NOTES ON EISENSTEIN SERIES: ADELIC VS. CLASSICAL FORMULATION

MIKE WOODBURY

These notes discuss the adelic interpretation of Eisenstein series and relate it to the classical definitions.

Let F be a number field, \mathbb{A} its ring of ideles, $G=P K$ an algebraic group with K maximal compact. (e.g. $G=\mathrm{GL}_{n}, P$ the set upper triangular matrices and $K=O(n)$.) Let Δ be the modulus character of P. If χ is a representation of $P(\mathbb{A})$ we form

$$
\begin{aligned}
& I(\chi)=\operatorname{Ind}_{P(\mathbb{A})}^{G(\mathbb{A})}\left(\Delta^{1 / 2} \chi\right) \\
& \quad=\left\{f: G(\mathbb{A}) \rightarrow \mathbb{C} \mid f(p g)=\Delta(p)^{1 / 2} \chi(p) f(g) \text { for all } p \in P, g \in G\right\}
\end{aligned}
$$

(We usually work with f satisfying some other conditions. e.g. continuous, K-finite, etc.) This is the unitary induction of χ.

Suppose that $f \in I(\chi)$. We can form from this the Eisenstein series

$$
E(f, \chi, g)=\sum_{\gamma \in P(F) \backslash G(F)} f(\gamma g) .
$$

Supposing that the sum is convergent, this is obviously automorphic. This means that $E(f, \gamma g)=E(f, g)$ for all $\gamma \in G(F)$. In other words, it is a function on $G(F) \backslash G(\mathbb{A})$.

Example

Let $F=\mathbb{Q}, G=\mathrm{GL}_{2}$, and P be the standard Borel. Define

$$
\chi: P(\mathbb{A}) \rightarrow \mathbb{C} \quad \chi\left(\left(\begin{array}{cc}
a_{1} & x \\
& a_{2}
\end{array}\right)\right)=\left|a_{1}\right|^{s_{1}}\left|a_{2}\right|^{s_{2}} .
$$

Since $\Delta\left(\left(\begin{array}{cc}a_{1} & x \\ a_{2}\end{array}\right)\right)=\left|\frac{a_{1}}{a_{2}}\right|$, we have that $I(\chi)=I\left(s_{1}, s_{2}\right)$ consists of functions transforming according to

$$
f\left(\left(\begin{array}{cc}
a_{1} & x \tag{1}\\
& a_{2}
\end{array}\right) g\right)=\left|a_{1}\right|^{s_{1}+1 / 2}\left|a_{2}\right|^{s_{2}-1 / 2} f(g) .
$$

Note that for $a=\left(a_{v}\right) \in \mathbb{A}$, we are defining $|a|=\prod_{v}\left|a_{v}\right|_{v}$. Therefore, by the product formula, if $\left(\begin{array}{cc}a_{1} & x \\ & a_{2}\end{array}\right) \in P(\mathbb{Q})$ then $\left(\Delta^{1 / 2} \chi\right)\left(\left(\begin{array}{cc}a_{1} & x \\ & a_{2}\end{array}\right)\right)=1$.
Lemma 1. The space $P(\mathbb{Q}) \backslash G(\mathbb{Q})$ is in bijection with $\Gamma_{\infty} \backslash \mathrm{SL}_{2}(\mathbb{Z})$ where $\Gamma_{\infty}=$ $P(\mathbb{Q}) \cap \mathrm{SL}_{2}(\mathbb{Z})$.

Proof. We claim that both sets are in bijection with $\mathbb{P}^{1}(\mathbb{Q})$. Indeed, we may identify $\mathbb{P}^{1}(\mathbb{Q})$ with row vectors $(a b)$ modulo the usual equivalence relation. Then the action of $G(\mathbb{Q})$ on $e_{1}=\binom{0}{1}$ by multiplication on the right is transitive with stabilizer $P(\mathbb{Q})$. Similarly, the action of $\mathrm{SL}_{2}(\mathbb{Z})$ is transitive with stabilizer Γ_{∞}.

Let $z=x+i y \in \mathbb{H}$, and $g_{z}=\left(\begin{array}{r}y^{1 / 2} x y^{-1 / 2} \\ \\ y^{-1 / 2}\end{array}\right)$ so that $g_{z} \cdot i=z$. We consider g_{z} as an element of $\mathrm{GL}_{2}(\mathbb{A})$. This means that at the infinite place it is $\binom{y^{1 / 2} x y^{-1 / 2}}{y^{-1 / 2}}$ and it is the identity at all other places.

We define $f=\otimes f_{v}$ as follows. Note that the Iwasawa decomposition implies that $G\left(\mathbb{Q}_{p}\right)=P\left(\mathbb{Q}_{p}\right) \mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$. This implies that $f_{p} \in \operatorname{Ind}_{P\left(\mathbb{Q}_{p}\right.}^{G\left(\mathbb{Q}_{p}\right)}\left(\Delta_{p}^{1 / 2} \chi_{p}\right)$ is determined by its restriction to $\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$. With this in mind, let f_{p} be the unique such function such that its restriction to $\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$ is the characteristic function of

$$
K_{0}\left(p^{\operatorname{ord}_{p}(N)}\right)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right) \right\rvert\, c \equiv 0 \quad\left(\bmod p^{\operatorname{ord}_{p}(N)}\right)\right\}
$$

In the real case $v=\infty$, the Iwasawa decomposition is $G(\mathbb{R})=P(\mathbb{R}) \mathrm{SO}(2)$. Analogous to the above, we let $f_{\infty} \in \operatorname{Ind}_{P(\mathbb{R})}^{G(\mathbb{R})}\left(\Delta_{\infty}^{1 / 2} \chi_{\infty}\right)$ such that

$$
f\left(g k_{\theta}\right)=e^{i k \theta} f(g), \quad \text { and } \quad f(e)=1
$$

for $\kappa_{\theta}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right) \in \mathrm{SO}(2)$ and k a non-negative even integer.
As a result of our definition for f, we have that if $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G(\mathbb{Q})$ then $f\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) g_{z}\right)=$ 0 unless $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(N)$.

Finally set $s=s_{1}=-s_{2}$. We'd like to calculate $E\left(f,\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) g_{z}\right)$, and show that it is a classical Eisenstein series for a particular choice of s.

For $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R})$, we write

$$
\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) g_{z}=\left(\begin{array}{cc}
y_{1}^{1 / 2} & x_{1} y_{1}^{-1 / 2} \\
& y_{1}^{-1 / 2}
\end{array}\right) k_{\theta} .
$$

Such a decomposition is possible since $\mathrm{SL}_{2}(\mathbb{R})=P^{1}(\mathbb{R}) S O_{2}(\mathbb{R})$ where $P^{1}(\mathbb{R})=$ $P(\mathbb{R}) \cap \mathrm{SL}_{2}(\mathbb{R})$. Hence

$$
f\left(\left(\begin{array}{ll}
a & b \tag{2}\\
c & d
\end{array}\right) g_{z}\right)=f\left(\left(\begin{array}{c}
y_{1}^{1 / 2} \\
x_{1} y_{1}^{-1 / 2} \\
y_{1}^{-1 / 2}
\end{array}\right) k_{\theta}\right)=y_{1}^{s+1 / 2} e^{i k \theta}
$$

To calculate y_{1} and $e^{i k \theta}$, we consider the action of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) g_{z}$ on \mathbb{H}. In particular,

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) g_{z} \cdot i=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d}=\frac{i y}{|c z+d|^{2}}+\operatorname{Re}\left(\frac{a z+b}{c z+d}\right) .
$$

On the other hand $\left(\begin{array}{c}\left.y_{1}^{1 / 2} \begin{array}{c}x_{1} y_{1}^{-1 / 2} \\ y_{1}^{-1 / 2}\end{array}\right) k_{\theta} \cdot i=x_{1}+i y_{1} \text {. Hence } y_{1}=\frac{y}{|c z+d|^{2}} \text {. } . \text {. } \quad \text {. } \\ y_{0}\end{array}\right.$
Also k_{θ} must be equal to

$$
\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)=\binom{y_{1}^{-1 / 2}-x_{1} y_{1}^{1 / 2}}{y_{1}^{1 / 2}}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) g_{z}=\left(\begin{array}{c}
* \\
c\left(y y_{1}\right)^{1 / 2} \\
(c x+d) y^{-1 / 2} y_{1}^{1 / 2}
\end{array}\right),
$$

which implies that

$$
e^{i \theta}=\cos \theta+i \sin \theta=\frac{c x+d}{|c z+d|}-\frac{i c y}{|c z+d|}=\frac{c \bar{z}+d}{|c z+d|}=\frac{|c z+d|}{c z+d} .
$$

Putting together these formulas,

$$
E(f, s, g)=\sum_{\Gamma_{\infty} \backslash \Gamma_{0}(N)} \frac{y^{s+1 / 2}}{(c z+d)^{k}|c z+d|^{2 s+1-k}}
$$

which, upon setting $s=(k-1) / 2$, is exactly equal to $y^{k / 2} E_{k}(z)$ where $E_{k}(z)$ is the classical Eisenstein series of weight k.

Note: it is straightforward to see that $E(f, s, g)$ is absolutely convergent whenever $\operatorname{Re} s>1$ (for arbitrary f, g) which is consistent with the fact that $E_{k}(z)$ is convergent only for $k>2$.

1. Whittaker coefficients

Generally speaking, if is a generic representation then one can define a Whittaker model. We work with $G=\mathrm{GL}_{2}(F)$ for F a number field for which every irreducible automorphic representation is generic. Let π be such a representation and $f \in \pi$. Let $\psi: F \backslash \mathbb{A} \rightarrow \mathbb{C}^{\times}$be a nontrivial character. We define

$$
W_{f}^{\psi}(g)=\int_{F \backslash \mathbb{A}} f(n(b) g) \psi(-b) d b
$$

where $n(b)=\left(\begin{array}{ll}1 & b \\ & 1\end{array}\right)$. This gives a map

$$
\pi \rightarrow \mathscr{W}(\pi, \psi)=\{W: G \rightarrow \mathbb{C} \mid W(n(b) g)=\psi(b) W(g)\}
$$

which is a G-isomorphism onto its image.
The function $f(g)$ may be reconstructed from W_{f}^{ψ} :

$$
f(g)=\sum_{\alpha \in F} W_{f}^{\psi}\left(\left({ }_{1}^{\alpha}\right) g\right)
$$

The Whittaker coefficients are the functions $W_{f}^{\psi}\left(\left({ }^{\alpha}{ }_{1}\right) g\right)$. Notice that the Whittaker coefficient

$$
\begin{aligned}
W_{f}^{\psi}\left(\left(\begin{array}{c}
\alpha \\
\end{array}\right) g\right) & =\int_{\mathbb{Q} \backslash \mathbb{A}} f\left(\binom{1}{1}\binom{\alpha}{1} g\right) \psi(-b) d b \\
& =\sum_{\alpha \in F} \int_{F \backslash \mathbb{A}} f\left(\binom{\alpha}{1}\left(\begin{array}{cc}
1 \alpha_{1}^{-1} b
\end{array}\right) g\right) \psi(-b) d b \\
& =\int_{F \backslash \mathbb{A}} f\left(\binom{\alpha}{1}\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right) g\right) \psi_{\alpha}(-b) d b=W_{f}^{\psi_{\alpha}}(g) .
\end{aligned}
$$

because $\alpha \in F$. (This implies that $f\left(\left({ }^{\alpha}{ }_{1}\right) g\right)=f(g)$ and that $d(\alpha b)=|\alpha| d b=d b$.)
1.1. Connection with Fourier coefficients. We now describe how these are related to classical Fourier coefficients. Let $F=\mathbb{Q}$ and let \widetilde{f} be a classical modular form of level N and weight k. We obtain an automorphic form f via the rule

$$
f\left(g k g_{\infty}\right)=\left.\tilde{f}\right|_{i}\left[g_{\infty}\right]
$$

where $g_{f} \in \mathrm{GL}_{2}(\mathbb{Q}), k \in K_{0}(N)$ and $g_{\infty} \in \mathrm{GL}_{2}^{+}(\mathbb{R})$ and

$$
\left.\widetilde{f}\right|_{k}\left[\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right](z)=(c z+d)^{k} \widetilde{f}\left(\frac{a z+b}{c z+d}\right) .
$$

Let $\psi=\otimes \psi_{v}$ be defined by $\psi_{\infty}(x)=e^{2 \pi i x}$ and $\psi_{p}(x)=e^{-2 \pi i \lambda(x)}$ where λ is the composition of the maps

$$
\mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p} / \mathbb{Z}_{p} \hookrightarrow \mathbb{Q} / \mathbb{Z}
$$

Since $\mathbb{A}=\mathbb{Q} \cdot \widehat{\mathbb{Z}} \cdot \mathbb{R}$ and \mathbb{Q} has class number 1 we have

$$
\mathbb{Q} \backslash \mathbb{A}=\widehat{\mathbb{Z}} \times \mathbb{Z} \backslash \mathbb{R}
$$

Finally let $g_{\tau}=\left(\begin{array}{cc}v & u \\ & 1\end{array}\right)$ where $\tau=u+i v \in \mathbb{H}$.

Therefore,

$$
\begin{aligned}
W_{f}^{\psi_{\alpha}}\left(g_{\tau}\right) & =\int_{\mathbb{Q} \backslash \mathbb{A}} f\left(n(b) g_{\tau}\right) \psi_{\alpha}(-b) d b \\
& =\int_{\mathbb{Z} \backslash \mathbb{R}} \int_{\widehat{\mathbb{Z}}} f\left(n\left(b_{\infty}\right) n(\hat{b}) g_{\tau}\right) \psi_{\alpha}(-b) d \hat{b} d b_{\infty} \\
& =\int_{\mathbb{Z} \backslash \mathbb{R}} f\left(n\left(b_{\infty}\right) n(\hat{b}) g_{\tau}\right) \psi_{\alpha}\left(-b_{\infty}\right) d b_{\infty}
\end{aligned}
$$

since f is right invariant by $K_{0}(N) \ni n(\hat{b})$ and $\psi(-\alpha \hat{b})=1$. Now, writing this in terms of \widetilde{f}, yields

$$
\begin{aligned}
W_{f}^{\psi_{\alpha}}\left(g_{\tau}\right) & =\left.\int w t f\right|_{k}\left[g_{\tau} n\left(b_{\infty}\right)\right](i) \psi(-\alpha b \infty) d b_{\infty} \\
& =\int_{0}^{1} \widetilde{f}(\tau+y) e^{2 \pi i \alpha \tau} e^{2 \pi i \alpha y} d y
\end{aligned}
$$

Since

$$
W_{f}^{\psi_{\alpha}}\left(g_{\tau}\right)=\int_{\mathbb{Z} \backslash \mathbb{R}} \tilde{f}(\tau+y+1) e^{2 \pi i \alpha} e^{2 \pi i \alpha(\tau+y)} d y=e^{2 \pi i \alpha} W_{f}^{\psi_{\alpha}}\left(g_{\tau}\right)
$$

we see that this is nonzero only if $\alpha \in \mathbb{Z}$, and

$$
W_{f}^{\psi_{n}}\left(g_{\tau}\right)=a_{n}(\widetilde{f}) q^{n}
$$

where $a_{n}(\widetilde{f})$ is the nth Fourier coefficient.

