC(Sk(N), C) via f 7→ f :
g 7→ 〈f, g〉Pet.

Now suppose that f : H → C is a continuous function such that f(γτ) =
(cτ + d)kf(z) (f need not be holomorphic) with at most polynomial growth at the
cusps. Then there exists a unique pr(f) ∈ Sk(N) such that 〈f, g〉Pet = 〈pr(f), g〉Pet.
The form pr(f) is called the holomorphic projection of f in Sk(N).

How does one find pr(f) =
∑∞

n=1 anqn?
If k > 2 then can define the Poincare series

Pm(τ) =
∑

γ∈Γ∞\Γ0(N)

e(mτ) |k γ

and if k = 2 we define

Pm(τ) =
∑

γ∈Γ∞\Γ0(N)

e(mτ) |k γ Im(γz)s

and then take limit s → 0. It is a fact that Sk(N) = 〈Pm(τ)〉m≥1.
So one can compute (we’ll assume k > 2 to make the calculation simple)

〈f, Pm〉 =〈pr(f), Pm〉

=
∫

X0(N)

pr(f)(τ)
∑

γ∈Γ∞\Γ0(N)

e(mτ) |k γvkdµ(τ)

=
∫

X0(N)

∑
γ∈Γ∞\Γ0(N)

pr(f)e(mτ) Im(γτ)kdµ(τ)

=
∫ ∞

0

∫ 1

0

( ∑
n≥1

anqn
)
qmvk dudv

v2

=
∫ ∞

0

∑
n

ane−2π(n+m)v

∫ 1

0

e2πi(n−m)uduvk−2dv

=
∫ ∞

0

ame−4πmvvk−2dv = am
Γ(k − 1)
(4πm)k−1

.

So we can conclude that

am =
(4πm)k−1〈f, Pm〉Pet

Γ(k − 1)
.
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21.2. Adelically. We first define the space of automorphic functions we are inter-
ested in. Let ω : F×\F×

A → C be an idele class character. We define the space of
automorphic functions with central character ω, denoted A(GL2(F )\GL2(A), ω),
to be the set of functions f : GL2(A) → C satisfying

(1) f(gfg) = f(g) for all gf ∈ GL2(F );
(2) f(gk) = f(g) for all k ∈ K some compact open subgroup of GL2(Af );
(3) f(zg) = ω(z)f(g) for all z ∈ Z(A) = F×

A ;
(4) f is K∞-finite, (for us, K∞ = SO(F∞) because F is totally real);
(5) f is smooth (i.e. locally constant on GL2(Af )) with compact support mod-

ulo Z(Af ), and continuous as a function of GL2(F∞) with moderate growth:

f(( a
1 ) g) = Og(|a|εA) for some ε > 0 as |a|A → ∞;

(6) f is gl2(F∞)-finite.

It is a fact that if K is a compact open subgroup of GL2(Af ) then

(8) GL2(A) =
⊔

GL2(F)giKGL2(F∞)

which implies that

GL2(F )\GL2(A)/K =
⊔

Γj\GL2(F∞) Γj = GL2(F ) ∩ gjKg−1
j .

So under this identification, a function f ∈ A([GL2], ω) gives a tuple (Fg1 , · · · , Fgn)
of functions on GL2(F∞) each satisfying Fgi(g∞) = f(gig∞).

Recall that we have the isomorphism

GL2(R)/SO2(R) ' H± g 7→ gi.

So if f has weight (k1, · · · , kd), meaning f(gk~θ) = ei
P

θikif(g), then we can define

F̃i(τ) = Fgi(gτ )(cτ + d)ki(det g)−k/2

where gτ = ( v u
1 ). Hence we obtain from f a vector valued modular form.

Some examples of (8): Let F = Q.

• Suppose K = K0(N). Then GL2(A) = GL2(Q)KGL2(R).
• Suppose K = K1(N). Then GL2(A) = GL2(Q)KGL2(R).
• Suppose K = {

(
a b
c d

)
∈ GL2(Af ) |

(
a b
c d

)
≡ ( 1

1 ) mod N}. Then

GL2(A) =
⊔

GL2(Q)giKGL2(R)

where we can take gi = ( a
1 ) with a ∈ (Z/NZ)×.

This decomposition is related to the notion of strong approximation. For SL2 it
says that for any compact open subgroup K of SL2(Af ),

SL2(A) = SL2(Q)KSL2(R).

This easily generalizes to

GL2(A) = GL2(Q)KGL2(R)

whenever det : K → Ẑ× is surjective.
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22. Wednesday, November 11, 2009

We define two subspaces of A([GL2], ω):

A0([GL2], ω) = {f ∈ A([GL2], ω) |
∫

F\FA

f(n(b)g)db = 0},

A(2)
0 ([GL2], ω) = {f ∈ A0([GL2], ω) | f(g~kθ = f(g)e2i(θ1+···+θd)}.

We define the Petersson inner product as

〈f1, f2〉 =
∫

ZAGL2(F )\GL2(A)

f1(g)f2(g)dg.

This makes sense whenever at least one of the two automorphic functions is in A0.
As in the classical case there is a map

pr : A([GL2], ω) → A(2)
0 ([GL2], ω)

which satisfies
〈f1, f2〉 = 〈pr(f1), f2〉

for all f1 ∈ A0([GL2], ω).

Propostion 50. If f ∈ A([GL2], ω) such that f(( a
1 ) g) = Og(|a|1−ε) as |a| →

∞ then pr(f)ψ can be compute explicitly via the Fourier expansion: pr(f) =
lims→0 fψ,s where

fψ,s(g) = (4π)deg F W
(2)
ψ (g)

∫
NZ\GL2(R)

δ(h)sfψ(gfh)W (2)
ψ (h)dh.

Recall that fψ is the ψ-Whittaker coefficient of f , and is defined by

fψ(g) =
∫

N\NA

f(n(b)g(ψ(−b)db,

and W
(k)
ψ is the standard Whittaker function of weight k. So if g = z ( y x

1 ) kθ then

W
(k)
ψ (g) =

{
|y|k/2

eikθe2πi(x+iy) if y > 0
0 if y < 0.

It may seem that only knowing one of the ψ-Whittaker coefficient isn’t a lot of
information. However, if we start with fψ(g) can get

fψa(g) =
∫

[N ]

f(n(b)g)ψa(−b)db

=
∫

[N ]

f(n(b)g)ψ(−ab)db

=
∫

[N ]

f(n(a−1bg)ψa(−b)db

=
∫

[N ]

f(
(

a−1

1

)
n(b) ( a

1 ) g)ψa(−b)db

=
∫

[N ]

f(n(b) ( a
1 ) g)ψa(−b)db = fψ(( a

1 ) g).

(Note: we have used the fact that a ∈ F more than once. Also, this also shows how
GL2 is nice—this same trick would not work for SL2.)
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Idea of proof. As we did classically, we will use Poincare series. Suppose W :
GL2(A) → C is a ψ-Whittaker function (W (n(b)g) = ψ(b)W (g)) satisfying

• W (zg) = ω(z)W (g),
• W = W

(k)
∞ Wf where W

(2)
∞ is the standard Whittaker function as above,

and Wf has compact support modulo Z.
Define

ϕW (g) =
∑

γZN\GL2

W (γg)δ(γg)s

∣∣∣∣∣∣
s=0

.

(For weight k = 2, ϕW (g) is the limit of the above as s → 0.)
It is a fact that |ϕW (( a

1 ) g)| = Og(|a|1−k) and that

〈ϕW | W as above〉 = A(k)
0 ([GL2], ω).

Now we compute

〈f, ϕW 〉 =
∫

ZAGL2(F )\GL2(A)

f(g)ϕW (g)dg

=
∫

ZAGL2(F )\GL2(A)

f(g)
∑
γ∈···

W (γg)δ(g)sdg

=
∫

ZAN(F )\GL2(A)

f(g)W (g)δ(g)
s
dg

=
∫

ZAN(A)\GL2(A)

∫
N(F )\N(A)

f(n(b)g)W (n(b)g)db︸ ︷︷ ︸
fψ(g)W (g)

δ(g)
s
dg.

¤

23. Monday, November 11, 2009

We give a definition: if f ∈ A([GL2], ω), let pr′(f) = lims→0 fψ,s(g) if the limit
exists. The proposition from last time said that when f has the right growth
conditions then pr′(f) = pr(f), but this need not be the case. (We will see an
example of this at a later time.)

We take

ϕ = ϕ1 ⊗ ϕ2 ∈ S(V × F×
A ) = S(V1,A × F×

A ) ⊗ S(V2 × F×
A )

and assume that

ϕ∞ = [P1(uQ(x)) + sgn(u)P2(uQ(x))]e−2π|u|Q(x),

and there are at least two finite places v1, v2 at which ϕ is degenerate.
Our goal is to understand the holomorphic projection of I ′(g, 0, χ, ϕ). Since

this is the product of a Eisenstein series and a theta series, its constant term is the
product of the constant terms plus additional terms. We can see this classically: Let
E(τ, s) = a0(v) +

∑
n>0 anqn +

∑
n<0 an(v)qn and g =

∑
n≥0 bnqn. The constant

term of Eg is
b0a0(v) +

∑
n>0

a−n(v)bn.

However, the asymptotic behavior of Eg is determined by b0a0(v) because the
remaining term decays exponentially.
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With this in mind we define

I0,0(g, s, ϕ) =
∑

u∈µ2
K\F×

I0,0(g, s, u, ϕ),

I0,0(g, s, u, ϕ) = θ0(g, u, ϕ1)E0(g, s, u, ϕ2),

and let

J (g, s, u, ϕ) =
∑

γ∈P 1(F )\SL2(F )

I0,0(γg, s, u, ϕ),

J (g, s, ϕ) =
∑

u∈µ2
K\F×

J0,0(g, s, u, ϕ).

We will first discuss the Fourier coefficient of θ(g, u, ϕ1) =
∑

x∈V1
w(g)ϕ2(x, u):

θa(g, u, ϕ1) =
∫

F\FA

θ(n(b)g, u, ϕ1)ψ(−ab)db

=
∫

[F ]

∑
x∈V1

w(g)ϕ1(x, u, )ψ(buQ(x))ψ(−ab)db

=
∑
x∈V1

w(g)ϕ1(x, u)
∫

[F ]

ψ((uQ(x) − a)b)db

=
∑
x∈V1

uQ(x)=a

w(g)ϕ1(x, u).

Lemma 51. θ0(g, u, ϕ1) = w(g)ϕ1(0, u).

Lemma 52.

E0(g, s, u, ϕ2) =δ(g)sw(g)ϕ2(0, u) − W0(g, s, u, ϕ2)

=δ(g)sw(g)ϕ2(0, u) − L(s, η)
L(s + 1, η)

W 0
0 (g, s, u, ϕ2).

Recall that W 0
0 (g, 0, u, ϕ2) = w(g)ϕ2(0, u).

Corollary 53. I ′0,0(g, 0, u, ϕ) = w(g)ϕ(0, u) log δ(g)−c0w(g)ϕ(0, u)−w(g)ϕ1(0, u)(W 0
0 )′(g, 0, u, ϕ2)

where c0 = d
ds

L(s,η)
L(s+1,η)

∣∣∣
s=0

.

Notation:

J(g, s, u, ϕ) =
∑

γ∈P (F )\GL2(F )

δ(γg)sw(γg)ϕ(0, u),

J̃(g, s, u, ϕ) = w(γg)ϕ(0, u)W 0
0 (γg, s, uϕ2).

These are nearly the same. Indeed we’ll find that

J ′(g, 0, χ, ϕ) = J ′(g, 0, χ) − J̃(g, 0, χ) − c0J(g, 0, χ).

Propostion 54. hh
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