NOTES ON EISENSTEIN SERIES: ADELIC VS. CLASSICAL FORMULATION

MIKE WOODBURY

These notes discuss the adelic interpretation of Eisenstein series and relate it to the classical definitions.

Let F be a number field, \mathbb{A} its ring of ideles, G = PK an algebraic group with K maximal compact. (e.g. $G = \operatorname{GL}_n$, P the set upper triangular matrices and K = O(n).) Let Δ be the modulus character of P. If χ is a representation of $P(\mathbb{A})$ we form

$$I(\chi) = \operatorname{Ind}_{P(\mathbb{A})}^{G(\mathbb{A})}(\Delta^{1/2}\chi)$$
$$= \left\{ f: G(\mathbb{A}) \to \mathbb{C} \mid f(pg) = \Delta(p)^{1/2}\chi(p)f(g) \text{ for all } p \in P, g \in G \right\}$$

(We usually work with f satisfying some other conditions. e.g. continuous, K-finite, etc.) This is the *unitary induction of* χ .

Suppose that $f \in I(\chi)$. We can form from this the Eisenstein series

$$E(f, \chi, g) = \sum_{\gamma \in P(F) \setminus G(F)} f(\gamma g).$$

Supposing that the sum is convergent, this is obviously *automorphic*. This means that $E(f, \gamma g) = E(f, g)$ for all $\gamma \in G(F)$. In other words, it is a function on $G(F) \setminus G(\mathbb{A})$.

EXAMPLE

Let $F = \mathbb{Q}$, $G = GL_2$, and P be the standard Borel. Define

$$\chi: P(\mathbb{A}) \to \mathbb{C} \qquad \chi(\left(\begin{smallmatrix} a_1 & x \\ & a_2 \end{smallmatrix}\right)) = \left|a_1\right|^{s_1} \left|a_2\right|^{s_2}.$$

Since $\Delta(\begin{pmatrix} a_1 & x \\ a_2 \end{pmatrix}) = \left|\frac{a_1}{a_2}\right|$, we have that $I(\chi) = I(s_1, s_2)$ consists of functions transforming according to

(1)
$$f(\begin{pmatrix} a_1 & x \\ a_2 \end{pmatrix} g) = |a_1|^{s_1 + 1/2} |a_2|^{s_2 - 1/2} f(g).$$

Note that for $a = (a_v) \in \mathbb{A}$, we are defining $|a| = \prod_v |a_v|_v$. Therefore, by the product formula, if $\begin{pmatrix} a_1 & x \\ a_2 \end{pmatrix} \in P(\mathbb{Q})$ then $(\Delta^{1/2}\chi)(\begin{pmatrix} a_1 & x \\ a_2 \end{pmatrix}) = 1$.

Lemma 1. The space $P(\mathbb{Q}) \setminus G(\mathbb{Q})$ is in bijection with $\Gamma_{\infty} \setminus SL_2(\mathbb{Z})$ where $\Gamma_{\infty} = P(\mathbb{Q}) \cap SL_2(\mathbb{Z})$.

Proof. We claim that both sets are in bijection with $\mathbb{P}^1(\mathbb{Q})$. Indeed, we may identify $\mathbb{P}^1(\mathbb{Q})$ with row vectors $(a \ b)$ modulo the usual equivalence relation. Then the action of $G(\mathbb{Q})$ on $e_1 = (0 \ 1)$ by multiplication on the right is transitive with stabilizer $P(\mathbb{Q})$. Similarly, the action of $\mathrm{SL}_2(\mathbb{Z})$ is transitive with stabilizer Γ_{∞} .

MIKE WOODBURY

Let $z = x + iy \in \mathbb{H}$, and $g_z = \begin{pmatrix} y^{1/2} & xy^{-1/2} \\ y^{-1/2} \end{pmatrix}$ so that $g_z \cdot i = z$. We consider g_z as an element of $\operatorname{GL}_2(\mathbb{A})$. This means that at the infinite place it is $\begin{pmatrix} y^{1/2} & xy^{-1/2} \\ y^{-1/2} \end{pmatrix}$ and it is the identity at all other places.

We define $f = \otimes f_v$ as follows. Note that the Iwasawa decomposition implies that $G(\mathbb{Q}_p) = P(\mathbb{Q}_p)\operatorname{GL}_2(\mathbb{Z}_p)$. This implies that $f_p \in \operatorname{Ind}_{P(\mathbb{Q}_p)}^{G(\mathbb{Q}_p)}(\Delta_p^{1/2}\chi_p)$ is determined by its restriction to $\operatorname{GL}_2(\mathbb{Z}_p)$. With this in mind, let f_p be the unique such function such that its restriction to $\operatorname{GL}_2(\mathbb{Z}_p)$ is the characteristic function of

$$K_0(p^{\operatorname{ord}_p(N)}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{Z}_p) \mid c \equiv 0 \pmod{p^{\operatorname{ord}_p(N)}} \right\}.$$

In the real case $v = \infty$, the Iwasawa decomposition is $G(\mathbb{R}) = P(\mathbb{R})$ SO(2). Analogous to the above, we let $f_{\infty} \in \operatorname{Ind}_{P(\mathbb{R})}^{G(\mathbb{R})}(\Delta_{\infty}^{1/2}\chi_{\infty})$ such that

$$f(gk_{\theta}) = e^{ik\theta}f(g),$$
 and $f(e) = 1$

for $\kappa_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \in SO(2)$ and k a non-negative even integer.

As a result of our definition for f, we have that if $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G(\mathbb{Q})$ then $f(\begin{pmatrix} a & b \\ c & d \end{pmatrix} g_z) = 0$ unless $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$.

Finally set $s = s_1 = -s_2$. We'd like to calculate $E(f, \begin{pmatrix} a & b \\ c & d \end{pmatrix} g_z)$, and show that it is a classical Eisenstein series for a particular choice of s.

For $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$, we write

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} g_z = \begin{pmatrix} y_1^{1/2} & x_1 y_1^{-1/2} \\ & y_1^{-1/2} \end{pmatrix} k_{\theta}.$$

Such a decomposition is possible since $SL_2(\mathbb{R}) = P^1(\mathbb{R})SO_2(\mathbb{R})$ where $P^1(\mathbb{R}) = P(\mathbb{R}) \cap SL_2(\mathbb{R})$. Hence

(2)
$$f(\begin{pmatrix} a & b \\ c & d \end{pmatrix} g_z) = f(\begin{pmatrix} y_1^{1/2} & x_1 y_1^{-1/2} \\ y_1^{-1/2} \end{pmatrix} k_\theta) = y_1^{s+1/2} e^{ik\theta}$$

To calculate y_1 and $e^{ik\theta}$, we consider the action of $\begin{pmatrix} a & b \\ c & d \end{pmatrix} g_z$ on \mathbb{H} . In particular,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} g_z \cdot i = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d} = \frac{iy}{|cz+d|^2} + \operatorname{Re}(\frac{az+b}{cz+d}).$$

On the other hand $\begin{pmatrix} y_1^{1/2} & x_1 y_1^{-1/2} \\ & y_1^{-1/2} \end{pmatrix} k_{\theta} \cdot i = x_1 + iy_1$. Hence $y_1 = \frac{y}{|cz+d|^2}$. Also k_{θ} must be equal to

$$\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} y_1^{-1/2} & -x_1y_1^{1/2} \\ y_1^{1/2} \\ y_1^{1/2} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} g_z = \begin{pmatrix} * & * \\ c(yy_1)^{1/2} & (cx+d)y^{-1/2}y_1^{1/2} \\ \end{pmatrix},$$

which implies that

$$e^{i\theta} = \cos\theta + i\sin\theta = \frac{cx+d}{|cz+d|} - \frac{icy}{|cz+d|} = \frac{|cz+d|}{|cz+d|} = \frac{|cz+d|}{|cz+d|}$$

Putting together these formulas,

$$E(f, s, g) = \sum_{\Gamma_{\infty} \setminus \Gamma_{0}(N)} \frac{y^{s+1/2}}{(cz+d)^{k} |cz+d|^{2s+1-k}}$$

which, upon setting s = (k-1)/2, is exactly equal to $y^{k/2}E_k(z)$ where $E_k(z)$ is the classical Eisenstein series of weight k.

Note: it is straightforward to see that E(f, s, g) is absolutely convergent whenever Re s > 1 (for arbitrary f, g) which is consistent with the fact that $E_k(z)$ is convergent only for k > 2.

1. WHITTAKER COEFFICIENTS

Generally speaking, if is a generic representation then one can define a Whittaker model. We work with $G = \operatorname{GL}_2(F)$ for F a number field for which every irreducible automorphic representation is generic. Let π be such a representation and $f \in \pi$. Let $\psi : F \setminus \mathbb{A} \to \mathbb{C}^{\times}$ be a nontrivial character. We define

$$W^\psi_f(g) = \int_{F \setminus \mathbb{A}} f(n(b)g) \psi(-b) db$$

where $n(b) = \begin{pmatrix} 1 & b \\ 1 \end{pmatrix}$. This gives a map

$$\pi \to \mathscr{W}(\pi, \psi) = \{ W : G \to \mathbb{C} \mid W(n(b)g) = \psi(b)W(g) \}$$

which is a *G*-isomorphism onto its image.

The function f(g) may be reconstructed from W_f^{ψ} :

$$f(g) = \sum_{\alpha \in F} W_f^{\psi}(\left(\begin{smallmatrix} \alpha & \\ & 1 \end{smallmatrix}\right)g).$$

The Whittaker coefficients are the functions $W_f^{\psi}(\begin{pmatrix} \alpha \\ 1 \end{pmatrix}g)$. Notice that the Whittaker coefficient

$$\begin{split} W_{f}^{\psi}(\left(\begin{smallmatrix} \alpha & _{1} \end{smallmatrix}\right)g) &= \int_{\mathbb{Q}\backslash\mathbb{A}} f(\left(\begin{smallmatrix} 1 & _{1} \end{smallmatrix}\right)\left(\begin{smallmatrix} \alpha & _{1} \end{smallmatrix}\right)g)\psi(-b)db \\ &= \sum_{\alpha\in F} \int_{F\backslash\mathbb{A}} f(\left(\begin{smallmatrix} \alpha & _{1} \end{smallmatrix}\right)\left(\begin{smallmatrix} 1 & \alpha ^{-1}b \\ 1 \end{smallmatrix}\right)g)\psi(-b)db \\ &= \int_{F\backslash\mathbb{A}} f(\left(\begin{smallmatrix} \alpha & _{1} \end{smallmatrix}\right)\left(\begin{smallmatrix} 1 & b \\ 1 \end{smallmatrix}\right)g)\psi_{\alpha}(-b)db = W_{f}^{\psi_{\alpha}}(g). \end{split}$$

because $\alpha \in F$. (This implies that $f((\alpha_1)g) = f(g)$ and that $d(\alpha b) = |\alpha| db = db$.)

1.1. Connection with Fourier coefficients. We now describe how these are related to classical Fourier coefficients. Let $F = \mathbb{Q}$ and let \tilde{f} be a classical modular form of level N and weight k. We obtain an automorphic form f via the rule

$$f(gkg_{\infty}) = f|_i[g_{\infty}]$$

where $g_f \in \operatorname{GL}_2(\mathbb{Q}), k \in K_0(N)$ and $g_\infty \in \operatorname{GL}_2^+(\mathbb{R})$ and

$$\widetilde{f}|_k\left[\left(\begin{smallmatrix}a&b\\c&d\end{smallmatrix}\right)\right](z) = (cz+d)^k \widetilde{f}(\frac{az+b}{cz+d}).$$

Let $\psi = \otimes \psi_v$ be defined by $\psi_{\infty}(x) = e^{2\pi i x}$ and $\psi_p(x) = e^{-2\pi i \lambda(x)}$ where λ is the composition of the maps

$$\mathbb{Q}_p \to \mathbb{Q}_p / \mathbb{Z}_p \hookrightarrow \mathbb{Q} / \mathbb{Z}.$$

Since $\mathbb{A} = \mathbb{Q} \cdot \widehat{\mathbb{Z}} \cdot \mathbb{R}$ and \mathbb{Q} has class number 1 we have

$$\mathbb{Q} \setminus \mathbb{A} = \widehat{\mathbb{Z}} \times \mathbb{Z} \setminus \mathbb{R}.$$

Finally let $g_{\tau} = \begin{pmatrix} v & u \\ 1 \end{pmatrix}$ where $\tau = u + iv \in \mathbb{H}$.

Therefore,

$$\begin{split} W_f^{\psi_{\alpha}}(g_{\tau}) &= \int_{\mathbb{Q}\setminus\mathbb{A}} f(n(b)g_{\tau})\psi_{\alpha}(-b)db \\ &= \int_{\mathbb{Z}\setminus\mathbb{R}} \int_{\widehat{\mathbb{Z}}} f(n(b_{\infty})n(\hat{b})g_{\tau})\psi_{\alpha}(-b)d\hat{b}db_{\infty} \\ &= \int_{\mathbb{Z}\setminus\mathbb{R}} f(n(b_{\infty})n(\hat{b})g_{\tau})\psi_{\alpha}(-b_{\infty})db_{\infty}. \end{split}$$

since f is right invariant by $K_0(N) \ni n(\hat{b})$ and $\psi(-\alpha \hat{b}) = 1$. Now, writing this in terms of \tilde{f} , yields

$$W_f^{\psi_{\alpha}}(g_{\tau}) = \int wtf |_k[g_{\tau}n(b_{\infty})] (i)\psi(-\alpha b\infty)db_{\infty}$$
$$= \int_0^1 \widetilde{f}(\tau+y)e^{2\pi i\alpha\tau}e^{2\pi i\alpha y}dy.$$

Since

$$W_{f}^{\psi_{\alpha}}(g_{\tau}) = \int_{\mathbb{Z}\setminus\mathbb{R}} \widetilde{f}(\tau+y+1)e^{2\pi i\alpha}e^{2\pi i\alpha(\tau+y)}dy = e^{2\pi i\alpha}W_{f}^{\psi_{\alpha}}(g_{\tau}),$$

we see that this is nonzero only if $\alpha \in \mathbb{Z}$, and
 $W_{\epsilon}^{\psi_{n}}(g_{\tau}) = a_{n}(\widetilde{f})g^{n}$

$$W_f^{\psi_n}(g_\tau) = a_n(\widetilde{f})q^r$$

where $a_n(\tilde{f})$ is the *n*th Fourier coefficient.

 $E\text{-}mail\ address:\ \texttt{woodbury}\texttt{Qmath.wisc.edu}$

DEPARTMENT OF MATHEMATICS, UW-MADISON, MADISON, WISCONSIN.

4