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These notes were derived primarily from a course taught by Yannan Qiu at the
University of Wisconsin in Spring of 2008. Briefly, the course was an introduction to
the book of Jacquet and Langlands on Automorphic forms on GL2. I am greatly in
debt to Yannan for teaching the class, and to Rob Rhoades who typed most of the
original lecture notes. Additional details beyond Rob’s notes (including solutions
to many of the exercises) are included, and some additions and restructuring of the
material has been made.

The main reference for the course (and these notes) is Jacquet and Langlands
book [5]. Some other references are Bump’s book [2] and Jacquet’s book [3]. Bump’s
book is easier to read but the real material is in [5]. Jacquet’s book develops theory
of GLn automorphic forms.

1. Introduction and motivation

This course will be about L-functions and automorphic forms. There are two
sorts of L-functions.

(1) Artin L-functions: Suppose E/F is a finite extension of number fields and
Gal(E/F ) acts on a finite dimensional vector space over C by ρ. Then we
get L(s, ρ).

(2) Automorphic L-function: Let G be a reductive group over F and π an
automorphic representation. Then we get L(s, π).

The Langlands Philosophy says that every Artin L-function is automorphic.
More precisely, if L(s, ρ) is the Artin L-function corresponding to a non-trivial
irreducible finite dimensional Galois representation, then there exists π, a cuspidal
automorphic representation of GLn, such that L(s, ρ) = L(s, π).

Remark. The full Langlands conjectures says more than just what is above, but
they predict that irreducible ρ correspond to cuspidal π.

The Langlands philosopy is useful because there are many analytic techniques
that can be used to study automorphic L-functions. In particular, they are known
to have holomorphic continuation and other such properties. However, many con-
jectures (including Artin’s conjecture) of number theory would be true if the same
properties could be shown to hold for Artin L-functions.

Remark. Artin’s conjecture is that Artin L-functions are analytic (i.e. holomorphic
on the entire complex plane.) It is known that they admit a meromorphic continua-
tion, but it appears that the best way to prove holomorphicity is via the Langlands
philosophy.

The truth of the Langlands philosophy has been shown in the “GL1 case.” The
1-dimensional Artin L-functions arise from characters ρ : Gal(E/F ) → C×. By
class field theory, we have

Gal(E/F )→ Gal(E/F )ab = Gal(E′/F ) ' A×F /F
×Nm(A×E′),

for some field E′. We construct the automorphic representation of GL1 over F to
be

χ : A×F /F
×Nm(A×E′)→ C×.
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(Note that GL1(AF ) = A×F .) It is true that L(s, ρ) = L(s, χ). The study of L(s, χ)
can be found in Tate’s thesis[7].

As in the example above, given a Galois representation, the first goal to proving
the truth of Langlands philosopy would be to associate to it an automorphic rep-
resentation. Then, one would want to show that the corresponding L-functions are
the same.

The primary goal of this course will be to explain what automorphic L-functions
and automorphic representations are.

2. Representation Theoretic Notions

2.1. Preliminaries on adeles, groups and representations. General Set
Up: Let G be a group over a global field F (which will typically be Q.) Possible
examples include GLn, Sp2m, O(n). In the case of Sp2m we mean that the skew
symmetric form is defined over F . To such a group, the notion of an automorphic
representation can be defined.

We take G = GL2. Then the adelic points of G can be viewed as the restricted
product

G(AF ) =
∏∗

v places of F

G(Fv)

with respect to the subgroups Kv = GL2(OFv ). That is, (gv) ∈ G(AF ) if and only
if gv ∈ Kv for almost all v1. Kν is a maximal compact subgroup of G(Fν).

This is a generalization of the adeles

A×F =
∏
v

F×v .

Here, the restricted product is taken with respect to the valuation rings OFν ⊂ Fv.
Example 2.1.1.

A×Q = R× ×
∏∗

p prime

Q×p .

Note that GL1(Zp) = Z×p .

Exercise 2.1.2. Show that GL2(Zp) is a maximal compact subgroup of GL2(Qp).

It is a fact that if π is an irreducible automorphic representation of GL2(AF ) then
it is the restricted tensor product π = ⊗πv, where πv are irreducible representations
of GL2(Fv). Attached to each πv is an L-factor L(s, πv), and L(s, π) =

∏
L(s, πv)

converges absolutely when s� 0, and it has mermomorphic continuation.
We do not describe what the restricted tensor product means at this time,

but instead begin by classifying all local representations πv. We often treat the
archimedean and nonarchimedean cases separately.

2.2. Some categories of GF -modules and HF -modules. In this section, we
consider representations of GF = GL2(F ), where F is a non-archimedean local field.
F is a topological field so GF inherits the subspace topology from M2(F ) = F 4, and
it is totally disconnected. A representation (π, V ) of GF is a complex vector space
V together with an action of GF denoted π(g). In other words, V is a GF -module.
We may also refer to the representation as π (when V is clear from context), or we
may just say V is a GF -module (when the action π is clear from context.)

1i.e for all but finitely many.
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2.2.1. Finite dimensional representations. Usually V will be infinite dimensional,
but, in this section, suppose V is finite dimensional.

Proposition 2.2.1. If (π, V ) is a continuous representation of GF , then ker(π)
must contain an open subgroup.

For example, GL2(OF ) is an open subgroup.

Proof. We first prove the GL1 case. Say π = χ : Q×p → GL1(C) = C×, this is the
case that V is one dimensional. So the preimage of 1 equals ker(χ). Let R be a
small open set around 1 in C, then χ−1(R) ⊇ N , N an open normal subgroup and
χ(N) ⊂ R. Since N is a group, χ(N) must be a subgroup of C×. For R sufficiently
small, the only such group is {1}. Hence, χ(N) = {1}, and N ⊆ ker(χ).

This proof readily generalizes to GLn for any n. It is a fact from complex
Lie theory, that any open neighborhood of the identity generates the connected
component of the identity in the group. �

The topologies of C and Qp are not compatible, and that is what makes this
possible. C has an archimedean topology and Q×p is totally disconnected.

Remark. An open problem is to understand finite dimensional p-adic vector space
representations which are much more complicated.

2.2.2. Smoothness and admissibility. Proposition 2.2.1 is not true in general when
V is infinite dimensional. In the spirit of the proposition, and to obtain more
manageable representations, we will restrict ourselves to the class of representations
satisfying one or more of the following conditions.

(A) (π, V ) is such that for any vector v ∈ V , {g ∈ GF | π(g)v = v} contains an
open subgroup.

(B) For all N ⊂ GF open, the set {v ∈ V : Nv = v} is finite dimensional
If (π, V ) satisfies (A), we call π smooth, and if it satisfies by (A) and (B), we say

it is admissible.
There is a good theory of admissible representations because it often reduces to

that of finite groups where one can use orthogonality conditions and Schur’s lemma.

2.2.3. The Hecke algebra. It is a fact from Lie theory that every topological group
has a unique up to scale Haar measure, which is a left invariant measure on the
group. Symbolically, this means that if U is any measureable set, then

µ(g′U) =
∫
g′U

d(g) =
∫
U

d(g′g) =
∫
U

= µ(U).

Example 2.2.2. The Lebesgue measure on Rn, a topological group under vector
addition, is translation invariant, hence a Haar measure.

Example 2.2.3. We can define the Haar measure dx on Qp by defining µ(pnZp) =
p−n. Just as in the case above, the additive Haar measure on Qnp is dx1 · · · dxn. We
leave it as an exercise to show that the measure (1 − 1

p )−1 dx
|x|p is a Haar measure

for Q×p , and that the measure of Z×p is one.

Example 2.2.4. The Haar measure on GLn(Qp) is

dg =
dg11dg12 · · · dgnn

|det g|np
.
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where g = (gij) and dgij is additive measure on Qp from the previous example.
Notice that when n = 1 this agrees with the previous example (up to a scalar
multiple.)

Example 2.2.5. Let P ⊂ GLn(F ) be the subgroup of upper triangular matrices.
Any p ∈ P can be uniquely written in the form

p =
(
a1

a2

)(
1 x

1

)
.

Let dx denote the translation invariant measure on F . Then one can directly verify
that the left and right invariant measures on P are given by

dLp :=
da1da2dx

|a1a2|
, and dRp :=

da1da2dx

|a2|2
.

So dLp =
∣∣∣a1
a2

∣∣∣ dRp. Thus P is not unimodular, meaning that the left and right
Haar measures do not agree.

Let HF be the set of all locally constant compactly supported functions on GF
valued in C. This is an algebra under convolution which is defined for f1, f2 ∈ HF
by

(2.2.1) f1 ∗ f2(h) :=
∫
GF

f1(g)f2(g−1h)dg

where dg is the Haar measure such that the measure of GL2(OF ) is 1.
If (π, V ) is a smooth GF -module then V is an HF -module as well. The action

is given by

(2.2.2) π(f)v =
∫
GF

f(g)π(g)v dg.

Since f is locally constant and compactly supported, this is actually a finite sum,
so it makes sense. Indeed, we can find N ⊆ GF open so that Nv = v and f is
constant on each gN (since π is smooth.) There exists finitely many gi such that
supp(f) = ∪igiN . This implies that∫

f(g)π(g)vdg =
∑
i

∫
giN

f(g)π(g)vdg

=
∑
i

f(gi)π(gi)v · µ(N).

2.2.4. Idempotents in HF . Let πi, 1 ≤ i ≤ n be non-equivalent finite dimensional
irreducible representations of GL2(OF ). Note that ker(πi) are normal, and that
GL2(OF )/ ker(πi) is finite. Define

(2.2.3) ζi(g) := dim(πi) tr(πi(g−1)). and ζ =
∑
i

ζi(g).

Now extend the definition of ζi to a function on all of GF by setting ζi(g) = 0 if
g /∈ GL2(OF ).

Then ζi ∗ ζj = δijζi and thus ζi and ζ are idempotents.

Exercise 2.2.6. Prove that ζ ∗ ζ = ζ. Hint: use Schur’s orthogonality relations for
matrix coefficients. Such ζ are called elementary idempotents.

Consider the following conditions on HF -modules.
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(A’) For all v ∈ V there exists an f ∈ HF such that π(f)v = v.
(B’) For all elementary idempotents ζ, π(ζ)V is finite dimensional.

Definition 2.2.7. If condition (A’) holds, we say that (π, V ) is smooth, and we
call (π, V ) admissible if both (A’) and (B’) hold.

Remark. There are notions of smoothness and admissibility for a representation of
GF when F is a local archimedean field as well.

Our goal is to show that the category of smooth (respectively, admissible) GF -
modules is equivalent to the category of smooth (resp., admissible) HF -modules.
The following is straightforward.

Proposition 2.2.8. If (π, V ) is a smooth (admissible) GF -module, then it is a
smooth (admissible) HF -module.

Proof. We prove the statement for smoothness and leave that of admissibilty as an
exercise. Recall that

π(f)v :=
∫
GF

f(g)π(g)vdg.

Since π is smooth, this is a finite sum, and the HF action is therefore well defined.
Moreover, by Proposition 2.2.1 there exists an open subgroup N , such that for all
g ∈ N π(g)v = v. For f = 1

µ(N)1N , it follows that π(f)v = v. �

We would like to have the other direction as well, but we first need to define an
action of GF on an HF -module (π, V ). Let us begin with some heuristic calcula-
tions. If HF acts smoothly on V , then for v ∈ V , g ∈ GF , there exists f ∈ HF such
that π(v) = v. We expect the GF action to satisfy

π(g)v = π(g)π(f)v =π(g)
∫
f(h)π(h)vdh

=
∫
f(h)π(gh)vdh

=
∫
f(g−1h)π(h)vd(g−1h)

=
∫
f(g−1h)π(h)vdh

=
∫
λgf(h)π(h)vdh

=π(λgf)v,

where λ is the left regular representation. That is, (λgf)(h) = λ(g)f(h) := f(g−1h).
This calculation suggests that if (π, V ) is a smooth HF -module, we should define

an action of GF on V via

π(g)v = π(g) (π(f)v) = π(λgf)v

where we choose f so that π(f)v = v. Such an f exists because π is smooth, but
we must still show that the action does not depend on the choice of f . This result
is a consequence of the following.

Lemma 2.2.9. Suppose (π, V ) is a smooth HF -module, g ∈ GF , and v ∈ V . If∑r
i=1 π(fi)v = 0, then

∑r
i=1 π(λgfi)v = 0.
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Proof. Write w =
∑
π(λgfi)v ∈ V . By smoothness there exists an f ∈ HF so that

π(f)w = w. But

w = π(f)w = π(f)
∑

π(λgfi)v =
∑
i

π(f ∗ λgfi)v.

On the other hand,

f ∗ λgfi(h) =
∫
f(r)λgfi(r−1h)dr

=
∫
f(r)fi(g−1r−1h)dr

=
∫
f(rg−1)fi(r−1h)d(rg−1)

=
∫
ρg−1f(r)fi(r−1h)dr

=(ρg−1f) ∗ fi(h),

where ρg−1 is right translation. Furthermore, we used the fact that GL2 is reductive
and thus the left and right Haar measures are the same. Thus,

w =
∑
i

π(ρg−1f ∗ f)v = π(ρg−1f)
∑
i

π(fi)v,

and it is clear that if
∑
π(fi)v = 0 then

∑
π(λgfi)v = 0 as desired. �

The final goal of this section is to prove the following

Proposition 2.2.10. If (π, V ) is a smooth (resp. admissible) HF -module, then
action of GF on V defined above makes it a smooth (resp. admissible) Gf -module.

Proof. Let v ∈ V then there exists an f ∈ HF with π(f)v = v. Note that f is
left invariant by an open subgroup N . Then for any n ∈ N π(n)v = π(n)π(f)v =
π(λnf)v = π(f)v = v. Now, f ∈ HF is compactly supported and is locally constant,
which implies that it is invariant by an open subgroup. This is a topology argument.
This should be done for homework. For f ∈ HF then, there exists N ⊆ GL2(OF )
open and normal such that f(n1gn2) = f(g) for every n1, n2 ∈ N . This is true
because it is a local non-archimedean field. We leave equivalent statement for
admissible representations as an exercise. �

Remark. We have defined HF to be the space of locally constant functions with
compact support. It is easy to see that this is the set of functions f : GF → C such
that f =

∑
ci1giN . Indeed, for f ∈ HF , let U = supp(f). For each g ∈ U let Ng

be an open group2 such that gNg ⊂ U and f is constant on gNg. We have that

U =
⋃
g∈U

gNg

Since U is compact, it is the union of finitely many of these, which we denote by
giNi. Let N be the intersection of these finitely many Ni. Then

U =
⋃
g∈U

gN =
⋃

finite

giN,

2Since F is nonarchimedean, GF has a basis of open neighborhoods of the identity consisting
of (normal) compact open subgroups.
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and f =
∑
i ci1giN .

Exercise 2.2.11. Show that

HF = span {1NgN | N is open in GF , g ∈ GF } .

In other words HF = {f : GF → C | f(n1gn2) = f(g)} for some N open, and all
n1, n2 ∈ N . We call such a function N -biinvariant.

Solution to Exercise 2.2.11. IfN is an open (compact) subgroup ofGF and g ∈ GF ,
then

NgN =
⋃
n∈N

ngN =
⋃

finite

giN

because NgN is also open and compact. This implies that if f is N -biinvariant,
then f ∈ HF .

We now show that if f ∈ HF then f is biinvariant. Without loss of generality,
we may assume that f = 1gN , and thus we need to show that 1gN is N ′-biinvariant
for some N ′. As remarked in the footnote, GF has a basis of neighborhoods of the
identity consisting of normal open subgroups. Using the same type of argument as
above, it follows that if N is an open subgroup then N = ∪igiN ′ where the Ni are
a finite number of normal subgroups. Hence

gN =
⋃
ggiN

′ =
⋃
N ′g′iN

′

where g′i = ggi. Note that we use the fact that if N is normal, gN = Ng =
NgN . �

2.3. Contragredient representation. Let (π, V ) be a smooth representation of
GF , V ∗ the set of linear functionals over C. We define an action of GF on V ∗ by
(v, π∗(g)v∗) = (π(g−1)v, v∗) for v ∈ V and v∗ ∈ V ∗, where the pairing (w, v∗) =
v∗(w). In other words, π∗(g)v∗(v) = v∗(π(g−1)v). This action may not be smooth!

To get a smooth action we go through HF . Define the action of HF on V ∗ by

π∗(f)v∗(v) = v∗(π(f̌)v),

where f̌(g) := f(g−1). In general this action is still not smooth. V ∗ might be too
big.

Set Ṽ := π∗(HF )V ∗ = {
∑
π∗(fi)v∗i } and π̃ = π∗ |eV . In the case that (π, V ) is

smooth, we call Ṽ the set of smooth vectors in V ∗. Obviously, if v∗ ∈ V ∗ is fixed
by some f ∈ HF , v∗ ∈ Ṽ . This fact, together with the following lemma, implies
that Ṽ is equal to

{v∗ ∈ V ∗ : v∗ is fixed by some L ⊆ Kopen},

and explains the terminology “smooth vectors.”

Lemma 2.3.1. (π, V ) is smooth implies (π̃, Ṽ ) is smooth. Moreover, (π, V ) is
admissible implies (π̃, Ṽ ) is admissible.

Remark. This is an example where infinite dimensional spaces are more compli-
cated than finite dimensional ones. Passing to Ṽ makes the infinite dimensional
representation behave more like a finite dimensional representation.
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Proof of Lemma 2.3.1. Let ṽ ∈ Ṽ . We need to show there is an f ∈ HF such that
π̃(f)ṽ = ṽ. By definition of Ṽ , every element is of the form ṽ =

∑r
i=1 π

∗(fi)v∗i for
some fi ∈ HF .

We observe that there exists elementary idempotents so that ζ ∗ fi = fi for
1 ≤ i ≤ r. The proof will be given later. From this we deduce that

π̃(ζ)ṽ = π∗(ζ)
∑
i

π∗(fi)v∗i =
∑
i

π∗(ζ ∗ fi)v∗i =
∑

π∗(fi)v∗i = ṽ.

This proves the smoothness but we need to show the existence of a ζ.
That (π, V ) admissible implies (π̃, Ṽ ) is also admissibile follows from the follow-

ing exercise. �

Exercise 2.3.2. Show that Ṽ (ζ) = V (ζ̌)∗ with ζ̌(g) = ζ(g−1).

Remark. In the proof we made use of the fact that every ṽ ∈ Ṽ can be written as
a finite sum

∑r
i=1 π

∗(fi)v∗i . In fact it is true that every ṽ is equal to π∗(f)v∗ for
some f and v∗.

The following lemma contains some basic facts about the Hecke algebra and
helps us deduce the existence of the ζ used in the previous lemma.

Lemma 2.3.3. Let N ⊆ GL2(OF ) be open. Then the following hold.

(1) 1N ∗ 1Ng = 1Ng
(2) 1gN ∗ 1N = 1gN
(3) Assume that N is normal. Let π1, · · · , πr be irreducible representations of

GL2(OF )/N and ζ =
∑
i ζi then ζi ∗ 1N = 1N ∗ ζ = 1N .

(4) If f ∈ HF and f is bivariant by N , open and normal, then ζ ∗f = f ∗ζ = f .

Proof. We do not prove (1) or (2). (The proofs are straight forward.) For the proof
of (3), let {π1, · · · , πr} be all of the distinct representations of the finite group
GL2(OF )/N . Then {ζ1, · · · , ζr} are a basis for the class functions on this finite
group. So 1N =

∑
i ciζi for some ci. Then

1N ∗ ζ = (
∑

ciζi) ∗ (
∑

ζi) =
∑
i,j

ciζi ∗ ζj = 1N ,

by the orthogonality of the idempotents. A similar calculation shows that ζ ∗ 1N =
1N .

To prove (4) we note that ζ ∗ f = f ∗ (1N ∗ f) = (ζ ∗ 1N ) ∗ f = 1N ∗ f = f . The
opposite relation is similar. �

3. Classification of local representations: F nonarchimedean

Our goal is to classify irreducible admissible representations of GF = GL2(F )
with F a local nonarchimedean field. Since K = GL2(OF ) is a compact (sub)group,
its representations are much easier to classify. Indeed, the representation theory of
compact groups mimics that of finite groups. Since any GF -module V is also a K-
module, we can consider the decomposition of V as such. In the following section,
we discuss this decomposition. After introducing the notion of irreducibility, we
then proceed to classify irreducible GF -modules.
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3.1. (π, V ) considered as a K-module. In this section, we see what the conse-
quences of assuming that (π, V ) is smooth or admissible GF -module imply with
respect to the decomposition of V as a K-module.

The Hecke algebra3 HF = C∞c (GF ), and, as we have seen in exercise 2.2.11 and
the accompanying discussion, HF is equal to the span of the set

{1LgL : L ⊆ GL2(OF ) open , g ∈ GF }.

Notice that this span description makes HF look a lot more like the classical Hecke
algebra, i.e. that given by the double coset description.

3.1.1. Elementary idempotents. For L ⊆ GL2(OF ) open normal, we may define an
elementary unipotent associated to L by

(3.1.1) ζL(g) :=
∑

π∈E(K/L)

dim(πi) tr(πi(g−1))

for g ∈ K and E(K/L) the (finite since K/L is finite) set of non-equivalent repre-
sentations of K/L. Lemma 2.3.3 implies that

ζL ∗ 1LgL = 1LgL ∗ ζL = 1LgL

for any g ∈ GF .

3.2. A new formulation of smoothness and admissibility. Let (π, V ) GF -
module. Then we define

(3.2.1) V L := {v ∈ V : Lv = v}

for L ⊆ K open. Obviously, V is smooth if and only if V =
⋃
V L. Moreover, V is

admissible if and only if, additionally, each V L is finite dimensional.
Since (π, V ) is also an HF -module, we can define

(3.2.2) V (ζL) := π(ζL)V.

We call V (ζL) the L-part of V . Similarly to the above statement, V is smooth if
V =

⋃
V (ζL), and V is admissible if additionally V (ζL) is finite dimensional for

each L. The fact that this characterization for HF -modules is true follows from the
observations about GF -modules above and the following.

Exercise 3.2.1. If (π, V ) a smooth HF -module then V L = V (ζL).

Remark. This formulation demonstrates one of the many uses of the elementary
idempotents.

3.2.1. Decomposition of K/L-modules. Let (π, V ) be a smooth GF -module, L ⊆ K
open and normal. Then V L is a K/L-module and

V L =
⊕

δ∈E(K/L)

V(δ)

where V(δ) is the isotipic component of δ ∈ E(K/L) defined by

(3.2.3) V(δ) =
∑

ϕ∈HomK(Wδ,V L)

ϕ(Wδ)

3in the case of a nonarchimedean local field, a function is smooth precisely when it is locally
constant.
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with Wδ is the vector space for δ. That is, (δ,Wδ) is a finite dimensional irreducible
representation of K/L.

If v ∈ V L it can be expressed as v =
∑
δ vδ, where vδ ∈ V L(δ). In fact, vδ = ζδv

where ζδ(g) = tr(δ(g−1)) dim(δ).

Remark. We intend to include an appendix on the representation theory of finite
(and compact?) groups. The decomposition in equation (3.2.3) and the other facts
above, are corollaries to Schur’s lemma in this setting.

3.2.2. Decomposition of K-modules. This description of K/L-modules extends to
K-modules.

Remark. The reason for this may follow from the fact that K is the inverse limit
of the groups K/L where L is open and normal in K. Maybe we can explore this
question in the appendix(?)

Let δ ∈ E(K) the equivalence classes of finite dimensional irreducible continuous
representations of K. (Note that since δ is continuous it factors through K/L for
some L open and normal in K.) Let (π, V ) be smooth, and write V = ⊕δ∈E(K)V(δ)

where
V(δ) =

∑
ϕ∈HomK(Wδ,V )

ϕ(Wδ).

Then V is admissible if and only if each V(δ) is finite dimensional. That is, every δ
occurs with finite multiplicity.

Remark. One of the facts of finite dimensional representation theory that is being
mirrored here is that if π is a finite dimensional complex representation of a finite
group G, then

π '
⊕
i

niπi

where {π1, . . . , πr} are irreducible representations of G. The number ni equals the
cardinality of HomG(πi, π). If Wi is the space corresponding to πi then

π =
⊕

ϕ∈Hom(πi,π)

ϕ(Wi).

Again, this is a consequence of Schur orthogonality.

3.2.3. The contragradient representation. Again, assume that (π, V ) is smooth, and
let Ṽ := π∗(HF )V ∗ with π̃ = π∗ |eV be the contragradient representation. Recall
that

Ṽ = {v∗ ∈ V ∗ : v∗ is fixed by some L ⊆ Kopen},
the collection of smooth vectors in V ∗. One sees there is a map V 7→ Ṽ ∗ that

induces a monomorphism V ↪→ ˜̃
V . When V is admissible this is an isomorphism,

hence ˜̃V ' V . The key to proving this is an understanding of Exercise 2.3.2.

3.3. Irreducibility. A GF -module (π, V ) is called irreducible if the only GF -
invariant subspaces of V are {0} and V itself.

Proposition 3.3.1 (Schur’s Lemma). Let (π, V ) be an irreducible GF -module. If
A : V → V satisfies Aπ(g)v = π(g)Av for all g ∈ GF then A = λI for some λ ∈ C.
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Proof. First, we show that dimC V is countable. Choose v ∈ V , v 6= 0. Since V
is irreducible, V = π(HF )v. So, it suffices to show that HF , which is equal to the
span of {1LgL : g ∈ K,L} has a countable basis. This follows from the fact that
K has a countable (topological) basis of the identity consisting of open subgroups,
and that for each such subgroups the number of distinct double cosets LgL is also
countable. (We leave the proof of these facts as an exercise.)

Next, assume that A is not a scalar. If V is finite dimensional, then A must
have an eigenvector of eigenvalue λ. This would imply that there is a non trivial
eigenspace, but, by irreducibility, we would have our desired result.

Even if V is infinite dimensional, we will show that A has an eigenvector, and, just
as in the finite dimensional case, irreducibility of V would imply the proposition.
By means of contradiction, assume that A has no eigenvectors. Then p(A) 6= 0 for
all nonzero polynomials p(t) ∈ C[t]. Indeed, if p(A) = 0 then, since

p(t) =
∏

fi(t)ei

where each fi is linear, the kernel of p(A) must be nontrivial, and A must have
an eigenvalue. Thus p(A) is injective, and (again by irreducibility) a bijection for
all nonzero p(t) ∈ C[t]. So, we have an injective map (of vector spaces) C(t) → V
given by

p(t)
q(t)

7→ p(A)q(A)−1v

for a fixed nonzero vector v ∈ V . However, dimC(C(t)) is uncountable, which can
be seen by observing that { 1

t−λ : λ ∈ C} are independent and uncountable. �

Let (π, V ) be a representation of GF . Even if V is infinite dimensional, the use
of the so called Hecke algebra of level L, defined to be the set

(3.3.1) HL := {f ∈ HF : f is bi-invariant under L},

allows us to determine the irreducibility of V at a finite level.

Lemma 3.3.2. Let (π, V ) a smooth representation of GF . Then V is smooth and
irreducible if and only if for all L ⊆ K open V L is an irreducible HL-module.

Proof. Suppose that for all L ⊆ K open V L is an irreducible HL-module. If V is
reducible then there exists a W so that V ) W ) {0} that is GF -invariant. Let
w ∈ W and v ∈ V \W be nonzero vectors. By smoothness, there is an L fixing w
and v. Thus V L )WL ) {0}, since v ∈ V L and w ∈WL. This implies that V L is
not an irreducible HL module.

The other direction is left as an exercise. �

Remark. The fact that V is not irreducible does not, in general, imply that V =
W ⊕U for nontrivial submodules W and U . In the finite dimensional case, it does.

Proposition 3.3.3. If (π, V ) is smooth and irreducible then it is admissible.

The proof of this is very hard and is left as homework.

Lemma 3.3.4. Suppose that (π, V ) is admissible. Let (π̃, Ṽ ) be the contragradient
representation. Then (π, V ) is irreducible if and only if (π̃, Ṽ ) is irreducible.

This is an easy lemma which follows by chasing definitions.
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Proposition 3.3.5. If (π, V ) is a finite dimensional continuous irreducible repre-
sentation then V is 1-dimensional, and there exists a quasicharacter4 χ : F× → C×
such that π(g) = χ(det(g)).

Proof. We first show that SL2(F ) ⊂ ker(π). As we saw in Proposition 2.2.1, ker(π)
contains an open subgroup. Consider

(3.3.2) N := {n(x) :=
(

1 x
0 1

)
: x ∈ F}.

Intersecting the kernel of π with N , we find an ε > 0 so such that if |x| < ε then
n(x) ∈ ker(π). Note that for any α ∈ F× we can define an element of GF

a(α) :=
(
α 0
0 α−1

)
,

and a(α)n(x)a(α−1) = n(α2x). If y ∈ F choose x with |x| < ε and α such that
y = α2x. Then

π(n(y)) = π(a(α))π(n(x))π(a(α−1)) = π(a(α))π(a(α−1)) = π(a(α)a(α)−1) = 1.

So N ⊂ ker(π). Similarly, one may deduce that N ′ ⊆ ker(π) with

N ′ := {n′(x) :=
(

1 0
x 1

)
: x ∈ F}.

Since N and N ′ generate SL2(F ), we conclude that π factors through GL2/SL2.
Hence one gets an irreducible action of the abelian group F× on V . Therefore V
is 1-dimensional, and the action is via a character χ. �

With this we now turn to irreducible admissible infinite dimensional representa-
tions.

3.4. Induced representations. One method of obtaining representations of GLn(F )
is to start with a representation of a subgroup and “lift” it to a representation of
GLn(F ). Some natural subgroups are the parabolic groups (those fixing a subspace
of Fn) and the tori (abelian subgroups.) For our group GF = GL2(F ), we have the
subgroups

P :=
{(

a1 x
0 a2

)
| ai ∈ F×

}
and A :=

{(
a1 0
0 a2

)
∈ P

}
.

Since A ' F× × F× = GL1(F )×GL1(F ), a representations of A is the product
of representations of GL1, i.e. characters. Essentially, an induced representation of
GF is one which agrees with this one when we restrict it to A.

Definition 3.4.1. Let χ1, χ2 be two quasicharacters of F×. The induced rep-
resentation of χ1, χ2, denoted by B(χ1, χ2), is the set of functions f : GF → C
satisfying

(i) f

((
a1 x
0 a2

)
g

)
= χ1(a1)χ2(a2)

∣∣∣a1
a2

∣∣∣1/2 f(g).

(ii) Under the right regular action ρ of GF , f is smooth.

Remark. We could define B(χ1, χ2) without the factor
∣∣ ·
·
∣∣1/2 if we like. However,

this normalization will become easier to work with later. It arises because the group
group P is not unimodular.

4A quasicharacter of a group G is a homomorphism from G to C×.
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Note that condition (ii) is equivalent to saying that f is fixed by some open
compact subgroup L. Thus B(χ1, χ2) is smooth as a GF -module. Furthermore, it
is admisssible. Indeed, by the Iwasawa decomposition,

(3.4.1) G = PK,

So, condition (i) implies that f is determined by its values on K. Furthermore, f is
invariant by L ⊆ K open, so f is determined by its values on K/L which is finite.
Hence, if we fix L, B(χ1, χ2)L is finite dimensional which means that it admissible.

3.5. Supercuspidal representations and the Jacquet module. We will see
in this section that an irreducible representation of GF that does not occur as the
subquotient or submodule of an induced representation is supercuspidal.

Jacquet came up with a simple but powerful idea for determining if a GF -module
is supercuspidal. First, restrict the representation to P . By condition (i) of Defini-
tion 3.4.1, an induced representation is trivial on the unipotent subgroup N defined
in equation (3.3.2).

So, if we start with a GF -module V and restrict to the P action, in order for the
representation to come from a pair of characters (as in the induced representations)
N must act trivially. Note that A = P/N . We define the Jacquet module to be
VN := V/V (N) where

(3.5.1) V (N) := span{π(n)v − v | n ∈ N, v ∈ V }.
Lemma 3.5.1. If the (π, V ) is a smooth GF -module, then VN is a smooth A-
module.

Proof. In order for VN to be an A-module, we must check that P preserves V (N).
Since P = AN , it suffices to show that both A and N preserve V (N). Since N is
commutative (N ' F ), if n, n′ ∈ N then

π(n′)(π(n)v − v) = π(n′n)v − π(n′)v = π(n)v′ − v′

for v′ = π(n′)v. To see that A preserves V (N), first note that(
a1 0
0 a2

)(
1 x
0 1

)(
a1 0
0 a2

)−1

=
(

1 a1xa
−1
2

0 1

)
.

In other words, A normalizes N . Hence

π(a)(π(n)v − v) = π(an)v − π(a)v = π(ana−1)(π(a)v)− π(a)v ∈ V (N).

The action is clearly smooth being the quotient of a smooth module. �

Notice that we have gone in the opposite direction as we did in the previous
section. B(χ1, χ2) is a GF -module induced from an A-module, and VN is an A-
module that is derived from a GF -module.

Remark. If V is an admissible GF -module then VN is an admissible A-module. This
is hard to prove. We don’t prove it, as we won’t need it. However, it may simplify
things. We’ll see.

Proposition 3.5.2. V −→ VN is an exact functor from smooth G-modules to
smooth A-modules. That is, if

0 −→ V ′ −→ V −→ V ′′ −→ 0

is exact then so is
0 −→ V ′N −→ VN −→ V ′′N −→ 0.
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Lemma 3.5.3. Suppose that (π, V ) is smooth. Then v ∈ V (N) if and only if there
exists U ⊂ N compact and open such that

∫
U
π(u)vdu = 0.

Example 3.5.4. If F = Qp then U can be taken to be pnZp for some n.

Proof of Lemma. If v ∈ V (N) then v =
∑
i(π(ni)vi − vi). Choose U such that U

contains all ni. Then∫
U

π(u)vdu =
∑∫

π(u)(π(ni)vi − vi)du

=
∫ (∑

i

π(uni)vi −
∑

π(u)vi

)
du

=
∑
i

∫
U

π(u)vid(un−1
i )−

∑
i

∫
U

π(u)vidu

=0

since d(un) = du for any n.
Conversely, say

∫
U
π(u)vdu = 0 for some U . We show that v ∈ V (N). Recall v is

smooth so there exists U ′ ⊂ U compact open such that U ′v = v. Write U =
⊔
uiU

′.
Since U is compact, this is a finite union. Then

0 =
∫
U

π(u)vdu =
l∑
i=1

∫
uiU ′

π(u)vdu = µ(U ′)
l∑
i=1

π(ui)v.

Thus
∑
π(ui)v = 0, and

v = −1
l

l∑
i=1

(π(ui)v − v) ∈ V (N).

�

Proof of Proposition 3.5.2. Denote the maps from V ′ to V and from V to V ′′ by
α β respectively, and let αN and βN be defined similarly. Checking exactness V ′′N
amounts to showing that βN is surjective, but this is true because β is, and we are
dealing with quotient groups. Exactness at VN is also easy.

So, to complete the proof, we must check the exactness at V ′N . In other words,
show that α injective implies αN is injective. If [v′] ∈ V ′N with v′ ∈ V ′ such
that αN [v′] = 0, we to show that v′ ∈ V ′(N). Actually, 0 = αN [v′] = [αv′]. So
αv′ ∈ V (N). By Lemma 3.5.3 gives U compact and open subgroup so that

0 =
∫
U

π(u)αv′du =
∫
U

α(π′(u)v′)du = α

(∫
U

π′(u)v′du
)
.

The second equality follows since α is a homomorphism of GF -modules, i.e. an
intertwining map. Since α is injective, we know that

∫
U
π′(u)v′du = 0. One more

application of Lemma 3.5.3 implies that v′ ∈ V ′(N). �

Definition 3.5.5. An admissible GF -module (π, V ) is called supercuspidal (or
absolutely cuspidal) if VN = 0.

Exercise 3.5.6. If (π, V ) is an irreducible GF -module. Then Z, the center of GF ,
acts by a character. In other words, if z = ( a 0

0 a ), then π(z)v = ω(a)v for some ω a
quasicharacter of F× and all v ∈ V .
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Solution to Exercise 3.5.6. Fix z ∈ Z. Then the map

A : V −→ V v 7→ π(z)V

is an intertwining operator. That is, because zg = gz for all z ∈ Z and g ∈ GF , it
is a linear map such that

π(g)Av = π(g)π(z)v = π(z)π(g)v = Aπ(g)v.

Let v be an eigenvector of A with eigenvalue λ. Then, the above equation becomes

π(z)π(g)v = π(g)(λv) = λπ(g)v.

By irreducibility, every vector w ∈ V is of the form π(g)v for some g ∈ GF . Hence
π(z) acts by a scalar, call it ω(z), for any z ∈ Z. That ω is a quasicharacter is
immediate from the fact that π is a representation. �

Examing the motivation for the definition of the Jacquet module, we expect
that for an irreducible smooth module V , VN 6= 0 if and only if V is not obtained
by inducing a representation of GF from a representation of A. The following
proposition formalizes and verifies this intuition.

Theorem 3.5.7. Suppose that (π, V ) is a smooth irreducible GF -module. Then π
is not supercuspidal if and only if there exists quasicharacters χ1, χ2 of F×, and a
nonzero intertwining map

L : V −→ B(χ1, χ2).

Proof. ( =⇒ ) We first show that VN = V/V (N) is a finitely generated A-module.
By irreducibility, if v ∈ V with v 6= 0, we have V equals the span of gv for g ∈ G.
Let N be such that v is fixed by N compact and open. (Such a group exists because
V is smooth.) Then, since K is compact,

K =
l⋃
i=1

kiN.

So, by the Iwasawa decomposition, (3.4.1), V = span{bkiv : b ∈ P}. So V is a
finitely generated P -module, and it follows that VN is a finitely generated P/N = A-
module.

Now, by Lemma 3.5.8, there exists an A-invariant subspace W of VN such that
VN/W is A-irreducible. Since A is abelian, VN/W must be 1-dimensional, and
we identify it with C. This gives an (intertwining) map θ : V → C given by the
composition

V −→ VN −→ VN/W ' C.
On VN/W , the action of p = ( a1 x

0 a2 ) ∈ P is given by a pair of characters χ′1, χ′2.
Specifically,

(3.5.2) π(p) = χ′1(a1)χ′2(a2).

Let χ1 = χ′1 | · |
−1/2, and χ2 = χ′2 | · |

1/2, and notice that a function in B(χ1, χ2)
must be smooth and satisfy

(3.5.3) f (( a1 x
0 a2 ) g) = χ1(a1)χ2(a2)

∣∣∣∣a1

a2

∣∣∣∣1/2 f(g) = χ′1(a1)χ′2(a2)f(g).

We claim that defining (Lv)(g) = θ(π(g)v) defines an intertwining operator

L : V −→ B(χ1, χ2).
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To see this, first note that Lv is smooth (because V is smooth.) Next, we use
equations (3.5.2) and (3.5.3) to calculate directly that

(Lv) (( a1 x
0 a2 ) g) = θ(π (( a1 x

0 a2 ) g) v) = χ′1(a1)χ′2(a2)π(g)θ(v) = χ′1(a1)χ′2(a2)(Lv)(g).

Finally, note that L is injective by irreducibility. So V is a subrepresentation of
B(χ1, χ2). We will prove the other direction in the next section. �

Remark. The word ‘cuspidal’ comes from the cusp arising from fixed points of
parabolic subgroups, and integrating over a parabolic group gives the constant
term.

The following lemma applies in the proof above because N ' F ' $Z×H where
$ is a uniformizer and H is finite and commutative. (See Neukirch for details.)

Lemma 3.5.8. Suppose the group $Z×H, where H is finite and commutative acts
on a space W . If W is finitely generated then there exists W ′ ⊂ W invariant such
that W/W ′ is irreducible.

Proof. First, suppose that H = {1} acts trivially. Then take W = 〈v1, · · · , vn〉
with n minimal and W1 = 〈v1, · · · , svn−1〉 then W/W1 is generated by 1 element.
So we may assume that W is generated by a single element and write

W = spanZ{Lnv : n ∈ Z}.
There are two cases. The first is that there is no relation among the Lnv. So
Lnvis a basis for W . In this case, the subspace W ′ = {Lnv − Ln+1v | n ∈ Z} is
invariant, and W/W ′ is 1-dimensional. On the other hand, if there is a relation
then p(L)v = 0 for some p a polynomial. Therefore, there must be an eigenvector
and, therefore, a 1-dimensional submodule.

We leave the proof that for nontrivial action of H as an exercise. �

3.6. Matrix coefficients. In this section, we prove the other implication in The-
orem 3.5.7. Let (π, V ) be admissible and (π̃, Ṽ ) its contragradient (which is also
admissible). Choose v ∈ V , ṽ ∈ Ṽ then

(3.6.1) fv,ev(g) := 〈π(g)v, ṽ〉
is called a matrix coefficient function. When π is irreducible Z, the center, acts on
V by a quasicharacter, say ω. (See Exercise 3.5.6.) Then π(z) = ω(z). This implies
f(zg) = ω(z)fv,ev(g).

Theorem 3.6.1. If (π, V ) is a supercuspidal irreducible admissible representation,
then fv,ev is compactly supported on Z\G. In other words, there exists Ω ⊆ G a
compact subset such that f vanishes outside of ZΩ.

Remark. So this means that supercuspidal representations of GF behave just like
those for compact groups which, in turn, mimic representations of finite groups.

We use the following double coset decomposition of GF in the proof.

Lemma 3.6.2.

GF = GL2(F ) =
⋃

n1≥n2∈Z
K

(
$n1

$n2

)
K =

⋃
n≥0

ZK

(
$n

1

)
K,

with $ a uniformizer of F .
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Proof. Let g =
(
a b
c d

)
∈ GF . Denote the ring of integers of F by OF , and let

U = O×F , and if Kg1K = Kg2K, then we will say that g1 and g2 are equivalent and
denote it by g1 ∼ g2.

Notice that acting by K on the left can be viewed as performing elementary
row operations, and acting on the right as column operations. So, permuting rows
and/or columns, multiplying a row/column by a unit u ∈ U , and adding a multiple
(by an element of OF ) of one row/column to the other transforms g to an equivalent
element.

Therefore, we may assume that v(d) is minimal among v(a), v(b), v(c), v(d), and,
in fact that a = $n2 . That is,

g ∼
(
a b
c $n2

)
.

Since n2 ≤ v(b), v(c), by adding a multiple of the second row or column, respectively,
we can assume that b = c = 0. Indeed, letting x := −c/$n2 ∈ OF , we have

(
a b
c $n2

)
∼
(

1 x
0 1

)(
a b
c $n2

)
=
(
a′ 0
c $n2

)
.

A similar column operation (i.e. multiplication by K on the right allows us to
assume that c = 0. Hence, there is a u ∈ U , such that

g ∼
(
u$n1 0

0 $n2

)
=
(
u 0
0 1

)(
$n2 0

0 $n2

)
.

Permuting rows and columns (if necessary), we may assume that n1 ≥ n2. This
gives the first decomposition. Factoring out $n2I2 gives the second. �

Proof of Theorem 3.6.1. The lemma implies that if Ω is a compact subset of G,
then there exists n0 such that

n0⋃
n=0

ZK

(
$n

1

)
K ⊃ Ω.

We claim that is suffices to show a matrix coefficient vanishes on ZK
(
$n

1

)
K

for n � 1. The one direction is easy. In the other direction, if fv,ev vanishes on
ZK

(
$n

1

)
K for n� 1 then there exists Ω a compact set such that f = 0 outside

ΩZ. In particular, we may take Ω =
⋃n0
n=0K

(
$n

1

)
K.

Next, we reduce to showing that for any u, ũ there exists n0 such that fu,eu(
(
$n

1

)
) =

0 for all n > n0. By smoothness, for a given v, ṽ there exists an L ⊆ K open normal
which fixes v, ṽ. Write

K =
⊔̀
j=1

kjL.
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Then for any k, k′ ∈ K there are i and j such that k′ ∈ kiL and k ∈ Lkj . Then

fv,ev(k
(
$n

1

)
k′) =〈π(k)π(

(
$n

1

)
)π(k′)v, ṽ〉

=〈π(
(
$n

1

)
)π(k′)v, π̃(k−1)ṽ〉

=〈π(
(
$n

1

)
)π(k′i)v, π̃(k−1

j )ṽ〉

=:fvi,evj
((

$n

1

))
.

So if there exists nij such that fvi,evj ($n 1

)
) = 0 vanishes for all n ≥ nij , then if

we choose n0 = max(nij), and fv,ev(k ($n 1

)
k′) = 0 for n > n0.

So we have reduced to showing that for any v, ṽ there exists n0 such that
fv,ev(($n 1

)
) = 0 for all n > n0. Since V is supercuspidal, Lemma 3.5.3 implies

that for any v ∈ V (N) there exists a U ⊆ N open and compact satisfying

∫
U

π(u)vdu = 0.

Also, Ṽ smooth implies there is a U ′ ⊆ N compact and open such that U ′ṽ = ṽ.
Choose n0 such that

(
$n0

1

)
U

(
$−n0

1

)
⊂ U ′.

To see that this is possible, notice that multiplying by
(
$n0

1

)
shrinks U .

Indeed,

(3.6.2)
(
$n0

1

)(
1 x

1

)(
$−n0

1

)
=
(

1 $n0x
1

)
.

Then

0 = 〈
∫
U

π

(
$n

1

)
π(u)vdu, ṽ〉

= 〈
∫
U

π(u′)π
(
$n

1

)
vdu, ṽ〉
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for u′ =
(
$n

1

)
u

(
$−n

1

)
. Notice equation (3.6.2) implies that du =

|$n| du′. So, if n > n0 then

0 =
∫0@ $n

1

1AU
0@ $−n

1

1A〈π(u′)π
(
$n

1

)
v, ṽ〉du′ |$n|

= |$n|
∫
< π

(
$n

1

)
v, π̃((u′)−1)ṽ > du′

= |$n|
∫
〈π
(
$n

1

)
v, ṽ〉du′

=fv,ev
(
$n

1

)
|$n|µ(

(
$n

1

)
U

(
$−n

1

)
)

=fv,ev
(
$n

1

)
µ(U).

�

3.7. Corollaries to Theorem 3.6.1. This crucial theorem allows us to deduce
some strong conclusions about supercuspidal representations. In this section we
assume that (π, V ) is an irreducible admissible supercuspidal representation with
unitary central character.

3.7.1. A GF -invariant Hermitian positive definite pairing on V . Choose a nonzero
ṽ ∈ Ṽ , and for v1, v2 ∈ V define

(3.7.1) (v1, v2) :=
∫
Z\G
〈π(g)v1, ṽ〉〈π(g)v2, ṽ〉dg =

∫
Z\G

fv,ev(g)fv2,ev(g)dg.

Corollary 3.7.1. The pairing defined in equation (3.7.1) is a GF -invariant positive
definite Hermitian pairing.

Proof. Notice that we need ω to be unitary in order for this to be well-defined Also,
the integral make sense because (by the theorem!) matrix coefficients are compactly
supported. It is clearly GF -invariant, positive and Hermitian, so we just need to
show that it is definite. If (v, v) = 0, then

0 = 〈π(g)v, ṽ〉 = 0 = 〈v, π̃(g−1)ṽ〉

for all g. Then irreducibility of Ṽ implies that 〈v, ṽ〉 = 0 for all ṽ. Thus v = 0. �

This corollary implies that V is unitary. Moreover, we have the following.

Corollary 3.7.2. With V as above, let V be the complex conjugate of V . (As a
set V = V , but that action of λ ∈ C is given by λ ◦ v = λv.) Then the following
hold.

• The map Φ : V → Ṽ given by v 7→ (·, v) is a isomorphism.
• Every GF -invariant, Hermitian, positive definite pairing on V is unique up

to scaling.
• (Orthogonality Relations)
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If (·, ·) is a GF -invariant Hermitian positive definite pairing then there
exists a d > 0 such that for any u, v, w, y ∈ V

(3.7.2)
∫
Z\G

(π(g)u,w)(π(g)v, y)dg = d−1(u, v)(w, y).

Choose v0 ∈ V such that (v0, v0) = d, then

(3.7.3)
∫
Z\G

π(g)v0(π(g)v0, u)dg = u

for any u ∈ V .

Proof. The fact that V −→ Ṽ is an vector space homomorphism follows from
the fact that (·, ·) is Hermitian. The following computation shows that Φ is an
intertwining operator.

π̃(g)Φ(v)(w) = (π̃)(·, v)(w) = (π(g−1)w, v) = (w, π(g)v) = Φ(π(g))(w)

The first two equalities are by definition, and the next follows from GF -invariance.
From this computation, together with Lemma 3.3.4, it follows that Φ is actually an
isomorphism. (Notice that we have used admissibility here.)

Let Φ1, Φ2 be the maps (as above) resulting from two GF -invariant, Hermitian
positive definite forms. The above says that Φ−1

2 ◦ Φ1 is an isomorphism, so by
Schur’s lemma, it must be a scalar. The result follows.

To prove equation (3.7.2) of the orthogonality relations, notice that by fixing w
and y, the left hand side is a GF -invariant Hermitian positive definite form, hence
a multiple of (u, v). Denote this multiple by F (w, y). Similarly, fixing u and v, we
get that this is also equal to (w, y) times a constant which we call G(u, v). Thus

(u, v)F (w, y) = G(u, v)(w, y),

where the functions F and G are not identically zero. (That they aren’t zero can
be seen by taking w = y 6= 0 for example.) It follows that the left hand side of
equation (3.7.2) is a nonzero multiple of (u, v)(w, y).

To prove the second part, let LHS denote the left hand side of equation (3.7.3),
and notice that

(LHS, w) =
∫

(π(g)v0, w)(π(g)v0, u)dg = d−1(v0, v0)(w, u) = (w, u) = (u,w).

Since this works for any w, the left hand side must be u. �

Remark. The constant d = dπ is called the formal degree of π. It exists whenever
π is square-integral. A representation is square-integrable if for some (or, equiva-
lently, all) u, v ∈ π, g 7→ 〈π(g)u, v〉 is an L2 function. The formal degree depends,
obviously, on the choice of Haar measure.

Remark. So we see that this one function allows us to use one element to generate
all the others. (This remark is supposed to relate to equation 3.7.3, but I have no
idea what it really means! Any explanation someone could give to me would be
greatly appreciated.)

Corollary 3.7.3. Suppose that (π, V ) is a supercuspidal irreducible GF -module,
(π′, V ′) is admissible, and there exists a nonzero intertwining operator A : V ′ → V .
Then V is equivalent to a subrepresentation of V ′. That is, there exists B : V → V ′

nonzero.
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Note that, by irreducibility of V , A must be surjective and B must be injective.

Proof. As in Corollary 3.7.2, choose v0 ∈ V such that (v0, v0) = d and v′0 ∈ V ′

which is a preimage of v0. Define

B(u) :=
∫
Z\G

π′(g)(v′0)(π(g)vo, u)dg.

Then B is a homomorphism of GF -modules, and calculating AB directly, we see
that

AB(u) = A

(∫
Z\G

π′(g)(v′0)(π(g)vo, u)dg

)
=
∫
Z\G

π(g)A(v′0)(π(g)vo, u)dg = u

by equation (3.7.3). �

3.7.2. Finishing the proof of Theorem 3.5.7. Recall that the theorem says that a
representation (π, V ) is not supercuspidal if and only if there exists an intertwining
operator from V to some B(χ1, χ2). The above corollaries allow us to complete the
proof.

Proof of Theorem 3.5.7. (⇐=) Note that by Corollary 3.7.3 we only need to show
that V is not a subrepresentation of B(χ1, χ2). Let e denote the identity element
of GF , and consider

L : B(χ1, χ2)→ C f 7→ f(e).
Then L 6= 0, and the calculation

(ρ(n)f − f)(e) = f(en)− f(e) = 0

for n = ( 1 x
0 1 ) ∈ N shows that L vanishes on V (N). (Recall that V (N) is generated

by elements of the form π(n)v− v.) However, L can not be identically zero (on V )
because if f ∈ V is nonzero then there exists g ∈ GF such that f(g) 6= 0. Thus
L(ρ(g)f) = (ρ(g)f)(e) 6=. So, we conclude that VN 6= 0. But this is a contradiction
since V is supercuspidal—by definition VN = 0. �

So we have two types of irreducible admissible representations—those coming
from induction and the supercuspidals.

Remark. We will see that there are two ways to define L-factors. We can use
Whittacker models or matrix coefficients. These are important for calculations of
periods and special values.

3.8. Composition series of B(χ1, χ2). In this section we will determine all of
the irreducible quotients of B(χ1, χ2). To this end we determine the composition
series:

0 ( V1 ( V2 ( · · · ( Vm = B(χ1, χ2)
such that Vi/Vi−1 is irreducible. The length m of a composition series and the
irreducible quotients Vi/Vi−1 (up to ordering) are invariants of V , and such a series
determines all the irreducible quotients. We use the exactness of the Jacquet functor
to aid our study.

Theorem 3.8.1. The dimension of B(χ1, χ2)N is 2. As a result, the length of the
composition series for B(χ1, χ2) is at most 2.

We note that length 1 and length 2 both exist. We will see this later. Also, for
notational convenience let e be the identity element of GF and w = ( 0 1

1 0 ).
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Proof. The second conclusion follows from the first because

0 ( V1 ( V2 ( · · · ( Vm = B(χ1, χ2)

implies
0 ( V1,N ( V2,N ( · · · ( Vm,N = B(χ1, χ2)N

because the Jacquet functor is exact. But B(χ1, χ2)N is two dimensional so there
is at most one term in the middle of the second exact sequence.

To prove the first claim we will need a series of conclusions. The Jacquet module
depends only on the N -module structure. So we decompose as an N -module first.
Recall the Bruhat decomposition

(3.8.1) G = P t PwN, with w =
(

1
1

)
.

Notice that PwN is open in G, since it is the union of translates of N which is
open. Define

V := {φ ∈ B(χ1, χ2) : φ is supported on PwN},

a sub P -module. Then

1 −→ V −→ B(χ1, χ2) −→ C −→ 1

with the map to C defined by φ 7→ φ(e) is an exact sequence of N -modules. (The
action on C is trivial.) Hence

1 −→ VN −→ B(χ1, χ2)N −→ C −→ 1

is an exact sequence of A-modules. (A does not act trivially on C, but by a char-
acter.)

Note that in order to show that dimC(B(χ1, χ2) = 2, it suffices to show that
VN has dimension 1 because the space of functions supported on P clearly has
dimension 1. We claim that V ' C∞c (F ) via the map

(3.8.2) φ 7→ fφ : x 7→ φ

(
w

(
1 x

1

))
.

Recall that the left action of P on φ is fixed (see Definition 3.4.1), so φ is determined
by its values on wN . We check that this is a well-defined bijection.

Note that the action ρ of N on V is by right multiplication, and the action of
N ' F on C∞c (F ) is by addition. Explicitly, if ρt(y) denotes the translation action
of F , we have

(3.8.3)

ρt(y)fφ(x) := fφ(x+ y) = φ(w
(

1 x+ y
0 1

)
)

= φ(w
(

1 x
0 1

)(
1 y
0 1

)
)

= ρ

((
1 y
0 1

))
φ

(
w

(
1 x
0 1

))
= f

ρ(
“

1 y
0 1

”
)φ

(x).

We need to check that f ∈ C∞c (F ). The fact that f is locally constant follows
immediately from the above calculation. By definition, φ is invariant by some L
which we can assume to be contained in N . Then

(
1 y
0 1

)
∈ L if and only if |y| is

sufficiently small. So equation (3.8.3) implies that, for all such y, fφ(x+y) = fφ(x).
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We next show that fφ has compact support. That is5, we must show that there
exists m such that v(x) < m implies fφ(x) = 0. Since

w

(
1 x

1

)
=
(

1
1 x

)
=
(
−x−1 1

x

)(
1
x−1 1

)
,

fφ(x) = χ1(−x−1)χ2(x) |x|−2
φ

(
1
x−1 1

)
.

But φ is invariant by L ⊆ K, so there exists n such that v(y) > n implies that
φ
(

1
y 1

)
= φ(e) = 0. In other words, if v(x) < −n then v(x−1) > n and

fφ(x) = χ1(−x−1)χ2(x) |x|−2
φ(e) = 0.

Note that φ(e) = 0 because e ∈ P and φ |P= 0. We have shown that the map of
equation (3.8.2) is well defined.

We next show that it is a bijection. It is injective because φ is uniquely deter-
mined by its values on x. To prove surjectivity, given f ∈ C∞c (F ) define

(3.8.4) φf (g) :=


0 if g ∈ P

χ1(a1)χ2(a2)
∣∣∣a1
a2

∣∣∣1/2 f(x) g =

(
a1 y

a2

)
w

(
1 x

1

)
.

We note that the decomposition in the second case is unique, and that it clearly
implies that φf satisfies property (i) of Definition 3.4.1. The hard part is to show
that φf satisfies property (ii), i.e. that φ is invariant under a compact open subgroup
L. Consider the following subgroups of K:(

1 +$nOF
1

)
,

(
1

1 +$nOF

)
,

(
1 $nOF

1

)
,

(
1

$nOF 1

)
.

If f is invariant by each the above groups for large enough n, then f is invariant by

Kn := {g ∈ K : g ≡ I (mod $nOF )}.

Thus is suffices to treat each subgroup separately.

The group
(

1 $nOF
1

)
is easy since f is invariant by right translation for

large enough n. We need

(3.8.5) φf (g ( 1 x
1 )) = φf (g)

when |x| is small. If g ∈ P both sides of equation 3.8.5 are 0. If g = ( a1 z
a2 )w

(
1 y

1

)
then

φf (g ( 1 x
1 )) = χ1(a1)χ2(a2)

∣∣∣∣a1

a2

∣∣∣∣1/2 f(x+ y),

while

φf (g) = χ1(a1)χ2(a2)
∣∣∣∣a1

a2

∣∣∣∣1/2 f(y).

But f ∈ C∞c . So for x small enough we have equality.

5Note that if F is a local nonarchimedean field, there is a valuation v and an absolute value |·|
that are related by |x| = cv(x) where 0 < xc < 1. Therefore, v(x) large corresponds to |x| small
and vice versa.
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For the lower diagonal group, we need to show that

(3.8.6) φf (g
(

1
x 1

)
) = φf (g)

when |x| is small. Again we have g ∈ P or g ∈ PwN . If g = ( a1 x
a2 ) ∈ P then the

right hand side of equation (3.8.6) is zero and the left hand side equals

φf (( a1 y
a2 )w ( 1 x

0 1 )) =φf (( a1 y
a2 )
(−x 1

x−1

)
w
(

1 x−1

1

)
)

=χ1(a1)χ2(a2)
∣∣∣∣a1

a2

∣∣∣∣1/2 χ1(−x−1)χ2(x−1) |x|2 φf (
(

1 x−1

1

)
)

=χ1(a1)χ2(a2)
∣∣∣∣a1

a2

∣∣∣∣1/2 χ1(−x−1)χ2(x−1) |x|2 f(x−1).

Since f is compactly supported it vanishes when
∣∣x−1

∣∣ is big. So for |x| � 1, the
left hand side is also zero. The check involving g /∈ P is left as an exercise.

The diagonal cases are also left as an exercise. Note that the identity(
a1 x

a2

)(
α

1

)
=
(
a1α x

a2

)
=
(
α

1

)(
a1 α−1x

a2

)
allows one to pull the the extra bit into the character part. A similar calculation
does the same for the final group.

The final step of the proof is to show that C∞c (F )N is 1-dimensional. To do this
we consider its dual which consists of linear functionals L on C∞c (F ) satisfying

L(f(x+ · )) = L(f(·))
It is a well-known fact of analysis that every translation invariant linear function
this is Lf =

∫
F
f(x)dx up to scalar. So

C∞c (F )N ' (C∞c (F )N )∨ =
{
λ

∫
F

( · )dx | λ ∈ C
}
' C.

�

The following theorem completes our classification of the composition series of
B(χ1, χ2).

Theorem 3.8.2. If χ1, χ2 are characters of F× and B(χ1, χ2) the corresponding
induced representation.

(i) If χ1χ
−1
2 6= |·|±1 then B(χ1, χ2) is irreducible.

(ii) If χ1χ2 = |·|−1, that is χ1 = χ |·|−1/2 and χ2 = χ ||1/2, then C(χ ◦ det) is
an invariant subspace of B(χ1, χ2), and its quotient, denoted σ(χ1, χ2) is
irreducible.

(iii) If χ1χ
−1
2 = |·| then there is an irreducible invariant subspace of B(χ1, χ2)

with a 1-dimensional quotient isomorphic to C(χ−1 ◦ det).

Proof. Part (i) will be handled in the next section using the interwining operator.
Parts (ii) and (iii) are a consequence of Theorem 3.8.1, the following lemma and
the observation that, in the case of (ii), C(χ ◦ det) ⊂ B(χ1, χ2), and it is fixed by
the action of GF . To see this, we calculate directly that

(χ ◦ det)
((

a1 x
a2

)
g

)
= χ(a1a2)χ ◦ det(g),
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and therefore χ ◦ det ∈ B(χ1, χ2). Also,

ρ(g)(χ ◦ det) = χ(det g) · χ ◦ det .

So C(χ ◦ det) is invariant by GF .
Now suppose χ1χ

−1
2 = |·|. Then χ−1

1 χ2 = |·|−1, and χ1 = χ |·|−1/2. By the above,
B(χ−1

1 , χ−1
2 ) ) C(χ−1 ◦ det), and Lemma 3.8.3 therefore implies that B(χ1, χ2)

contains the dual of that one dimensional space. By Theorem 3.8.1, this dual is
irreducible, so (again by the lemma) its quotient is isomorphic to χ−1(det(·))·C. �

Lemma 3.8.3. B(χ1, χ2)∼ ' B(χ−1
1 , χ−1

2 ). Actually there is a GF -invariant non-
degenerate pairing B(χ1, χ2)×B(χ−1

1 , χ−1
2 )→ C given by (φ1, φ2) 7→

∫
K
φ1φ2(k)dk.

Note that φ1φ2(( a1 x
a2 ) g) =

∣∣∣a1
a2

∣∣∣φ1φ2(g).

Exercise 3.8.4. Prove the lemma. In particular, show that the pairing defined above
is GF -invariant.

3.9. Intertwining operators. The goal of this section is to determine if there
are any relations among the various B(χ1, χ2). So we are looking for “intertwin-
ing operators” between B(χ1, χ2) and some B(η1, η2). (Recall that we know by
Corollary 3.7.3, that there are no intertwining maps from B(χ1, χ2) to any ir-
reducible supercuspidal representation V .) In other words, we want to consider
HomG(B(χ1, χ2), B(η1, η2)). The following lemma tells us that the existence of
M ∈ HomG(B(χ1, χ2), B(η1, η2)), is equivalent to the existence of a linear func-
tional L on B(χ1, χ2) satisfying certain properties.

Lemma 3.9.1. The following are equivalent.

• There exists a nonzero M ∈ HomG(B(χ1, χ2), B(η1, η2)).
• There exists a nonzero linear functional L : B(χ1, χ2)→ C satisfying

(3.9.1) L(ρ
(
a1 x

a2

)
φ) = η1(a1)η2(a2)

∣∣∣∣a1

a2

∣∣∣∣1/2 L(φ).

Proof. Suppose there exists a nonzero M ∈ HomG(B(χ1, χ2), B(η1, η2)). Then let
L : B(χ1, χ2)→ C be given by φ 7→Mφ(e). This satisfies (3.9.1). Indeed,

L(ρ ( a1 x
a2 )φ) = M(ρ ( a1 x

a2 )φ)(e)

= ρ(( a1 x
a2 ))Mφ(e)

= Mφ(( a1 x
a2 ))

= η1(a1)η2(a2)
∣∣∣∣a1

a2

∣∣∣∣1/2 L(φ).

The second equality is due to the fact that M is intertwining, and the final equality
follows since Mφ ∈ B(η1, η2).

On the other hand, given L satisfying equation (3.9.1), for φ ∈ B(χ1, χ2) define
M(φ)(g) = L(ρ(g)φ). Then Mφ ∈ B(η1, η2), and M is a G-homomorphism. �

3.9.1. Relations among B(χ1, χ2). So, as mentioned above, if we want to define an
intertwining map, we must define certain good functionals.
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Proposition 3.9.2.

HomG(B(χ1, χ2), B(η1, η2)) =

{
{0} if (η1, η2) 6= (χ1, χ2) or (χ2, χ1)
C otherwise

.

In other words, if a linear functional as above exists then it is unique up scalar.

Proof. Let L : B(χ1, χ2) → C be as in Lemma 3.9.1. Then L is a functional on

B(χ1, χ2)N because L(ρ ( 1 x
1 )φ) = Lφ which implies L(ρ

(
1 x

1

)
φ − φ) = 0,

hence L is trivial on B(χ1, χ2)(N). Recall that V = {φ ∈ B(χ1, χ2) : φ |P= 0} '
C∞c (F )6,

(3.9.2) 0 −→ VN
α−→ B(χ1, χ2)N

β−→ C −→ 0,

where β([φ]) = φ(e), is an exact sequence. �

Lemma 3.9.3. The action of A, the subgroup of diagonal matrices, is given by

χ1(a1)χ2(a2)
∣∣∣a1
a2

∣∣∣1/2 on the right hand side of (3.9.2), and by χ2(a1)χ1(a2)
∣∣∣a1
a2

∣∣∣1/2
on VN ' C.

Proof. The action on the right hand side is clear from the fact that the following
diagram must commute.

[φ]( · )
β //

ρ(( a1
a2 ))

��

φ(e)

��

[φ]( · ( a1
a2 ))

β // φ(( a1
a2 )) = χ1(a1)χ2(a2)

∣∣∣a1
a2

∣∣∣1/2

For the second part of the proof, recall that V ' C∞c (F ) → C∞c (F )N via
φ 7→ fφ 7→ [fφ]. A must act by a scalar. To determine it, we use C∞c (F )∨N = CΛ

6The isomorphism is φ 7→ fφ : x 7→ φ(w
`

1 x
1

´
).
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where Λ denotes the integration operator. Then we have

Λ([ρ ( a1
a2 ) fφ]) =

∫
ρ ( a1

a2 ) fφ(x)dx

=
∫
φ(w ( 1 x

1 ) ( a1
a2 ))dx

=
∫
φ(w ( a1 a2x

a2 ))dx

=
∫
φ(w ( a1

a2 )
(

1 a−1
1 a2x

1

)
)dx

=
∫
φ(( a2

a1 )
(

1 a−1
1 a2x

1

)
)dx

=χ1(a2)χ2(a1)
∣∣∣∣a2

a1

∣∣∣∣1/2 ∫ fφ(a−1
1 a2x)dx

=χ1(a2)χ2(a1)
∣∣∣∣a2

a1

∣∣∣∣1/2 ∫ fφ(x)d(a1a
−1
2 x)

=χ1(a2)χ2(a1)
∣∣∣∣a1

a2

∣∣∣∣1/2 ∫ fφ(x)dx

=χ1(a2)χ2(a1)
∣∣∣∣a1

a2

∣∣∣∣1/2 Λ([fφ]),

where the second to last equality follows since d(a1a
−1
2 x) =

∣∣a1a
−1
2

∣∣ dx. Thus we

have ρ(( a1
a2 ))[fφ] = χ1(a2)χ2(a1)

∣∣∣a1
a2

∣∣∣1/2 [fφ] as desired. �

With the following lemma, we can now prove Proposition 3.9.2 in the case that
χ1 6= χ2. Lemma 3.9.3 implies that B(χ1, χ2) ' C ⊕ C as an A-module with the
given actions. So the following lemma completes the proof in the case χ1 6= χ2.

Lemma 3.9.4. Suppose W = W1 ⊕W2 with Wi 1-dimensional and A acts on Wi

by µi. If L is a nonzero functional on W such that L(a · w) = µ(a)L(w) then
µ1 6= µ2 implies that µ = µ1 or µ2.

Proof. Choose wi ∈ Wi such that L(wi) 6= 0. Then L(a · wi) = L(µi(a)wi) =
µi(a)Lwi = µ(a)Lwi. Thus µ = µi. �

In order to complete the proof of Proposition 3.9.2, we still need to treat the
case χ1 = χ2 = χ. In this case, we can prove the proposition directly. It suf-
fices to prove that B(χ, χ) is irreducible. Schur’s Lemma would then imply that
HomG(B(χ, χ), B(η1, η2)) is nonzero if and only if η1 = η2 = χ, and is zero other-
wise.

Exercise 3.9.5. The map from B(χ1, χ2) to

W := {f ∈ C∞(F ) : f(x) =
c

|x|
· χ1(−1)χ−1

1 χ2(x) for some c when |x| � 0}

given by φ 7→ fφ : x 7→ φ(w ( 1 x
1 )) is one-to-one.

Solution to Exercise 3.9.5. Notice that this map is the same as that in (3.8.2).
Our proof that V ' C∞c (F ) nicely generalizes. First, notice that since w ( 1 x

1 ) =
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−x−1 1

0 x

) (
1 0
x−1 1

)
, we have

fφ(x) = φ(w ( 1 x
1 )) = χ1(−1)χ−1

1 χ2(x) |x|−1
φ(e)

when |x| � 0. Thus, the map is well defined. We do not include the rest of the
proof at this time, but as a hint, refer to the discussion of equation 3.8.2. �

Note that the constant c in the definition of W can be taken to be φ(e).
Returning to the case χ = χ1 = χ2 we have B(χ, χ) = B(1, 1) ⊗ (χ ◦ det), so

we may assume that χ = 1. We show that W (as in the exercise) is irreducible
as a GF -module. To do this, we first need to understand the action. By Bruhat
decomposition, we basically just need to know how w, ( a 1 ) and

(
1 y

1

)
act, since

these matrices generate GF . This is accomplished in the following diagrams.

φ //

ρ
“

1 y
1

”
��

fφ

��
φ(w ( 1 x

1 )
(

1 y
1

)
) // fφ(x+ y)

So N acts by translation.

φ //

ρ( a 1 )
��

fφ

��
φ(w ( 1 x

1 ) ( a 1 )) // |a|−1/2
fφ(a−1x)

since

φ(w ( 1 x
1 ) ( a 1 )) =φ(w ( a x1 ))

=φ(w ( a 1 )
(

1 a−1x
1

)
)

=φ(( 1
a )w

(
1 a−1x

1

)
)

= |a|−1/2
fφ(a−1x).

Similarly, one sees that ( 1
b ) acts on fφ(x) by |b|1/2 fφ(bx).

φ //

ρ(w)

��

fφ

��
φ(w ( 1 x

1 )w) // |x|−1
fφ(x−1)

since
φ(w ( 1 x

1 )w) = φ(( 1
x 1 )) = |x|−1

φ(w
(

1 x−1

1

)
) = |x|−1

fφ(x−1),
where we have used the fact that(

−x−1 ∗
x

)
w
(

1 x−1

1

)
= ( 1

x 1 ) .

We want to show that for any nonzero f ∈ W , W ′ = span{ρ(g)f} = W . This
will follow if we can show that C∞c (F ) ⊂W ′ and that there exists an f ′ ∈W ′ such
that f ′(x) 6= 0 for all x sufficiently large. We accomplish this in a series of steps.

(1) For the given f ∈W we may assume that f(0) 6= 0 by applying translation.
(2) Let f1 = w ◦ f , then f1(x) = c

|x| when |x| � 0 and c 6= 0.
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(3) Let f2 = |a|1/2 ρ(( 1
a ))f1. So f2(x) = |a| f1(ax).

(4) Set f3 = f2 − f1 = 0. By (2), if |x| � 0 then f3(x) = 0. Moreover, we may
assume that |a| is sufficiently large so that

∫
f4(x)dx 6= 0.

(5) Suppose f3 is supported in A = $nOF and is invariant by B = $mOF
with n < m. Then let

f4 =
∑
A/B

f3(x+ α) = (
∫
F

f3dx)1$OF .

Hence 1$OF ∈W ′. Which in turn gives 1x+$kOF ∈W ′ for all x and k.
Thus C∞c (F ) ⊆W ′. Finally, to get the desired function f ′, just take any f ∈ C∞C (F )
such that f(0) 6= 0. Acting by w, we get f5 = f(x−1)

|x| which satisfies f5(x) = f(0)
|x| if

|x| � 0.
This proves that B(1, 1) (and thus B(χ, χ)) is irreducible, and completes the

proof of Proposition 3.9.2.

3.9.2. An explicit functional L : B(χ1, χ2) → C. The nontrivial case of Proposi-
tion 3.9.2 is to show that HomG(B(χ1, χ2), B(χ2, χ1)) has dimension 1. Recall, that

we needed L : B(χ1, χ2)→ C such that L(ρ(( a1 ∗
a2 ))φ) = χ2(a1)χ1(a2)

∣∣∣a1
a2

∣∣∣1/2 Lφ.
In this section we explicitly describe this functional. Our candidate is Lφ =∫

F
φ(w ( 1 x

1 ))dx.7 Formally we have the following calculation

L(ρ
( a1 y

0 a2

)
φ) =

∫
F

φ(w ( 1 x
0 1 )

( a1 y
0 a2

)
)dx

=
∫
F

φ(w ( 1 x
1 ) ( a1

a2 )
(

1 a−1
1 y
1

)
dx

=
∫
F

φ(( a2
a1 )w

(
1 a−1

1 a2x
1

)(
1 a−1

1 y
1

)
)dx

=χ1(a2)χ2(a1)
∣∣∣∣a2

a1

∣∣∣∣1/2 ∫
F

φ(w
(

1 a−1
1 a2x+a−1

1 y
1

)
)dx

=χ1(a2)χ2(a1)
∣∣∣∣a2

a1

∣∣∣∣1/2 ∫
F

φ(w
(

1 y
0 1

)
)d(a−1

1 a2x− a−1
2 y)

=χ2(a1)χ1(a2)
∣∣∣∣a1

a2

∣∣∣∣1/2 ∫
F

φ(w ( 1 x
0 1 ))dx = χ2(a1)χ1(a2)

∣∣∣∣a1

a2

∣∣∣∣1/2 Lφ.
The issue here is that the integral may not be well defined, but we will get

convergence in some region, and then extend by analytic continuation.

Remark. We have

Mφ(g) = L(ρ(g)φ) =
∫
F

f(w ( 1 x
1 ) g)dx =

∫
NF

f(wng)dn.

This final expression is often used in the literature.

The question of convergence comes down to knowing the behavior of∫
F

fφ(x)dx =
∫
F

φ(w ( 1 x
1 ))dx

7Yannan said that this generalizes to higher rank groups. I’m not sure what he meant exactly.
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at infinity. To study this, we will use the one-to-one correspondence of Exercise 3.9.5
given by φ 7→ fφ : x 7→ φ(w ( 1 x

1 )). By this correspondence, there exists n1 such
that when v(x) ≤ n1, φ(w ( 1 x

1 )) = χ1(−1)χ−1
1 χ2(x)φ(e)

|x| . Let χi = χi,0 |·|si where
χi,0 is unitary.8 We will see that the analytic continuation will come with respect
to s2 − s1. So∫

v(x)≤n1

|φ(w ( 1 x
1 ))| dx =

∫
v(x)≤n1

∣∣χ−1
1 χ2(x)

∣∣ |φ(e)|
|x|

dx

= |φ(e)|
∫
v(x)≤n1

|x|Re(s2−s1) dx

|x|

= |φ(e)|
∑
n≤n1

∫
$nO×F

|$n|Re(s2−s1) dx

|x|

= |φ(e)|
∑
n≤n1

∫
O×F
|$n|Re(s2−s1)

dx

= |φ(e)|m(O×F )
∞∑

k=n1

∣∣q−k∣∣Re(s2−s1)

where q = |OF /$OF | > 1. Thus the integral converges if and only if Re(s2−s1) >
0. Since {x ∈ F | v(x) > n1 is compact, L is well defined when χ1 > χ2 where we
say χ1 > χ2 if and only if

∣∣χ1χ
−1
2

∣∣ = |·|t for some t > 0.
In order to get analytic continuation, we define B(χ1, χ2, s) to be the set of

φ : G→ C satisfying

• φ(( a1 x
a2 ) g) = χ1(a1)χ2(a2)

∣∣∣a1
a2

∣∣∣(s+1)/2

φ(g),
• φ is right invariant by some L an open subgroup of K.

The above discussion implies that

Lχ1,χ2,s : B(χ1, χ2, s)→ C

is well defined for Re(s) � 0. Note that given φs ∈ B(χ1, χ2, s), we have φs |K is
smooth and it satisfies

(3.9.3) φ(
( a1,0 x

a2,0

)
k) = χ1,0(a1,0)χ2,0(a2,0)φ(k)

when ai,0 ∈ O×F and x ∈ OF . Define Bk(χ1,0, χ2,0) to be the smooth functions on
K satisfying (3.9.3). Then φs 7→ φs |k is one-to-one. Its inverse is the map

φ 7→ φs(( a1 x
a2 ) k) := χ1(a1)χ2(a2)

∣∣∣∣a1

a2

∣∣∣∣(s+1)/2

φ(k).

Note that by the Bruhat decomposition, φs is defined on all of GF .
So given φ ∈ Bk(χ1,0, χ2,0) one has φs ∈ B(χ1, χ2, s). Define (formally)

Lχ1,χ2,sφs =
∫
F

φs(w ( 1 x
1 ))dx

=
∫
|x|≤1

φs(w ( 1 x
1 ))dx+

∫
|x|>1

φs(w ( 1 x
1 ))dx.

8If we further impose that si ∈ R then it is unique.
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The first integral converges because it is over a compact set, and therefore entire
with respect to s. Thus, we need only worry about

(3.9.4)

∫
|x|>1

φs(w ( 1 x
1 ))dx =

∫
|x|>1

χ1(−1)χ−1
1 χ2(x) |x|s φs

(
1
x−1 1

) dx
|x|

=
∫
|x|<1

χ1(−1)χ1χ
−1
2 (x) |x|s φ(( 1 0

x 1 ))d×x

= χ1(−1)Z(1$OF (x)φ(( 1 0
x 1 ) , χ1χ

−1
2 , s),

where the local zeta function

(3.9.5) Z(Φ, χ, s) :=
∫
F×

Φ(x)χ(x) |x|s d×x

is defined for any Φ ∈ C∞c (F ), χ : F× → C a character, and s ∈ C.
Write χ = χ0 |·|s0 where χ0 is unitary. Since Φ ∈ C∞c (F ), there exist integers

n1 > n2 such that Φ(x) = 0 when v(x) < n2 and Φ(x) = φ(0) when v(x) ≥ n1.
Thus

Z(Φ, χ, s) =
∫
n2≤v(x)≤n1

Φ(x)χ(x) |x|s d×x+
∫
v(x)≥n1

Φ(x)χ(x) |x|s d×x.

Again, for the first part we are integrating over a compact set so it’s entire with
respect to s ∈ C. For the second part we have∫

v(x)≥n1

Φ(x)χ(x) |x|s d×x =Φ(0)
∑
n≥n1

∫
$nO×F

χ(x) |x|s d×x

=Φ(0)
∞∑

n=n1

∫
O×F

χ($)n |$|ns χ0(x)d×x

=Φ(0)

(∫
O×F

χ0(x)d×x

) ∞∑
n=n1

(χ($) |$|s)n

If χ0 |O×F is nontrivial this is zero. If χ0 |O×F = 1 and |χ($)$|Re(s)
< 1 then it is

equal to

Φ(0)m(O×F )
(χ($) |$|s)n1

1− χ($) |$|s
.

We call χ unramified if χ |O×F = 1, in which case we conclude that Z(Φ, χ, s) is
analytic. Otherwise, the integral representation for Z(Φ, χ, s) converges whenever
|χ($)$|Re(s) < 1. In either case, it converges to something for which the only
singularity appears in the form

L(s, χ) =

{
1 if χ is unramified,

1
1−χ($)|$|s if χ is ramified.

This expression is entire except (in the ramified case) where χ($) |$|s = 1.
If we take Φ = 1$OF · φ(( 1

x 1 )), and χ1χ
−1
2 = χ = χ0 |·|s0 with χ0 unitary,

then we can plug this result into (3.9.4) to get analytic continuation of Lχ1,χ2,s.
In summary, Lχ1,χ2,s : B(χ1 |·|s/2 , χ2 |·|s/2) = B(χ1, χ2, s) → C is defined for all s
except at s such that χ1χ

−1
2 |·|

s = 1.
We record the following lemma, whose proof is deduced from the above, for

future reference.
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Lemma 3.9.6. Suppose that χ is a character of F× with |χ| = |·|s0 . If Φ ∈
C∞c (F×) then the integral representation (3.9.5) of Z(Φ, χ, s) converges whenever
s0 > −1. Z(Φ, χ, s) is holomorphic whenever Φ = 0 or χ is unramified.

Note that, although the integral may not converge when s0 ≤ −1, this result does
provide analytic continuation. In fact, more careful consideration of what we have
done above would reveal that if we choose an additive character ψ : F → S1 ⊂ C×,
and define Φ̂(x) =

∫
F

Φ(y)ψ(xy)dy for Φ ∈ C∞c (F ) then

(3.9.6)
Z(Φ̂, χ−1, 1− s)
L(1− s, χ−1)

= ε(s, χ, ψ)
Z(Φ, χ, s)
L(s, χ)

where ε(s, χ, ψ) is an exponential function of s.
We have now defined all of the necessary objects in order to give the following

proposition.

Proposition 3.9.7. Suppose χ1 ≥ χ2, and Mχ1,χ2 : B(χ1, χ2) → B(χ2, χ1), the
interwining operator.

(1) If M(χ1, χ2)φ 6= 0 then φ generates B(χ1, χ2).
(2) If χ1 6= χ2 then B(χ1, χ2) → B(χ2, χ1) → B(χ1, χ2) is an automorphism,

acting by the scalar

L(0, χ1χ
−1
2 )L(0, χ2χ

−1
1 )

ε(0, χ−1
1 χ2, ψ)ε(0, χ1χ

−1
2 , ψ)L(1, χ1χ

−1
2 )L(1, χ2χ

−1
1 )

.

Remark. The numerator of the expression in the second statement is nonzero by
definition. The denominator will be ∞ exactly when χ1χ

−1
2 = |·|±1. We will treat

this case more carefully in Proposition 3.10.1.

Remark. We see that M(χ1, χ2)M(χ2, χ1) = 0 when χ1χ
−1
2 = |·|±1.

An important corollary to Proposition 3.9.7 is the following.

Theorem 3.9.8. When χ1χ
−1
2 6= |·|±1, B(χ1, χ2) is irreducible.

Proof. First, assume that χ1 > χ2. Then whether or not χ1χ
−1
2 is ramified,

M(χ2, χ1)M(χ1, χ2) is a nonzero scalar. In particular M(χ1, χ2)φ 6= 0 for all
nonzero φ ∈ B(χ1, χ2). Thus, by (1) of Proposition 3.9.7, B(χ1, χ2) is irreducible. If
χ2 > χ1, we argue similarly to conclude that B(χ−1

1 , χ−1
2 ) (which equals B(χ1, χ2)∼

by Lemma 3.8.3) is irreducible. By duality we conclude thatB(χ1, χ2) is irreducible.
If |χ1| = |χ2| and χ1 6= χ2, write χ1 = χ1,0 |·|t and χ2 = χ2,0 |·|t where χi,0 is

unitary. Then B(χ1, χ2) is irreducible if and only if B(χ1,0, χ2,0) is irreducible since
B(χ1,0, χ2,0) ⊗ |det(g)|t = B(χ1, χ2). So we may assume χ1, χ2 are unitary. Then
the pairing

B(χ1, χ2)×B(χ2, χ1)→ C
defined by

(φ1, φ2) :=
∫
K

φ1φ2(k)dk

makes B(χ1, χ2) a unitary representation. Suppose there exists a nontrivial sub-
module U . By unitaricity there exists a G-invariant orthogonal complement U⊥

and B(χ1, χ2) = U ⊕U⊥. If this were the case, HomG(B(χ1, χ2), B(χ1, χ2)) would
be at least two dimensional contradicting Proposition 3.9.2. Thus B(χ1, χ2) is
irreducible in this case.

Finally, if χ1 = χ2 we have already shown irreducibility directly. �
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Proof of Proposition 3.9.7 (1). Since the dual of B(χ1, χ2) is B(χ−1
1 , χ−1

2 ), to show
that φ generates B(χ1, χ2) it suffices to check that for all φ′ ∈ B(χ−1

1 , χ−1
2 ),

〈ρ(g)φ, φ′〉 = 0 for all g implies that φ′ = 0. Indeed, if φ does not generate the
whole space, then there must exist φ′ 6= 0 such that 〈ρ(g)φ, φ′〉 = 0 for all g. To
proceed we need the following technical lemma.

Lemma 3.9.9. When χ1 > χ2 (needed to make sense of the integral)

lim
|a|→0

χ−1
2 (a) |a|−1/2 〈ρ

(
a

1

)
φ, φ′〉 =

(∫
F

φ[w
(

1 x
1

)
]dx
)
φ′(w).

For now we do not prove the lemma but finish the first part of the proposition.
By assumption, we have Mφ 6= 0. So let g0 be such that Mφ(g0) 6= 0. Then
M(ρ(g0)φ)(e) = Mφ(g0) 6= 0. Applying Lemma 3.9.9, we get(∫

F

ρ(g0)φ[ω
(

1 x
1

)
]dx
)
φ′(ω)

= lim
|a|→0

χ−1
2 (a) |a|−1/2 〈ρ(

(
a

1

)
ρ(g0)φ, φ′〉 = 0,

since we are assuming 〈ρ(g)φ, φ′〉 = 0. On the other hand,

M(ρ(g0)φ)(e) =
∫
F

ρ(g0)φ[w
(

1 x
1

)
]dx 6= 0,

so φ′(w) = 0.
To show that φ′(g) = 0 for all g ∈ G, consider ρ(w−1g)φ′. Then φ′(g) =

ρ(w−1g)φ′(w). G-invariance of the pairing 〈·, ·〉 implies that

〈ρ(h)φ, ρ(w−1g)φ′〉 = 0

for all h ∈ G. Thus we can apply the lemma again to obtain φ′(g) = 0. Since g was
arbitrary, this completes the proof. �

Note that the lemma says 〈ρ(·)φ, φ′〉 is the product of somethings involving only
φ and something involving only φ′. The φ part we know to be nonzero, so the φ′

part is zero.

Exercise 3.9.10. Show that there exists a constant c 6= 0 such that for all φ ∈
B(|·|1/2 , |·|−1/2) we have∫

K

φ(k)dk = c

∫
F

φ(w
(

1 x
1

)
)dx.

A hint as to why this is true is as follows. Let Lφ =
∫
K
φ(k)dk and L′φ =∫

F
φ[w ( 1 x

1 )]dx. We need to show that L = cL′. Actually, L is G-invariant and L′ is
N -invariant (obviously) and P -invariant. So L factors through B(|·|1/2 , |·|−1/2)N =
C⊕C. Lemma 3.9.3 gives that A-acts trivially on one summand and by

∣∣∣a1
a2

∣∣∣ on the
other. L factors through the part fixed by A as does L′. But the only functionals
from C→ C are those given by scalars. So then L and L′ must be the same up to
scalar. [The exercise may also be proved by a manipulation of measures.]

Proof of Lemma 3.9.9. By Lemma 3.8.3 the linear functional

L : B(|·|1/2 , |·|−1/2)→ C where φ 7→
∫
K

φ(k)dk
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is G-invariant. Therefore, the exercise implies that (up to a nonzero constant)

〈φ, φ′〉 =
∫
F

φφ′[w
(

1 x
1

)
]dx.

Since we are only interested in the vanishing or nonvanishing, we will assume equal-
ity. So

〈ρ(
(
a

1

)
)φ, φ′〉 =

∫
F

φ[w
(

1 x
1

)(
a

1

)
]φ′[w

(
1 x

1

)
]dx

=
∫
χ2(a) |a|−1/2

φ[w
(

1 a−1x
1

)
]φ′[w

(
1 x

1

)
]dx

=χ2(a) |a|−1/2
∫
F

φ[w
(

1 x
1

)
]φ′[w

(
1 ax

1

)
]d(ax)

=χ2(a) |a|1/2
∫
F

φ[w
(

1 x
1

)
]φ′[w

(
1 ax

1

)
]dx

There exists δ1, δ2 such that if |x| < δ1 then φ′[w ( 1 x
1 )] = φ′[w], and if |x| > δ−1

2

then φ[w ( 1 x
1 )] = χ1(−1)χ−1

1 χ2(x)φ(e)
|x| . If |a| δ2 < δ1, (recall that in the statement

of the lemma we will ultimately be taking the limit as |a| → 0), splitting the above
integral as |ax| > δ1 or |ax| ≤ δ1 gives the following two integrals.

I := χ2(a) |a|1/2
∫
|ax|≤δ1

(
φ[w

(
1 x

1

)
]dx
)
φ′(w),

and

II :=χ2(a) |a|1/2
∫
|x|>|a−1|δ1

φ[w
(

1 x
1

)
]φ′[w

(
1 ax

1

)
]dx

=χ2(a) |a|1/2
∫
|x|>|a−1|δ1

χ1(−1)χ−1
1 χ2(x)

φ(e)
|x|

φ′[w
(

1 ax
1

)
]dx

=χ2(a) |a|1/2
∫
|x|>δ1

χ1(−1)χ−1
1 χ2(ax)

φ(e)
|a−1x|

φ′[w
(

1 x
1

)
]
∣∣a−1

∣∣ dx
=χ1(−1)χ1(a) |a|1/2 φ(e)

∫
|x|>δ1

φ′(w
(

1 x
1

)
)χ−1

1 χ2(x)
dx

|x|
.

Where we have the second equality when |a| � 1 and we made the change of
variables x 7→ a−1x in the third line. We also consider one additional integral.

III :=χ2(a) |a|1/2
∫
|x|>|a−1|δ1

φ[w
(

1 x
1

)
]dxφ′(w)

=χ2(a) |a|1/2
(∫
|x|>|a−1|δ1

χ1(−1)χ−1
1 χ2(x)φ(e)d×x

)
φ′(w)

=χ1(−1)χ2(a) |a|1/2 χ1(−1)φ(e)

(∫
|x|>δ1

χ−1
1 χ2(a−1x)d×x

)
φ′(w)

=χ1(a) |a|1/2 χ1(−1)φ(e)

(∫
|x|>δ1

χ−1
1 χ2(x)d×x

)
φ′(w),
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which converges when χ1 > χ2. So we get
(3.9.7)
〈ρ(( a 1 ))φ, φ′〉 = (I + III)− III + II

= χ2(a) |a|1/2
(∫
F
φ[w ( 1 x

1 )]dx
)
φ′(w)

−χ1(−1)χ1(a) |a|1/2 φ′(w)φ(e)
∫
|x|>δ1 χ1χ

−1
2 d×x

+χ1(−1)χ1(a) |a|1/2 φ(e)
∫
|x|>δ1 φ

′[w
(

1 x
1

)
]χ−1

1 χ2(x)d×x.

Dividing by χ2(a) |a|1/2 we get

χ−1
2 (a) |a|−1/2 〈ρ(a)φ, φ′〉 =

∫
F

φ[w
(

1 x
1

)
]dxφ′(w) + χ1χ

−1
2 (a) · (∗),

where (∗) doesn’t depend on a. Letting |a| → 0 gives the desired result because
χ1 > χ2 implies that χ1χ

−1
2 (a)→ 0 as |a| → 0. �

It remains to prove part (2) of the proposition.

Proof of Proposition 3.9.7 (2). We know Mχ2,χ1 ◦Mχ1,χ2 is a scalar. To detect it,
we choose a particular function and calculate its image. We have seen one way
of producing functions in B(χ1, χ2). That is, we start with φ0 ∈ BK(χ1,0, χ2,0)
where χi,0 = χi |O×F . Then we can extend φ0 to a function φ ∈ B(χ1, χ2). For our
purposes here, this method won’t be easiest. Instead we consider

φ(g) = χ1(det(g)) |det(g)|1/2
∫
F×

Φ[(0, t)g]χ1χ
−1
2 (t)dt,

with Φ a Bruhat-Schwarz function (i.e. Φ ∈ C∞c (F 2)) and χ1χ
−1
2 |·| < 1. The

integral here is well-defined whenever χ1χ
−1
2 > 1 (which we are assuming.) Then

one readily checks that φ ∈ B(χ1, χ2). We will use this function for χ1, χ2 in the
given range. Then by analytic continuation the formula is true for all χ1 6= χ2. �

3.10. Special representations. Recall that if χ : F× → C× is a quasicharacter,
we have the special representation Spχ which is the unique non-trivial invariant
subspace inside B(χ |·|1/2 , χ |·|−1/2). We also have the intertwining operators

M± : B(χ |·|±1/2
, χ |·|∓1/2)→ B(χ∓1 |·|∓1/2

, χ∓1 |·|±1/2).

In this section we will see that the special representations have many nice properties.
For example, like the supercuspidals, specials are unitary (up to a twist) and have
matrix coefficients.

Proposition 3.10.1. Let Cχ−1 be the unique non-trivial irreducible subspace inside
B(χ |·|1/2 , χ |·|−1/2). Then the sequences

0 // Spχ // B(χ |·|1/2 , χ |·|−1/2)
M+ // Cχ → 0,

and

0 // Cχ−1 // B(χ−1 |·|−1/2
, χ−1 |·|1/2)

M− // Spχ // 0.

are exact.

Cχ is the one dimensional subspace on which G acts by χ◦det. See Theorem 3.8.2
for our original treatment of the special representation. In fact, that theorem is
nearly enough to prove the proposition.
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Proof. M+ 6= 0. Since kerM+ is an invariant subspace, kerM+ = Spχ or {0}. If
kerM+ = {0} then B(χ |·|1/2 , χ |·|−1/2) ↪→ B(χ−1 |·|−1/2

, χ−1 |·|1/2) is injective.
Since both are of length 2 it has to be an isomorphism. However, the only invariant
subspace of the image is Cχ−1 which is 1-dimensional, and the image Spχ must be
infinite dimensional—a contradiction. Thus kerM+ = Spχ. Proving exactness of
the other sequence is similar. �

Lemma 3.10.2. The following are equivalent:

• φ ∈ Spχ,
•
∫
N
φ(wn)dn = 0,

•
∫
K
φ(k)χ−1(det k)dk = 0,

• M+φ = 0.

This lemma gives multiple ways to determining whether a given vector comes
from a special representation.

Proof. The equivalence of the first and last properties is obvious from Proposi-
tion 3.10.1. The second property is just writing out what M+φ is. The third
property says that 〈φ, χ ◦ det〉 = 0. In other words, χ ◦ det annihilates φ, and only
in the case that φ ∈ Spχ does it have a nontrivial annihilator. �

3.10.1. Matrix coefficients. In this section we take

φ ∈ Spχ and φ′ ∈ B(χ−1 |·|−1/2
, χ−1 |·|1/2)

such that 〈Spχ, φ′〉 6= 0. Recall that the pairing given by 〈φ, φ′〉 =
∫
K
φφ′(k)dk is

G-invariant. As in the case of supercuspidals, we get a matrix coefficient

fφ,φ′(g) := 〈ρ(g)φ′, φ〉 =
∫
K

φ(kg)φ′(k)dk.

Note that fφ,φ′(( a a ) g) = χ2(a)fφ,φ′ , so if χ is unitary |fφ,φ′(g)| = |fφ,φ′(zg)| for
all z ∈ Z.

Proposition 3.10.3. If χ is unitary then |fφ,φ′(g)| is square integrable on Z\G.

Corollary 3.10.4. When χ is unitary, Spχ is unitarizable.

Proof. Choose φ′ ∈ B(χ−1 |·|−1/2
, χ−1 |·|1/2) such that 〈Spχ, φ′〉 6= 0 then define

Spχ × Spχ → C by

(φ1, φ2) =
∫
Z\G
〈ρ(g)φ1, φ

′〉〈ρ(g)φ2, φ′〉dg.

This is a positive definite Hermitian, G-invariant pairing. So Spχ is a unitary
representation with respect to this pairing. �

Remark. Note that the proof of the corollary is nearly same as in the supercuspidal
case. Also, since Spχ is irreducible the pairing is unique up to a scalar.

Proof of Proposition 3.10.3. We use the decompositionG =
⊔
n≥0 ZK

(
$n

1

)
K

of Lemma 3.6.2.
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Step 1. Recall that equation (3.9.7) gives

〈ρ(a)φ, φ′〉 =χ2(a) |a|1/2
∫
F

φ[w
(

1 x
1

)
]dxφ′(w)

− χ1(−1)χ1(a) |a|1/2 φ′(w)φ(e)
∫
|x|>δ1

χ1χ
−1
2 d×x

+ χ1(−1)χ1(a) |a|1/2 φ(e)
∫
|x|>δ1

φ′[w
(

1 x
1

)
]χ−1

1 χ2(x)d×x,

when |a| is sufficiently small and δ1 is such that φ′(w ( 1 x
1 )) = φ′(w) whenever

|x| < δ1. By Lemma 3.10.2, the first term is 0. So

(3.10.1) 〈ρ
(
a

1

)
φ, φ′〉 = χ1(a) |a|1/2 c(φ, φ′)

when |a| is sufficiently small.
Step 2. We evaluate the square integral of the matrix coefficient.

(3.10.2)
∫
Z\G
|fφ,φ′(g)|2 dg =

∑
n≥0

∫
K
“
$n

1

”
K

|fφ,φ′(g)|2 dg.

Consider the surjective map

K ×K → K

(
$n

1

)
K (k1, k2) 7→ k1

(
$n

1

)
k2.

Every fiber is (topologically) isomorphic to

Kn := {k ∈ K | k ≡
(
∗ ∗
∗

)
(mod $n)}.

This implies that∫
K
“
$n

1

”
K

f(g)dg = [K : Kn]
∫
K×K

f(k1

(
$n

1

)
k2)dk1dk2

So (3.10.2) becomes

=
∑
n≥0

[K : Kn]
∫
K×K

∣∣∣∣〈ρ(k1)ρ(
(
$n

1

)
)ρ(k2)φ, φ′〉

∣∣∣∣2 dk1dk2

=
∑
n≥0

[K : Kn]
∫
K×K

∣∣∣∣〈ρ(
(
$n

1

)
)ρ(k2)φ, ρ(k−1

1 )φ′〉
∣∣∣∣2 dk1dk2.

Let L ⊆ K be a open normal subgroup fixing φ and φ′. We need only consider
the coset representatives of k−1

1 and k2. Explicitly, K =
⊔
kαL =

⊔
Lkα. So then

ρ(k2)φ is one of ρ(kα)φ =: φα and ρ(k−1
1 )φ′ is one of ρ(k−1

β )φ′ =: φ′β . Then by
(3.10.1), there exists n0 such that if n ≥ n0

|〈ρ
(
$n

1

)
φα, φ

′
β〉| =|χ1($n)| |$n|1/2 c(φα, φ′β)

=|χ($n)| |$|n c(φα, φ′β)

≤c · |$|n
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where c = max{|c(φα, φ′β |}. Putting everything together, we have∫
Z\G
|fφ,φ′(g)|2dg =

∫
0≤n≤n0

+
∫
n≥n0

≤
∫

0≤n≤n0

+c2
∑
n>n0

[K : Kn] |$|2n

=
∫

0≤n≤n0

+c2
∑
n>n0

(1 + |$|) |$|n ,

which converges. In the final equality, we have used the result of Exercise 3.10.5 �

Exercise 3.10.5. Show that [K : Kn] = |$|−n (1 + |$|).

Solution. We will prove that

K =
⋃

x∈O/$n

(
1 x

1

)
Kn ∪

⋃
y∈O/$n−1

(
1
y$ 1

)
wKn,

and that the cosets are disjoint. From this the result clearly follows.
Let k =

(
a b
c d

)
∈ K. First, assume that v(c) = 0. Then

k =
(

1 a/c
1

)(
−1

1

)(
1 ddet k/c

1

)(
c

det k/c

)
.

In other words k = ( 1 x
1 )wb where b ∈ BK = B ∩ K. If k′ ∈ Kn is such that

( 1 x
1 )wk′ =

(
1 x′

1

)
then k′ =

(
1
y 1

)
for some y ∈ $nO. Since ( 1 x

1 )w
(

1
y 1

)
=(

1 x−y
1

)
w it is obvious that the set of

(
a b
c d

)
∈ K such that v(c) > 0 is given by the

disjoint union ⋃
x mod $n

( 1 x
1 )wKn.

Now suppose that v(c) > 0. In this case,

k =
(
a b
c d

)
=
(

1
ac 1

)(
1 ba/det k

1

)(
a

det k/a

)
.

(Note that since k ∈ K and v(c) ≥ 1, the element a must be a unit.) Therefore
k =

(
1
y$ 1

)
b, b ∈ BK . If k′ ∈ Kn is such that

(
1
y 1

)
k′ =

(
1
y′ 1

)
then k′ = ( 1

x 1 ) for
some x ∈ $n. Hence y$ is unique modulo $n. �

3.11. Unramified representations and spherical functions. In this section
(π, V ) will be an irreducible admissible representation. We will study V K = {v |
kv = v for all k ∈ K}. Let H(G,K) := HK = {f ∈ C∞c (G) | f is K bi-invariant}
be the Hecke algebra of maximum level. Recall that we first encountered this object
in (3.3.1), and in Lemma 3.3.2 we saw that V K is an irreducible HK-module.

Lemma 3.11.1. HK is commutative.

Proof. Using G = ∪n≥0ZK
(
$n

1

)
K, it is clear that if f ∈ HK then f is deter-

mined by its values on diagonal matrices. For f ∈ C∞c (G) define tf(g) = f(tg).
Then it is easily verified from the definition of convolution that t(f1 ∗f2) = tf2 ∗ tf1.
On the other hand, by the comment above, if f ∈ HK then tf = f . Let f1, f2 ∈ HK .
Then

f1 ∗ f2 = t(f1 ∗ f2) = tf2 ∗ tf1 = f2 ∗ f1

since f1 ∗ f2 is also in HK . �
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Since V K is an irreducible HK-module, we have the following corollary.

Corollary 3.11.2. dimV K ≤ 1.

Definition 3.11.3. If dimV K = 1 then we say that (π, V ) is unramified.
If V is unramified, then Ṽ (the contragradient representation) is also unramified.

In this case, choose e0 ∈ V K and ẽ0 ∈ Ṽ K such that 〈e0, ẽ0〉 = 1. The vector e0 is
called the spherical vector.

The matrix coefficient
ω(g) := 〈π(g)e0, ẽ0〉

is called the spherical function of (π, V ). It is K bi-invariant.
Since HK acts on V K by scalars, if f ∈ HK π(f)e0 = λπ(f)e0. The algebra ho-

momorphism f 7→ λπ(f) mapping HK to C is called the spherical homomorphism.

λπ and ωπ(g) determine each other. To see this, let f ∈ HK . Then∫
f(g)ωπ(g)dg =

∫
f(g)〈π(g)e0, ẽ0〉dg = 〈

∫
f(g)π(g)e0dg, ẽ0〉

=〈π(f)e0, ẽ0〉 = λπ(f)〈e0, ẽ0〉 = λπ(f).

Conversely, ωπ(g) = 1
m(KgK)λπ(1KgK).

It is also true that ωπ determines π. Let U be the space of functions on G
spanned by right translation of ωπ. Then V → U by v 7→ 〈π(g)v, ẽ0〉 is surjective
by definition. By irreducibility of V , it must be an isomorphism.

Proposition 3.11.4. (i) If (π, V ) is unramified and irreducible, and ωπ(g) is
the spherical function of π then

(3.11.1)
∫
K

ωπ(g1kg2)dk = ωπ(g1)ωπ(g2).

(ii) If ω is a K bi-invariant function on G satisfying (3.11.1) then there exists
a unique unramified representation such that ω(g) is the spherical function
of this representation.

Remark. Uniqueness follows since ωπ determines π.

Proof. (i) Define P : V → V K by v 7→
∫
K
π(k)vdk. Then Pv = λe0. We calculate

λ = 〈Pv, ẽ0〉 = 〈
∫
K

π(k)vdk, ẽ0〉 =
∫
〈π(k)v, ẽ0〉dk = 〈v, ẽ0〉.

The last equality follows from the K invariance of ẽ0 and the fact that K has
measure 1.

Now, ∫
K

ω(g1kg2)dk =
∫
K

〈π(g1)π(k)π(g2)e0, ẽ0〉dk

=〈π(g1)
∫
K

π(k)π(g2)e0dk, ẽ0〉

=〈π(g1)〈π(g2)e0, ẽ0〉e0, ẽ0〉
=〈π(g2)e0, ẽ0〉〈π(g1)e0, ẽ0〉
=ωπ(g2)ωπ(g1).
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(ii) Denote by U the the space of functions on G spanned by right translation
of ω(g). Clearly U is smooth. We show it is irreducible. Suppose 0 ( U ′ ⊆ U and
choose f ∈ U ′ with f 6= 0. Then we claim that

(3.11.2)
∫
K

f(g1kh)dk = ω(g)f(h).

In other words, since this integral is really just a finite linear combination of right
translations of f , ω ∈ U ′. But ω generates U , so U ′ = U . To prove the claim, write

f =
∑
i

λiπ(hi)ω =
∑
i

λiω(·hi).

By the assumption that ω satisfies (3.11.1), we have∫
K

ω(gkhhi)dk = ω(g)ω(hhi).

So this gives the claim. But then U is irreducible and smooth, hence, by Proposi-
tion 3.3.3, it is admissible.

Now, we prove that ω is the spherical function of U . Since it is right invariant
by K, it is certainly a spherical vector. So consider

Le : U → C via f 7→ f(e).

Then Le is a smooth vector in U∗, and so Le ∈ Ũ . Actually, Le is invariant by K
and hence Le ∈ (U∧)K , and (ω,Le) = ω(e) = 1. The spherical function of U is
thus

ωU (g) = 〈ω(g), Le〉 = ω(e · g) = ω(g).
We conclude that U is unramified. �

Remark. By this proposition, the spherical function determines the representation.
Later we will use this to get the L-factor.

Theorem 3.11.5. Let (π, V ) be an irreducible unramified representation of GL2(F ).
Then π is either of the form χ(det g) for some χ : F× → C× unramified or of the
form B(χ1, χ2) for some unramified χ1, χ2 with χ1χ2 6= |·|±1.

Remark. In particular, supercuspidal and special representations are always rami-
fied.

Remark. We will see later that an irreducible automorphic representation factors
as a product of local representations such that all but finitely many are unramified.

The proof of Theorem 3.11.5 is a bit technical. We begin with the following
lemma.

Lemma 3.11.6. If (π, V ) is unramified then ωπ is not compactly supported.

By Theorem 3.6.1, matrix coefficients of supercuspidal representations are com-
pactly supported. So the following is an immediate consequence.

Corollary 3.11.7. Every supercuspidal representation is ramified.

Proof of Lemma 3.11.6. We use that ω = ωπ satisfies (3.11.1). Also, the decom-
position G =

⊔
n≥0 ZK

(
$n

1

)
K implies that ω is determined by its values on

diagonal elements. The central character χ of π controls the influence of Z. Taking
gi =

(
$ni

1

)
for i = 1, 2, we may assume that 0 < n1 ≤ n2.
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Using (3.11.1), we want to give a relation between the ω(
(
$n

1

)
) and χ. To do

this, we need to calculate
∫
K
ω(g1kg2)dk. We will decompose this integral into a

finite sum. The first step is, for k =
(
a b
c d

)
∈ K, to determine the type of

k12 :=
(
$n1

1

)
k

(
$n2

1

)
=
(
$n1+n2a $n1b
$n2c d

)
.

This will depend, since ad − bc ∈ O×F , on whether ad or bc ∈ O×F . In fact it will
depend solely on the valuation of d, so we define the set

Xm = {
(
a b
c d

)
∈ K | v(d) = m}.

We first analyze the type of k12 when k ∈ X0. In this case, we can use d to kill
the upper right and lower left entries giving that k12 ∼

(
$n1+n2

1

)
. (Recall that

multiplication by K on the left or right corresponds to row or column operations
respectively. For a reminder of how this works see the proof of Lemma 3.6.2.)

If 0 < v(d) = m, note that bc ∈ O×F . So k12 ∼
(

$n1

$n2 d

)
. Then there are two

subcases. First, if m ≥ n1, then k12 ∈
(

$n1

$n2

)
∼
(
$n1

$n2

)
. If 0 ≤ m < n1.

Then k12 ∼
(
$n1+n2−m

$m

)
.

Plugging this into (3.11.1), we get ω(g1)ω(g2)

(3.11.3)

=
∫
K

ω(g1kg2)dk

=
∫
X0

ω(
(
$n1+n2

1

)
)dk +

n1−1∑
m=1

∫
Xm

ω(
(
$n1+n2−m

$m

)
)dk

+
∑
n≥n1

∫
Xn

ω(
(
$n1

$n2

)
)dk.

We have shown that ω is constant on each Xi, so we now need to calculate the
measures of the sets Xi. Recall that the (multiplicative) Haar measure on G is
given by dg = d+g

|det(g)|2 . Since |det k| = 1 for all k ∈ K, to calculate measures of
subsets of K, it suffices to use the additive measure. Indeed,

m×(Xi) =
m+(Xi)
m+(K)

.

For the remainder of the proof we let m denote the additive measure on K, so that
m($nO×F ) = |$|n. So

m(K) =m({
(
a b
c d

)
∈ K | ad ∈ O×F }) +m({

(
a b
c d

)
∈ K | ad ∈ $O×F })

=m({a, d ∈ O×F })m({bc ∈ $OF }) +m({a, b, c, d ∈ $O×F | ad 6≡ bc (mod $)})
+m{

(
a b
c d

)
∈ K | ad ∈ $OF , bc ∈ O×F }

=(1− |$|)2(2 |$| − |$|2) + (1− |$|)3(1− 2 |$|) + (1− |$|)2(2 |$| − |$|2)

=(1− |$|2)(1 + |$|),

using m({ad ∈ $OF }) = m{a ∈ $OF } + m(b ∈ $OF } − m{a, b ∈ $OF } =
2 |$| − |$|2 .

Similarly, one can show that m(X0) = (1 − |$|)2, and it is easy to see that
m(Xm) = (1− |$|)3 |$|m if m > 0.
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Plugging everything into (3.11.3), we get

(3.11.4) ω(
(
$n1

1

)
)ω(
(
$m2

1

)
) =

1
1 + |$|

ω(
(
$n1+n2

1

)
)

+
n1−1∑
m=1

(1− |$|) |$|m

1 + |$|
ω(
(
$n1+n2−m

$m

)
)

+
|$|n1

1 + |$|
χ($n1)ω(

(
$n2−n1

1

)
).

If ω is compactly supported modulo Z, n0 = max{n | ω
(
$n

1

)
6= 0} is well

defined. If n0 > 0, letting n1 = 1 and n2 = n0 + 1 gives a contradiction. If n0 = 0,
then letting n1 = n2 = 1 gives a contradiction. �

Remark. By (3.11.4), ω is determined by its values on ($ $ ) and ($ 1 ).

Lemma 3.11.8. Every special representation Spχ is ramified.

Proof. We claim that B(χ1, χ2) is unramified if and only if χ1, χ2 are unramified.
Suppose B(χ1, χ2) is unramified. Let φ ∈ B(χ1, χ2)K . Then up to constant multi-
ple, φ is the unique function satisfying

(3.11.5) φ(
(
a1 ∗

a2

)
k) := χ1(a1)χ2(a2)

∣∣∣∣a1

a2

∣∣∣∣1/2
For all k ∈ K. In particular, if a ∈ O× then φ(( a 1 )) = χ1(a) = 1. Similarly,
φ(( 1

a )) = χ2(a) = 1. Hence χ1, χ2 are unramified. On the other hand, if χ1, χ2

are unramified, then (3.11.5) gives a well-defined element of B(χ1, χ2) that is fixed
by K. This proves the claim.

Since Spχ ⊆ B(χ |·|1/2 , χ |·|−1/2), it follows from the claim that Spχ is ramified
whenever χ is ramified. Assume that χ is unramified. Then it suffices to show
that the vector φ in B(χ |·|1/2 , χ |·|−1/2

, ) does not belong to Spχ. Lemma 3.10.2
says that

∫
K
φ(k)χ−1(det k)dk = 0. On the other hand, χ unramified implies that

χ−1 ◦ det |K= 1, and so
∫
K
φ(k)χ−1(det k)dk = φ(e) 6= 0. �

Proof of Theorem 3.11.5. By the lemmas, we need only verify the theorem in the
cases of C(χ ◦ det) and B(χ1, χ2) irreducible. First, χ ◦ det |K= 1 if and only if
χ |O×F = 1. So Cχ ◦ det is unramified if and only if χ is unramified. The case of
B(χ1, χ2) was proved in the course of the proof of Lemma 3.11.8. �

Exercise 3.11.9. Using the spherical vector of (3.11.5), show that

ω(
(
$n

1

)
) =

q−n/2

1 + 1
q

αn1 1− α−1
1 α2

q

1− α−1
1 α2

+ αn2
1− α1α

−1
2
q

1− α1α
−1
2


where αi = χi($) and |$| = 1

q .

Solution. We use that

ω(
(
$n

1

)
) =

∫
K

φ(k
(
$n

1

)
)dk

and, as in the proof of Lemma 3.11.6, we look at the “type” of(
a b
c d

)(
$n

1

)
=
(
a$n b
c$n d

)
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when
(
a b
c d

)
∈ K. Since φ is right invariant by K, by “type,” we are allowed to

act on
(
a$n b
c$n d

)
by multiplying on the right by elements of K. This corresponds to

column operations. One verifies that

(
a$n b
c$n d

)
∼


(
$n−m ∗

0 $m

)
if m = v(d) < n(

1 ∗
0 $n

)
if m = v(d) ≥ n.

Using the results on m×(Xn) from above and the fact that φ ∈ B(χ1, χ2), it
follows that∫

K

φ(k
(
$n

1

)
)dk =

1
1 + 1

q

×(
αn1 q

−n/2 + (1− 1
q

)αn1 q
−n/2

n−1∑
m=1

(α−1
1 α2)m + αn2 q

n/2(1− 1
q

)
∞∑
m=n

qm

)
.

Simplifying this formula gives the result. �

We finish this section with two calculations that may be useful to us later. First,
suppose B(χ1, χ2) is irreducible and unramified with spherical function ωχ1,χ2 . Let
φ be the spherical vector in B(χ1, χ2) such that φ(e) = 1 and φ′ the spherical vector
in B(χ−1

1 , χ−1
2 ) such that φ′(e) = 1. Then

(3.11.6) ωχ1,χ2(g) = 〈π(g)φ, φ′〉 =
∫
K

φ(kg)φ′(k)dk =
∫
K

φ(kg)dk.

The second calculation is of the spherical homomorphism H(G,K)→ C:

f 7→ λπ(f) =
∫
G

f(g)ω(g)dg =
∫
G×K

f(g)φ(kg)dkdg

=
∫
G×K

f(k−1g)φ(g)dkdg =
∫
G×K

f(g)φ(g)dkdg

=
∫
G

f(g)φ(g)dg

=
∫
NAK

f (( 1 x
1 ) ( a1

a2 ) k)φ(( 1 x
1 ) ( a1

a2 ) k)
∣∣∣∣a1

a2

∣∣∣∣−1

dxd×a1d
×a2dk

=
∫
f(( 1 x

1 ) ( a1
a2 ))χ1(a1)χ2(a2)

∣∣∣∣a1

a2

∣∣∣∣−1/2

dxd×a1d
×a2dk.

We have used the fact that G = NAK and dg =
∣∣∣a1
a2

∣∣∣−1

dxd×a1d
×a2dk.

3.12. Unitary representations. Let GF = GL2(F ) with F a local field, V a
vector space over C with a Hermitian pairing 〈·, ·〉. Note that the pairing makes V
a topological vector space.

Definition 3.12.1. A unitary representation of G on V (or, equivalently a unitary
GF -module) is an action of G on V such that 〈π(g)v1, π(g)v2〉 = 〈v1, v2〉. (i.e. the
action of GF preserves the pairing.)

Definition 3.12.2. Let (π, V ) be a unitary GF -module. It is called topologically
irreducible if the only invariant closed subspaces of V are {0} and V itself.
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Theorem 3.12.3. Let (π, V ) be an irreducible unitary G-module. Consider

V∞ := {v ∈ V : v is fixed by some open subgroup L ⊂ G}.

Then (π |V∞ , V∞) is irreducible admissible.

With this one may ask which irreducible admissible G-modules are unitarizable.
In other words, when can one put a positive-definite g-invariant Hermitian pairing
on the space? In group theory a basic question is given a group H find its unitary
dual. We have already classified all irreducible admissible G-modules.

Exercise 3.12.4. Determine all unitarizable irreducible representations of GL2(F ).

As a hint, recall that every irreducible admissible representation is isomorphic to
one of the following: supercuspidal, irreducible B(χ1, χ2) (principal series), special
representations Spχ or Cχ with G acts b χ(det(·)). Show Cχ is unitarizable if
and only if χ is unitarizable. In Section 3.7.1 we saw that supercusipdals are
unitarizable, and in Corollary 3.10.4 that Spχ are as well. It remains to determine
when a principal series representation B(χ1, χ2) are unitarizable. If it is unitarizable
then B(χ1, χ2)∼ = B(χ1, χ2) since for unitarizable representations we have a non-
degenerate perfect pairing V × V → C. Moreover,

B(χ1, χ2) = B(χ1, χ2) and B(χ1, χ2)∼ = B(χ−1
1 , χ−1

2 )

forces that
(χ−1

1 , χ−1
2 ) = (χ1, χ2) or (χ−1

1 , χ−1
2 ) = (χ2, χ1).

In the first case, χ−1
j = χj implies that χj is unitary, and in the other case χ1 =

χ2
−1. One needs to determine if these necessary conditions are sufficient. In the

first case it is sufficient, but in the second it is not.
The homework is to use the natural pairing you get fromB(χ1, χ2)∼ = B(χ1, χ2).

Under what conditions will it be positive definite? To check this when χ1 = χ2
−1

let σ : B(χ1, χ2) → B(χ−1
1 , χ−1

2 ) be the isomorphism and check when (f1, f2) =
〈f1, σf2〉 is positive definite.

3.13. Whittaker and Kirillov models. The following gives some motivation:
Let f be a function on GF and ψ : F → C× an additive character9. Then we can
consider the ψ-coefficient

fψ,N =
∫
F

f

((
1 x

1

)
g

)
ψ−1(x)dx,

or the functional

Lψ : f →
∫
F

f

(
1 x

1

)
ψ−1(x)dx

which (formally) satisfies L(ρ ( 1 x
1 ) f) = ψ(x)Lf . WARNING: this is a naive notion

since the integral need not converge.

Definition 3.13.1. Let (π, V ) be an irreducible admissible GF -module, ψ : F → C
an additive character. The ψ-Whittaker functional is a nonzero linear functional
L : V → C× such that L(π ( 1 x

1 ) v) = ψ(x)Lv.

9We use the terminology quasicharacter when a character is not necessarily unitary, and char-
acter if it is.



46 AUTOMORPHIC FORMS ON GL2 – JACQUET-LANGLANDS

Remark. In the global theory, we will consider spaces of functions on G(Q)\G(A).
In this case the nilpotent radical N(Q)\N(A) ' F\AF is a compact group, so the
corresponding integrals as given above will always converge. In other words, there
is a good Fourier expansion theory. But locally N is not compact so we don’t
literally have a Fourier expansion.

Basic Observation. If Lψ : V → C is a Whittaker functional then we have the
following:

(1) For v ∈ V one associates Wv(g) = Lψ(π(g)v). Then

Wv(
(

1 x
1

)
g) = Lψ(π(

(
1 x

1

)
g)v) = ψ(x)L(π(g)v) = ψ(x)Wv(g).

(2) For v ∈ V one can associate ϕv : F× → C by α 7→ Lψ(π ( α 1 ) v). Then ϕv
is locally constant because π is smooth, and

ϕπ( a x1 )v(α) =Lψ(π
(
α

1

)
π

(
a x

1

)
v)

=Lψ(π
(
αa αx

1

)
v)

=Lψ(π
(

1 αx
1

)
π

(
αa

1

)
v)

=ψ(αx)ϕv(aα).

We will see that (1) corresponds to a Whittaker model and (2) corresponds to a
Kirillov model.

Let BF = {( a x1 ) ∈ GL2(F )}. Then BF has an action ξψ on C∞(F×), the space
of locally constant functions on F×, given by

ξψ(
(
a x

1

)
ϕ)(α) = ψ(αx)ϕ(aα),

which matches the action of BF in (2).

Lemma 3.13.2. Let S(F×) = C∞c (F×) be the space of Bruhat Schwarz functions
(i.e. the space of locally constant compactly supported functions of F×.) Then
ξψ |S(F×) is irreducible.

Definition 3.13.3. Suppose that (π, V ) is irreducible and admissible.
(1) A ψ-Whittaker model of V is a subspace W (π, ψ) of

W (ψ) := {W : G→ C | f(( 1 x
1 ) g) = ψ(x)f(g) for all x ∈ F, g ∈ G}

such that the right translation action of G on W (π, ψ) is equivalent to π.
(2) A Kirillov model is a subspace V ′ ⊂ {locally constant functions on F×}

and an action π′ of G on V ′ such that (π′, V ′) ' (π, V ) and π′ |BF = ξF .

Remark. We have the following correspondence between these notions.

(3.13.1)
{

Kirillov
models

}
oo //

{
Whittaker
functionals

}
oo //

{
Whittaker

models

}
Whittaker functionals and Whittaker models are linked by Lψ 7→ W (π, ψ) =

{Wv | Wv(g) = Lψ(π(g)v)}. Conversely, if v ∈ V ' W (π, ψ) and Wv corresponds
to v then we define the Whittaker functional Lψ : V → C by v 7→Wv(e).
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Whittaker functionals and Kirillov Models are linked via Lψ 7→ V ′ = {ϕv(α) =
Lψ(π ( α 1 ) v)}. In the other direction, if V ′ ' V with ϕv ↔ V then we define the
Whittaker functional Lψ : V → C by v 7→ ϕv(e).

Our main goal of this section is to prove that a ψ-Whittaker functional exists
and is unique up to scalar. (See Theorem 3.13.4.)

Remark. Theorem 3.13.4 is not true in general for GLn when n > 2 because exis-
tence is not guaranteed. However, if a Whittaker functional does exist, it is always
unique.

Proof of Lemma 3.13.2. Recall that F× = ∪n∈Z$
nO×F . Let V be a nonzero BF -

invariant subspace of S(F×). We need to show V = S(F×). Denote the set of
characters of O×F by X. Since translates of {ϕν = ν · 1O×F | ν ∈ X} form a basis of
S(F×), it suffices to show that ϕν ∈ V for every ν ∈ X.

Choose a nonzero ϕ0 ∈ V . Then O×Fϕ0 (the action is: (α · ϕ0)(x) = ϕ0(αx))
is finite dimensional because it is a smooth action. We conclude that O×Fϕ0 is a
direct sum of one dimensional O×F -modules because O×F is commutative. Let ϕ be
a non-zero element in this summand. Then ϕ(ε · a) = ν(ε)ϕ(a) for some character
ν ∈ X.

Next, we show that for any µ ∈ X \ {ν}, µ1O×F ∈ V . As motivation for our
method, observe that if ϕ ∈ S(F×) then

ϕ[µ] :=
∫
ϕ(εα)µ−1(ε)dε

satisfies ϕ[µ](εα) = µ(ε)ϕ(α). For this reason we call ϕ[µ] the µ-component of ϕ.
Given ϕ as before, let

ϕ̃ =
∫
O×F

µ−1(ε)ξψ

(
ε

1

)
ξψ

(
1 x

1

)
ϕdε.

Note that ϕ̃ ∈ V . Moreover,

ξψ

(
ε

1

)
ξψ

(
1 x

1

)
ϕ(α) = ψ(αεx)ϕ(αε).

So

ϕ̃(α) =
∫
O×F

µ−1(ε)ψ(αεx)ϕ(αε)dε =
∫
νµ−1(ε)ψ(αεx)dεϕ(α).

This implies that ϕ̃(εα) = µ(ε)ϕ̃(α). We want to choose x so that the support of ϕ̃
is exactly O×F . That is, so that it is 0 outside of O×F and not equal to zero on O×F .
This, in turn, implies that ϕ̃ = λ · µ1O×F for some λ ∈ C. So we have to calculate
the Gauss sum ∫

O×F
νµ−1(ε)ψ(αεx)dε.

Finally, by this same argument µ1OF ∈ V so we are done. �

For homework let ψ : F → C of conductor $nOF . That is the smallest group
such that ψ |$mOF = 0. Let χ : F× → C of conductor 1 +$nO×F then∫

O×F
ψ(ε)χ(ε)dε

{
= 0 m 6= n

6= 0 m = n
.
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So just choose x so that νµ−1 has conductor 1 + $nO×F for n ≥ 1 and ψ has
conductor $mOF such that v(x) = m− n then∫

νµ−1(ε)ψ(αxε)dε

{
= 0 outside O×F
6= 0 on O×F

.

Theorem 3.13.4. Suppose (π, V ) is an infinite dimensional irreducible admissi-
ble GF -module, and ψ : F → C× a nontrivial character. Then a ψ-Whittaker
functional exists and is unique up to scalars.

Let us explain why the hypotheses of this theorem are necessary. First, if ψ is
trivial, L is a functional on VN , the Jacquet module, which has dimension 0 or 1,
as V is, respectively, supercuspidal or not.

If V is finite dimensional then V ' Cχ (i.e. V is one dimensional with G acting
by χ ◦ det.) If ψ is non-trivial, then there is no ψ-Whittaker functional because
π ( 1 x

1 ) acts trivially.
To prove this we follow a similar method as we did when studying the Jacquet

module, but the proof is harder. By definition, if L is a ψ-Whittaker functional
then

(3.13.2) L(v − ψ−1(x)π
(

1 x
1

)
v) = 0

for v ∈ V and x ∈ F . So if

V ′ψ := span{v − ψ−1(x)π
(

1 x
1

)
v : v ∈ V, x ∈ F},

and X = V/V ′ψ then the ψ-Whittaker functional L corresponds to a function on X.
As a consequence, Theorem 3.13.4 is equivalent to the following.

Theorem 3.13.5. dim(X) = 1.

Lemma 3.13.6. Suppose (π, V ) and ψ are as in Theorem 3.13.4, and V ′ψ as
above. Then v ∈ V ′ψ if and only if there exists U ⊆ F open and compact such
that

∫
U
ψ−1(x)π ( 1 x

1 ) vdx = 0.

The proof of this lemma is nearly identical to that of Lemma 3.5.3 which char-
acterizes when a vector belongs to V (N).

Proposition 3.13.7. Consider the map V → C∞0 (F×, X), space of locally constant
functions with values in X, given by v 7→ ϕv where ϕv(α) = [π ( α 1 ) v].

(i) This map is injective.
(ii) For all a ∈ F× and x ∈ F

ϕπ( a x1 )v = ξψ

(
a x

1

)
ϕv.

Recall that the action ξψ is given by

ξψ

(
a x

1

)
ϕ(α) = ψ(αx)ϕ(aα).

Also, note that once we know that dimX = 1, the mapping v 7→ ϕv will give the
Kirillov model.
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Lemma 3.13.8. If (π, V ) is irreducible admissible and infinite dimensional, and

v ∈ V is fixed by N := {
(

1 x
1

)
: x ∈ F} then v = 0.

Proof. Suppose v is fixed by N . We will show that N ′ = {( 1
x 1 ) | x ∈ F} also

fixes v, and, therefore, that SL2 does as well. By smoothness, v is fixed by some(
a b
c d

)
∈ G with c 6= 0. Then(

1 −ac−1

1

)(
a b
c d

)(
1 −c−1d

1

)
=
(

−adc−1 + b
c

)
fixes v. Call b0 = −adc−1 + b 6= 0. So(

b0
c

)(
1 x

1

)(
b0

c

)−1

=
(

1
b−1
0 cx 1

)
fixes v for all x. Hence letting x run over F , we see that N ′ fixes v. As N and N ′

generates SL2(F ), we get the claim.
This implies that

π(g)v = π

(
det(g)

1

)
v = π

(
δ$L

1

)
v

where det(g) = δ$` with δ ∈ O×F we get g · v =. This gives an action of F× on v.
We claim that the resulting space, F · v, is finite dimensional space. To see this,
suppose α = γβ2 then(

α
1

)
v =

(
γ

1

)(
β

β

)
v = ω(β)

(
γ

1

)
v

with ω the central character of π. Hence, the space F× · v (which is the same as
that spanned by π(g)v for all g ∈ G) is the same as that spanned by π ( α 1 ) v
for α running through a set of representatives of F×/(F×)2. This is a finite set,
so the space must be finite dimensional. Unless v = 0 this would contradict the
assumption that V is irreducible and infinite dimensional. �

Lemma 3.13.9. Let ψ : F → C× be a nontrivial additive character with con-
ductor pm = $mOF meaning it is trivial over pm but not over pm−1. Suppose
f ∈ C∞(p`, Y ) where Y is a finite dimensional vector space over C and ` ∈ Z. If
n > ` the following are equivalent.

(i) f is constant over the cosets of pn in p`.
(ii)

∫
p`
ψ(−ax)f(x)dx = 0 for all a outside pm−n.

Remark. This technical lemma is linked to Fourier analysis.

Proof. Consider f as a function supported on p`. Then f ∈ S(F, Y ), and its Fourier
transform is

f̂(a) :=
∫
F

ψ(−ax)f(x)dx =
∫

pL
ψ(−ax)f(x)dx.

So, to prove that (i) implies (ii), we need to show that if f is constant on cosets of
pn in p`, then f̂(a) = 0 whenever a /∈ pn−m. Let αi be coset representatives. Then,
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assuming (i),

f̂(a) =
∑∫

αi+pn
ψ(−ax)f(x)dx =

∑
ψ(−aαi)

∫
pn
ψ(−ax)f(αi + x)dx

=
∑

ψ(−aαi)f(αi).

Since the conductor of ψ(−a ·) is pm−v(a), whenever a /∈ pm−n, ψ(−aαi) = 0 for
all i. Hence f̂(a) = 0 as desired.

To prove that (ii) implies (i), we use the Fourier inversion formula: ˆ̂ϕ(x) =
ϕ(−x)c(ψ) where c(ψ) is a positive constant depending on ψ and the measure. So

f(x) =
1

c(ψ)
ˆ̂
f(−x) =

1
c(ψ)

∫
F

f̂(y)ψ(xy)dy =
1

c(ψ)

∫
pm−n

f̂(y)ψ(xy)dy.

So, if z ∈ pn and y ∈ OF then ψ(yz) = 1, and therefore

f(y + z) =
1

c(ψ)

∫
pm−n

f̂(y)ψ(xy + yz)dy

=
1

c(ψ)

∫
pm−n

f̂(y)ψ(xy)dy = f(x)

as desired. �

Proof of Proposition 3.13.7. Recall that we want to show that the map v 7→ ϕv(α) =
[π ( α 1 ) v] ∈ X is injective. Suppose ϕv = 0 and consider the function f(x) =
π ( 1 x

1 ) v ∈ C∞(F, V ). We will show f(x) = v. Then Lemma 3.13.8 implies v = 0.
We show f is constant by looking over every coset and applying Lemma 3.13.9.

We use an inductive argument. We obtain the base step by smoothness: there
exists an n0 such that π ( 1 x

1 ) v = v for all x ∈ pn0 . That is, f is constant over
cosets of pn0 . We will argue that if f is constant over cosets of pn, then it is constant
over cosets of pn−1, implying f is constant (since F× = ∪n<n0p

n and f(0) = v).
To get the inductive step, suppose f is constant over cosets of pn. Let `� 0 we

will argue that f is constant over cosets of pn−1 in p`. By Lemma 3.13.9, it suffices
to show that

∫
p`
f(x)ψ(−ax)dx = 0 for all a outside pm−n−1. By the induction

hypothesis, this is true for a outside pm−n. So we need to consider what happens
if a ∈ $m−nO×F .

Although this set is infinite, we will show that we only need to check finitely many
values. Observe that there exists n1 such that π

(
1+x

1

)
v = v for all x ∈ $n1OF .

So for b ∈ 1 +$n1OF , π(b)f = f , and therefore

π(b)
∫

p`
ψ(−ax)f(x)dx =

∫
p`
ψ(−a

b
x)f(x)dx.

We conclude that f̂(a) = 0 if and only if f̂(a/b) = 0. Hence we only need to check
f̂(a) = 0 for 1 +$n0OF orbits of $m−nO×F and this is a finite set.

Let a1, · · · , ad be 1 +$n0OF coset representatives of $m−nO×F . Need to check
f̂(aj) = 0 for j = 1, . . . , d. Note that ϕv = 0 implies that ϕv(aj) = 0 ∈ X which is
equivalent to

π

(
aj

1

)
v ∈ V ′ψ.
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By Lemma 3.13.6, this holds if and only if∫
U

ψ−1(x)π
(

1 x
1

)
π

(
aj

1

)
vdx = 0

for some U . We may take U = p`j for some `j ∈ Z. This integral is equal to

π

(
aj

1

)
|aj |

∫
p`jaj

ψ(−ajx)π
(

1 x
1

)
vdx,

and so whenever ` < v(aj) + `j ,∫
pL
ψ(−ajx)f(x)dx = 0.

The verification of (ii) is left as an easy exercise. �

Given that V ↪→ C∞(F×, X), we will often identify V with its image. The
following proposition describes the image.

Proposition 3.13.10. Let V0 = S(F×, X) the space of functions f : F× → X
that are locally constant and have compact support. Then V ⊇ V0. More precisely,
V = V0 + π(w)V0.

Since G = P t PwP , and we know that the action of P is by ξψ and ω, the
central character of π, the point will be to analyze the action of w. After doing
this, it will follow almost immediately that dimX = 1.

We have the following facts:
Observation 1: If Y is a finite dimensional vector space and ϕ ∈ S(F×, Y ) then
O×F · ϕ is finite dimensional, and we may write

ϕ =
∑
µ

ϕ[µ]

where the sum runs through all characters µ : O×F → C× and

ϕ[µ] =
∫
O×F

µ−1(ε)ϕ(εα)dε

is the µ-component of ϕ. (The action of O×F on ϕ is via ξψ(( a 1 )).) Note that since
ϕ ∈ S(F×, Y ), the integral is actually a finite sum. Moreover,

ϕ[µ](εa) = µ(ε)ϕ(a) for all ε ∈ O×F .

Observation 2: Suppose ϕ ∈ S(F×, Y ) and ϕ(εa) = ν(ε)ϕ(a). Then all µ 6= ν
can be obtained via

ϕ′ =
∫
O×F

µ−1(ε)ξψ

(
ε

1

)(
1 x

1

)
ϕdε.

Indeed, for suitable x, ϕ′ = c1O×F µ ·ϕ(1) where c is a fixed constant. (Note that we
used this trick in the proof of Lemma 3.13.2.)
Observation 3: Given ϕ ∈ V , there exists n0 such that ϕ(α) = 0 whenever
v(α) < n0. (That is, ϕ vanishes at infinity.) To see that this is true, note that there
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exists n such that if v(x), v(a − 1) < n10 then π(( a x1 ))ϕ = ϕ. In particular, this
implies that ϕ(αx) = ϕ(x), and looking at the action of ( a x1 ) on ϕ,

ϕ(α) = ψ(αx)ϕ(α)

if x ∈ pn. Now let m be the greatest integer such that ψpn 6= 1. (Since ψ is
non-trivial this makes sense.) One can show that n0 = n−m works.

Proof of Proposition 3.13.10. We first show that S(F×, X) ⊂ V .

S(F×, X) =
∑
u∈X

S(F×,Cu)

implies that it suffices to show that S(F×,Cu) ⊂ V for all u ∈ X. Suppose φ ∈ V
is a preimage of u ∈ V/V ′ψ. Then φ(1) = u, but φ need not be Bruhat-Schwartz.
However, φ′ = φ− π(( 1 x

1 ))φ is. Indeed,

φ′(α) = φ(α)− π(
(

1 x
1

)
)φ(α) = φ(α)− ψ(αx)φ(α) = (1− ψ(αx))φ(α).

Thus, φ′ vanishes near 0 and, by observation 3, near ∞ as well. In particular,
φ′(1) = (1 − ψ(x))φ(1), so choosing x such that ψ(x) 6= 1 forces φ′(1) to be a
nonzero multiple of φ(1) = u. In summary, by replacing φ with (1−ψ(x))−1φ′, we
may assume that φ ∈ S(F×,Cu), and φ(1) = u.

For this choice of φ, write
φ =

∑
ν

φ[ν]

where the sum is taken over all characters ν : O×F → C×, and

φ[ν] =
∫
O×F

ν(ε)−1π(
(
ε

1

)
)φdε

is an element of V ∩ V0. Choose one component ϕ[ν]. By observation 2, we get
1O×F µ·ϕ(1) ∈ V ∩V0 for all µ 6= ν. Using any of these, we similarly get 1O×F ν ·ϕ(1) ∈
V ∩ V0. Since these generate S(F×,Cu) this proves (1).

Using G = P ∪NwP , we have

V = span{π(g)ϕ | g ∈ G, v ∈ V0}

= V0 + span{π(
(

1 x
1

)
)π(w)ϕ | x ∈ F}.

Since

π(
(

1 x
1

)
)π(w)ϕ = −[π(w)ϕ− π(

(
1 x

1

)
)π(w)ϕ] + π(w)ϕ,

the bracketed term is in V0 by the same trick as above. Hence V = V0 +π(w)V0. �

Remark. Determining the action of w will help us to get the local functional equa-
tion later.

Given ϕ ∈ C∞(F×, X), the idea is to understand the interaction between the
values of ϕ on $nO×F (note that F× =

∑
n$

nO×F ) and characters of O×F .

10This means that a ∈ U(n) = 1 + pn.
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Remark. If f ∈ C∞(O×F ,C) then

f =
∑

µ:O×F→C×
f[µ] =

∑
µ

cµµ

where cµ =
∫
O×F

f(ε)µ−1(ε)dε.

More precisely, let ν be such a character. Then set

ϕ̂n(ν) =
∫
O×F

ν(ε)ϕ($nε)dε,

and consider the formal power series

ϕ̂(ν, t) =
∞∑

n=−∞
ϕ̂n(ν)tn.

We call this the Mellin series associated to ϕ or the Mellin transform of ϕ.
We record some facts about the Mellin series

• If ϕ ∈ V then ϕ̂(ν, t) has finitely many nonzero negative terms since ϕ
vanishes near infinity.

• If ϕ ∈ V0 then ϕ also vanishes near zero so the sum is actually finite.
• ϕ̂(ν, t) = 0 for all ν implies that ϕ = 0.
• Let ω : F× → C× be a quasicharacter. If

〈ϕ, ω〉 :=
∫
F×

ϕ(a)ω(a)d×a

is absolutely convergent then

〈ϕ, ω〉 =
∞∑

n=−∞

∫
$nO×F

ϕ(a)ω(a)d×a

=
∞∑

n=−∞

∫
O×F

ϕ($nε)ω($nε)d×ε

=
∑
n

ω($)n
∫
O×F

ϕ($nε)ω(ε)d×ε

= ϕ̂(ω |O×F , ω($)).

For ϕ ∈ V , set π(g)ϕ̂(ν, t) = π̂(g)ϕ(ν, t).

Proposition 3.13.11. (i) If ϕ ∈ V ,

π(
(
δ$`

1

)
)ϕ̂(ν, t) = t−`ν−1(δ)ϕ̂(ν, t),

and

π(
(

1 x
1

)
)ϕ̂(ν, t) =

∑
n

tn

{∑
µ

ϕ̂n(µ)η(µ−1ν,$nx)

}
,

where η(µ, y) =
∫
O×F

µ(ε)ψ(yε)dε.
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(ii) For ϕ ∈ V0,

π(w)ϕ̂(ν, t) = C(ν, t)ϕ̂(ν−1ω1 |O×F , t
−1ω($)−1)

where ω is the central character of π and C(ν, t) =
∑
n Cn(ν)tn with Cn(ν) :

X → X linear operators. For all u, Cn(ν)u = 0 for n� 0.

Proof. The proof is a straightforward manipulation of the definitions. Since

π(
(
δ$`

1

)
)ϕ̂(ν, t) =

̂
π(
(
δ$`

1

)
)ϕ(ν, t) =

∑
n

̂
π(
(
δ$`

1

)
)ϕ
n

tn,

we need to calculate
̂

π(
(
δ$`

1

)
)ϕ
n

=
∫
O×F

π

(
δ$`

1

)
ϕ(ε$n)ν(ε)dε

=
∫
O×F

ϕ(δε$`+n)ν(ε)dε

= ν(δ)−1

∫
O×F

ϕ(ε$`+n)dε

= ν(δ)−1ϕ̂`+n(ν).

Plugging this into the above equation, we get

π(
(
δ$`

1

)
)ϕ̂(ν, t) =

∑
n

ν(δ)−1ϕ̂n+`t
n = t−`ν(δ)−1

∑
n

ϕ̂nt
n.

The second formula of (i) is similarly proved. We leave it as an exercise.
It remains to prove (ii). As above,

π(w)$̂(ν, t) = π̂(w)ϕ(ν, t) =
∑
n

π̂(w)ϕn(ν)tn,

so we compue the individual terms:

π̂(w)ϕn(ν) =
∫
O×F

π(w)ϕ(ε$n)ν(ε)dε

=
∫
O×F

π(
(
ε

1

)
)π(w)ϕ($n)ν(ε)dε

=
∫
O×F

π(
(
ε

ε

)
)π(
(

1
ε−1

)
)π(w)ϕ($n)ν(ε)dε

=
∫
O×F

π(w)π(
(
ε−1

1

)
)ϕ($n)(ων)(ε)dε

=
∑
µ

∫
O×F

(ωνµ−1)(ε)π(w)π(
(
ε−1

1

)
)ϕ[µ]($n)dε

=π(w)ϕ[ων]($n).

In the third to last line we used that ϕ =
∑
µ ϕ[µ] and in the second to last line

that
∫
O×F

(ωνµ−1)(ε)dε is zero if ωνµ−1 is not the trivial character and 1 otherwise.
So

π(w)ϕ̂(ν, t) =
∑
n

π(w)ϕ[ων]($n)tn.
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The right hand side of this equation will be zero when ϕ[ων] = 0. This happens if
and only if ϕ̂((ων)−1, t) = 0. For u ∈ X, set

ϕu,µ := 1O×F µ · u,

and define Cn(ν)π(w)ϕu,ων($n).
Claim: For ϕ ∈ V0,

(3.13.3) π(w)ϕ̂(ν, t) = C(ν, t)ϕ̂((ων)−1, t1ω($)−1).

One only needs to check this claim for translates of ϕu,ων because these span V0. Ac-
tually, one can show that (3.13.3) is true for ϕ implies that it is true for π(

(
π`

1

)
)ϕ.

To do this, one uses (i). Need to check:

π(w)
̂

π(
(
π`

1

)
)ϕ(ν, t) = C(ν, t)π(

(
π`

1

)
)ϕ̂((ων)−1, t−1ω($)−1).

This is routine and is left as an exercise. �

Remark. The operators Cn(ν) determine the structure of the representation.

Corollary 3.13.12. (i) If X1 ⊆ X is a subspace that is invariant by all Cn(ν)
then V1 = span{π(g)ϕ | ϕ ∈ S(F×, X1)} is G-invariant.

(ii) If T : X → X is a linear map that commutes with every Cn(ν) then for all
ϕ ∈ V , Tϕ(α) = T (ϕ(α)) is a G-intertwining map.

Note that since V ⊇ S(F×, X1) is irreducible, (i) implies that there is no sub-
space of X invariant by all Cn(ν), and (ii) implies that if T commutes with all
Cn(ν) it must be a scalar multiple of the identity map on X.

Proof. (i) We begin with two observations:
Observation 1: Suppose that ϕ ∈ C∞(F×, X). Then ϕ takes values in X1 if
and only if ϕn(ν) ∈ X for all n, ν. Equivalently, ϕ̂(ν, t) is a series with coefficients
in X1 for all ν. This is clear by noting that ϕ is spanned by characters. i.e.
ϕ($ε) =

∑
ϕn(ν)ν−1(ε).

Observation 2: If ϕ takes values in X1 then π(( ∗ ∗∗ )) takes values in X1. This is
true because acting by upper triangular matrices only changes ϕ by a character.

Since G = P t NwP , observation 2 implies that it suffices to show that for
ϕ ∈ S(F×, X1), π(( 1 x

1 ))π(w)ϕ takes values inX1, and since ( 1 x
1 ) acts by character,

just need to check that π(w)ϕ takes values in X1. But

π̂(w)ϕ(ν, t) = C(ν, t)ϕ̂((νω)−1, t−1ω($)−1)

is a series with coefficients in X1 for all ν, so by observation 1, π(w)ϕ does take
values in X1. This proves (1).

(ii) We first show that ϕ ∈ V implies that Tϕ ∈ V . If ϕ ∈ V0 then it is clear
that Tϕ ∈ V0, so we suppose that Tϕ = π(w)ϕ0 for some ϕ0 ∈ V0. Then one can
show that Tϕ = π(w)Tϕ0 ∈ V . To do so, one compares the Mellin transforms of
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both sides:

T̂ϕ(ν, t) =
∑
n

T̂ϕn(ν)tn =
∑
n

(∫
O×F

Tϕ($nε)ν(ε)dε

)
tn

=
∑
n

T

(∫
O×F

ϕ($nε)ν(ε)dε

)
tn

=
∑
n

T ϕ̂n(ν)tn = T ϕ̂(ν, t)

=T π̂(w)ϕ0(ν, t) = TC(ν, t)ϕ̂((ων)−1, t−1ω$−1)

=C(ν, t)T ϕ̂0((ων)−1, t−1ω$−1) = π(w)Tϕ0(ν, t).

This is true for all ν, so observation 1 implies Tϕ = π(w)Tϕ0.
To check that T is intertwining we need to check that if ϕ ∈ V ,

(3.13.4) T (π(g)ϕ) = π(g)(Tϕ)

for all g ∈ G. Note that it suffices to verify (3.13.4) for g = ( 1 x
1 ) , ( a 1 ) or w. In the

first two cases the comparison is easy. The hard part is to check Tπ(w)ϕ = π(w)Tϕ.
We split this into cases.
Case 1: ϕ ∈ V0 follows because, by above,

̂Tπ(w)ϕ(ν, t) =T π̂(w)ϕ(ν, t)

=TC(ν, T )ϕ̂((ων)−1, t−1ω$−1)

=C(ν, T )T̂ϕ((ων)−1, t−1ω$−1)

=π̂(w)ϕ(ν, t).

Case 2: ϕ = π(w)ϕ0. Then Tπ(w)ϕ = Tπ(w)π(w)ϕ0 = Tπ(−e)ϕ0 = ω(−1)Tϕ0.
On the other hand, π(w)Tϕ = π(w)Tπ(w)ϕ0 = ω(−1)Tϕ0. �

Proposition 3.13.13. Cn(ν)Cp(ρ) = Cp(ρ)Cn(ν) for all n, p, ν, ρ.

Proof of Theorem 3.13.5. The proposition and corollary imply that Cn(ν) is a scalar
for all ν, n. If dimX 6= 1, then for any subspace 0 ( X1 ( X, X1 is invariant under
all Cn(ν). Thus V1 = span{π(g)ϕ | ϕ ∈ S(F×, X1)} is a nontrivial G-invariant
subspace of V . A contradiction. �

To prove the proposition, we use the identity

w

(
1 1

1

)
w = −

(
1 −1

1

)
w

(
1 −1

1

)
which implies that for all ϕ ∈ V0 = S(F×, X)

(3.13.5) π(w)π(
(

1 1
1

)
)π(w)ϕ = ω(−1)π(

(
1 −1

1

)
)π(w)π(

(
1 −1

1

)
)ϕ.

We compare the Mellin series of both sides of (3.13.5). The ν, t series are of the
form ∑

n

tn
∑
p,ρ

(
∗

)
ϕ̂p(ρ).

By comparing the coefficients ∗ from the two sides of (3.13.5), one gets the following.
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Lemma 3.13.14. Suppose ψ has conductor p−`.
(1) If νρω |O×f 6= 1 has conductor pm then∑

σ

η(σ−1ν,$n)η(σ−1ρ,$p)Cp+n(σ)

=η((σρω |O×f )−1)ω($m+`)(νρω)(−1)Cn−m−`(ν)Cp−m−`(ρ)

(2) Write ν̃ = (νω |O×F )−1. Then∑
σ

η(σ−1η,$n)η(σ−1ρ,$p)Cp+n(σ)

=ω($)pω(−1)δn,p + (|$| − 1)−1ω$`+1Cn−1−ρ(ν)Cp−1−`(ρ)

−
−∞∑

r=−2−`

ω($)−rCn+rCp+r.

The proposition will follow from this lemma.

3.14. L-factors attached to local representations. As before, we assume that
(π, V ) is an irreducible admissible infinite dimensional representation of G and
that ψ : F → C× is a nontrivial character. In this section we explore some of the
consequences of Theorem 3.13.4.

Corollary 3.14.1. A Kirillov model exists and is unique. A ψ-Whittaker model
exists and is unique.

See Definition 3.13.3 for details as to how these models are defined.

3.14.1. Motivation and review of GL1 theory. These two models have extensive
use. We will use them to study the local L-factors. The idea in defining them is
as follows. (π, V ) irreducible admissible infinite dimensional with Whittaker model
W (π, ψ). For W ∈W (π, ψ), consider

Ψ(g, s,W ) =
∫
F×

W

[(
a

1

)
g

]
|a|s−

1
2 d×a.

Then there exists an L-factor L(π, s) = p(q−s)−1 where p is a polynomial with
constant term 1 and q is the order of the residue field of F , such that

Φ(g, s,W ) =
Ψ(g, s,W )
L(s, π)

is holomorphic for all W and g. In other words, the L-factor is the nonholomorphic
part of the Whittaker integral.

This mirrors the GL1 theory where start with χ : F× → C× and a Bruhat-
Schwartz function Φ to get

Z(Φ, χ, s) =
∫
F×

Φ(x)χ(x) |x|s d×x.

We defined an L-factor L(s, χ) such that

Z(Φ, χ, )
L(s, χ)
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is holomorphic. Moreover, (3.9.6) gave a functional equation

Z(Φ, χ, s)
L(s, χ)

= ε(s, χ,Φ)
Z(Φ̂, χ, 1− s)
L(1− s, χ−1)

.

Remark. The L-factor is of interest because it does not depend on χ (in the GL1

case) or W (in the GL2 case.)

3.14.2. The contragradient representation. In this section we describe the difference
between the Whittaker model of π and that of π̃.

Proposition 3.14.2. Let ω be the central quasicharacter of π. Then π̃ = π⊗ω−1.
Also,

W (π̃, ψ) =
{
W (g)ω−1(det g) |W ∈W (π, ψ)

}
.

Proposition 3.14.3. Let (π, V ) be in its Kirillov form. Then

V ′ = span

{
v − π

(
1 x

1

)
v | v ∈ V, x ∈ F

}
= S(F×)

Proof. V ′ ⊆ S(F×) because, as we saw in the proof of Proposition 3.13.10, v −
π ( 1 x

1 ) v is compactly supported. So we need to show that S(F×) ⊆ V ′. Actually
we can show that for all ϕ ∈ S(F×),

ϕ ∈ span
{
ϕ̃− π ( 1 x

1 ) ϕ̃ | ϕ̃ ∈ S(F×), x ∈ F
}
.

For ϕ ∈ S(F×), set ϕ(0). Now ϕ can be considered as an element of S(F ), and so
it has a Fourier transform

ϕ̃(y) =
∫
F

ϕ(x)ψ(−xy)dx

which is also in S(F ). By Fourier inversion,

ϕ(x) = c ·
∫
F

ϕ̃(−y)ψ(xy)dy.

(The constant c depends on ψ and the choice of measure.)
Let n1, n2 be such that supp(ϕ) ⊆ pn1 and supp(ϕ̃) ⊆ pn2 . When x ∈ pn1 ,

ϕ(−y)ψ(xy) is constant over cosets of pn3 for some n3 > n1, n2. (Note that the
conductor of ψ(xy) is the conductor of ψ times p−v(x).) Let {yi} be coset represen-
tatives of pn3 in pn2 . Whenever x ∈ pn1

ϕ(x) =
∑
i

c ·
∫
yi+pn3

ϕ̂(−y)ψ(xy)dy =
∑
i

cϕ̂(−yi)ψ(xyi).

Setting ϕ0 = 1pn1 and λi = cϕ̂(−yi), we have an equality of functions

ϕ(x) =
∑
i

λiψ(xy)ϕ0(x) =
∑
i

λiπ

(
1 x

1

)
ϕ0(x)

for all x ∈ F . Since ϕ(0) = 0 and ψ(0) = 1, in particular, we have
∑
λi = 0. Thus

ϕ =
∑

λi(π
(

1 x
1

)
ϕ0 − ϕ0).

Since ϕ0 ∈ S(F×), this completes the proof. �

As an immediate consequence of the definition of the Jacquet module, we get
the following.
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Corollary 3.14.4. π is supercuspidal if and only its Kirillov model is realized in
S(F×).

Remark. Suppose ψ : F → C× is nontrivial. If L : S(F×)→ C satisfies L(ξψ ( 1 x
1 )ϕ) =

ψ(x)Lϕ for all ϕ, then L = 0.

For (π, V ) as above, by (π ⊗ χ, V ) we mean the representation of G with un-
derlying space V and action (π ⊗ χ)(g)v = χ(det g)π(g)v. The following lemma
describes the difference between the Kirillov and Whittaker models of π and π⊗χ.

Lemma 3.14.5. Denote π ⊗ χ by π′. Let V and W (π, ψ) be the Kirillov and
ψ-Whittaker models of π. Then

(i) The corresponding models of π′ are

V ′ = {χϕ | ϕ ∈ V },

W ′ = W (π′, ψ) = {χ ◦ det ·W |W ∈W (π, ψ)}.
(ii) C ′(ν, t) = C(νχ |O×F , χ($)t)

Proof. If v ∈ V then the Kirillov model for π is given by

v 7→ ϕv : α 7→ L(π
(
α

1

)
v).

On the other hand, the Kirillov model for π′ is

v 7→ ϕv : α 7→ L(π′
(
α

1

)
v) = L(χ(α)π

(
α

1

)
v) = χ(α)L(π

(
α

1

)
v).

Similarly, for the Whittaker models, for π,

v 7→Wv : g 7→ L(π(g)v),

and for π′,

v 7→Wv : g 7→ L(π′(g)v) = L(χ(det g)π(g)v) = χ ◦ det g · L(π(g)v).

The verification of (ii) is straightforward. It is left as an exercise. �

Before we prove the proposition, we give some preparation on pairings. If ϕ,ϕ′ ∈
C∞(F×) we can formally define

〈ϕ,ϕ′〉 =
∫
F×

ϕ(α)ϕ′(−α)d×α.

If we assume that one of the functions is Schwartz-Bruhat then the integral is
well-defined, and moreover, for b = ( a x1 ),

〈ξψ(b)ϕ, ξψ(b)ϕ′〉 =
∫
F×

ξψ(b)ϕ(α)ξψ(b)ϕ′(−α)d×α

=
∫
F×

ψ(αx)ϕ(aα)ψ(−αx)ϕ′(−aα)d×α

=〈ϕ,ϕ′〉.

The final equality follows by changing variables and using that d×(aα) = d×α.
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Proof of Proposition 3.14.2. Write π′ = π ⊗ ω−1. One needs to provide a non-
degenerate G-invariant pairing from the underlying spaces of π and π′ to C. We
use the Kirillov model. Let V , V ′ be the Kirillov models of π and π′ respectively.
So

V = S(F×) + π(w)S(F×), V ′ = S(F×) + π′(w)S(F×).
For ϕ = ϕ1 + π(w)ϕ2 and ϕ′ = ϕ′1 + π(w)ϕ′2, define

β(ϕ,ϕ′) := 〈ϕ1, ϕ
′
1〉+ 〈ϕ1, ϕ2〉+ 〈ϕ2, ϕ

′
1〉+ 〈ϕ2, ϕ

′
2〉.

One can verify that β does not depend on the choice of decomposition of ϕ and ϕ′.
That β is G-invariant follows from the comments above and the following lemma.
The description of the Whittaker space of π̃ is straightforward. �

Lemma 3.14.6. For ϕ,ϕ′ ∈ S(F×), one has the following.
(1) 〈π(w)ϕ,ϕ′〉 = ω(−1)〈ϕ, π′(w)ϕ′〉.
(2) If π(w)ϕ or π(w)ϕ′ belongs to S(F×) then 〈π(w)ϕ, π′(w)ϕ′〉 = 〈ϕ,ϕ′〉.

The proof is left as an exercise, or one can read it in the book[5] of Jacquet and
Langlands.

3.14.3. Local L-factors: the supercuspidal case. The main theorem of the local the-
ory is the following.

Theorem 3.14.7. Let (π, V ) be an irreducible admissible infinite dimensional rep-
resentation of G with central character ω, and suppose W (π, ψ) its ψ-Whittaker
model for a nontrivial character ψ : F → C×. Then the functions

Ψ(g, s,W ) :=
∫
F×

W (
(
a

1

)
g) |a|s−

1
2 d×a,

Ψ̃(g, s,W ) :=
∫
F×

W (
(
a

1

)
g) |a|s−

1
2 ω−1(a)d×a

satisfy the following properties.
(i) There exists s0 ∈ R such that Ψ(g, s,W ) and Ψ̃(g, s,W ) absolutely converge

whenever Re(s) > s0 for all g ∈ G and W ∈W (π, ψ).
(ii) There exists a unique Euler factor L(s, π) such that

Φ(g, s,W ) =
Ψ(g, s,W )
L(s, π)

is holomorphic in s for all g ∈ G and W ∈W (π, ψ).
(iii) Set

Φ̃(g, s,W ) =
Ψ̃(g, s,W )
L(s, π̃)

.

Then there exists a unique exponential function ε(s, π, ψ) such that

Φ̃(
(

1
−1

)
g, 1− s,W ) = ε(s, π, ψ)Φ(g, s,W ).

We first observe that the uniqueness of L(s, π) is easy. Indeed, being an Euler
factor implies that L(s, π) = (p(q−s))−1 where p is a polynomial with constant term
1 and q = |$|−1. If L′(s, π) = (p′(q−s))−1 is another such function then

L(s, π)
L′(s, π)

and
L′(s, π)
L(s, π)
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would both be holomorphic and hence L′(s, π) = CL(s, π) for some constant C.
The condition that constant terms of p and p′ be 1 forces C = 1.

We also observe that for W ∈W (π, ψ), π(g)W (h) = W (hg). So

Ψ(g, s,W ) =
∫
F×

W (
(
a

1

)
g) |a|s−

1
2 d×a

=
∫
F×

(π(g)W )(
(
a

1

)
) |a|s−

1
2 d×a

= Ψ(e, s, π(g)W ),

and we therefore only need to check the theorem for g = e and W varying over
W (π, ψ).

The functional equation (part (iii) of the theorem) deals with the action of w =(
1

−1

)
, and this was our main concern when dealing with the Mellin transform

series. In fact, the Mellin series will be our main tool for proving the functional
equation. As a reminder, if ϕ ∈ C∞(F×) and ν : O×F → C× is a character then

ϕ̂(ν, t) :=
∑

ϕ̂n(ν)tn where ϕ̂n(ν) =
∫
O×F

ϕ(ε$n)ν(ε)dε.

It is an important fact that ϕ is completely determined by {ϕ̂(ν, t)}ν .
As we have shown before, in (3.13.1), the Kirillov and Whittaker models of π

are in one to one correspondence:

W (π, ψ) ←→ V
W ←→ ϕ

where W (( a 1 )) = ϕ(a). So we can write

(3.14.1) Ψ(e, s,W ) =
∫
F×

W (
(
a

1

)
) |a|s−

1
2 d×a =

∫
F×

ϕ(a) |a|s−
1
2 d×a.

For any quasicharacter χ : F× → C×, whenever

ϕ̂(χ) :=
∫
F×

ϕ(a)χ(a)d×a

is absolutely convergent, we have

ϕ̂(χ) =
∑
n

∫
O×F

ϕ($na)χ($na)d×a

=
∑
n

(∫
O×F

ϕ($na)χ(a)d×a

)
χ($)n

=
∑
n

ϕ̃n(χ |O×F )χ($)n

= ϕ̂(χ |O×F , χ($)).

In particular, if Ψ(e, s,W ) is absolutely convergent then (3.14.1) becomes

Ψ(e, s,W ) = ϕ̂(|·|s−
1
2 ) = ϕ̂(1, q

1
2−s)
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where q = |$|−1. Similarly, when it is absolutely convergent, we have

Ψ̃(e, s,W ) =
∫
F×

W (
(
a

1

)
) |a|s−

1
2 ω−1(a)d×a

=
∫
F×

ϕ(a) |a|s−
1
2 ω−1(a)d×a

= ϕ̂(|·|s−
1
2 ω−1)

= ϕ̂(ω−1
0 , q

1
2−sz−1

0 ),

and

Ψ̃(w, 1− s,W ) =
∫
F×

(π(w)W )(
(
a

1

)
) |a|

1
2−s ω−1(a)d×a

=
∫
F×

(π(w)ϕ)(a) |a|s−
1
2 ω−1(a)d×a

= π̂(w)ϕ(|·|
1
2−s ω)

= π̂(w)ϕ(ω−1
0 , qs−

1
2 z−1).

For notational convenience we are letting ω0 = ω |O×F and z0 = ω($).
From the above, we will see that the fact that whenever ϕ ∈ S(F×)

(3.14.2) π̂(w)ϕ(ν, t) = C(ν, t)ϕ̂((νω0)−1, (tz0)−1)

will be crucial to proving the theorem. In fact, when π is supercuspidal, we will see
that everything is much easier because V = S(F×) and so π(w)ϕ ∈ S(F×) and all
of the integrals of type (3.14.1) converge absolutely. We will also see that the term
C(ν, t) in (3.14.2) is particular simple for the choice of ν we will be concerned with.

Proof of Theorem 3.14.7 when π is supercuspidal. Let V be the Kirillov model for
π and let ϕ ∈ V be the function that corresponds to W ∈ W (π, ψ). Since π is
supercuspidal V = S(F×). Thus,

Ψ(e, s,W ) =
∫
F×

ϕ(a) |a|s−
1
2 d× and Ψ̃(e, s,W ) =

∫
F×

ϕ(a) |a|s−
1
2 ω−1(a)d×

converge absolutely for all s and W . This is statement (i) of the theorem.
So, by our comment above and the fact that for any character ν : F× → C and

any ϕ ∈ V , ϕ̂(ν, t) is a finite sum of powers of t,

Ψ(e, s,W ) = ϕ̂(1, q
1
2−s)

is holomorphic for all choices of ϕ. So, we can take L(s, π) = 1, and we have proved
(ii).

Since π̃ is also supercuspidal, L(s, π̃) = 1 as well, and

Φ(e, s,W ) =
Ψ(e, s,W )
L(s, π)

=
∫
F×

ϕ(a) |a|s−
1
2 d× = ϕ̂(1, q

1
2−s).

Similarly, since π̂(w)ϕ ∈ S(F×),

Φ̃(w, 1− s,W ) =
Ψ̃(w, 1− s,W )
L(1− s, π̃)

=
∫
F×

π(w)ϕ(a) |a|
1
2−s ω−1(a)d×

= π̂(w)ϕ(ω−1
0 , z−1

0 qs−
1
2 ) = C(ω−1

0 , z−1
0 qs−

1
2 )ϕ̂(1, q

1
2−s).
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The final equality is just (3.14.2). Taking ε(s, π, ψ) = C(ω−1
0 , z−1

0 qs−
1
2 ) gives the

functional equation.
To complete the proof, it will suffice to show that C(ν, t) is a multiple of a single

power of t. That ε(s, π, ψ) is an exponential function would follow immediately.
First, we show that C(ν, t) is a finite sum. Indeed, one can choose ϕ such that
ϕ̂((νω0)−1, t) = 1. This implies that C(ν, t) = π̂(w)ϕ(ν, t). Since π(w)ϕ ∈ S(F×),
this must be a finite sum. Two applications of (3.14.2) immediately gives

(3.14.3) C(ν, t)C(ν−1ω−1
0 , z−1

0 t−1) = ω(−1)

If C(ν, t) has more than one term, then it must have a zero different from t = 0.
On the other hand C(ν−1ω−1

0 , z−1
0 t−1) has no pole besides at t = 0. Putting these

together contradicts (3.14.3). �

3.14.4. Local L-factors: principal series representations. In this section we prove
Theorem 3.14.7 in the case of B(µ1, µ2) irreducible. Recall

B(µ1, µ2) =

f : G→ C

∣∣∣∣∣∣ f(
(
a1 x

a2

)
g) = µ1(a1)µ2(a2)

∣∣∣a1
a2

∣∣∣1/2 f(g)

f is right invariant by some L ⊂ K open.


We will use a different description of this space (the so-called Godement sections.)

Let Φ ∈ S(F 2). Consider

fΦ(g) := µ1(det g) |det g|1/2
∫
F×

µ1µ
−1
2 (t) |t|Φ((0, t)g)d×t.

Write
∣∣µ1µ

−1
2

∣∣ = |·|s0 for s0 ∈ R. Then, since the integral part of fΦ is a zeta
integral of GL1-type, Lemma 3.9.6 is absolutely convergent whenever s0 > −1.

Lemma 3.14.8. Let µ1 and µ2 and s0 be as above. If s0 > −1 then

B(µ1, µ2) = {fΦ | Φ ∈ S(F 2)}.
Remark. The mapping Φ 7→ fΦ is certainly not injective, so given f ∈ B(µ1, µ2),
there are multiple choices of Φ such that fΦ = f .

Proof. We first show that fΦ ∈ B(µ1, µ2). Since Φ is Bruhat-Schwartz, there exists
L ⊂ K fixing Φ. It is easy to see that this same choice of L fixes fΦ. We check the
transformation property directly:

fΦ(
(
a1 x

a2

)
g) = µ1(det g) |det g|1/2 µ1(a1a2) |a1a2|1/2

×
∫
F×

µ1µ
−1
2 (t) |t|Φ((0, a2t)g)d×t

= µ1(det g) |det g|1/2 µ1(a1)µ2(a2)
∣∣∣∣a1

a2

∣∣∣∣1/2 ∫
F×

µ1µ
−1
2 (t) |t|Φ((0, t)g)d×t

= µ1(a1)µ2(a2)
∣∣∣∣a1

a2

∣∣∣∣1/2 fΦ(g).

(In the second step we replaced t with a−1
2 t and simplified.)

Next, we show that for all f ∈ B(µ1, µ2) there exists Φ such that fΦ = f . Given
f ∈ B(µ1, µ2), set

Φ(x, y) =
{

0 if (x, y) /∈ (0, 1)K (K = GL2(OF ))
µ−1

1 (det k)f(k) if (x, y) = (0, 1)k for some k ∈ K.
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We first show that Φ is well defined. That is, if (x, y) = (0, 1)k1 = (0, 1)k2 then
we must show that

µ−1
1 (det k1)f(k1) = µ−1

1 (det k2)f(k2).

Since k1k
−1
2 = ( a x1 ),

µ−1
1 (det k1)f(k1) = µ1(det k1)f(k1k

−1
2 k2)

= µ−1
1 (det k1)µ1(det k1k

−1
2 )

∣∣det k1k
−1
2

∣∣1/2 f(k2)

= µ−1
2 (det k2)f(k2).

(Notice that k ∈ K implies that det k ∈ O×F hence |det k| = 1.)
We now show that Φ ∈ S(F 2). Since (x, y) ∈ (0, 1)K if and only if x, y ∈ O× and

at least one of them is a unit, it is clearly compactly supported. If µ is unramified
it is easy to see that Φ is fixed by the same L as that which fixes f . In any case
L ∩ SL2(OF ) works.

Finally, we need to show that fΦ = f . The Iwasawa decompostion G = PK
implies that f ∈ B(µ1, µ2) is determined by its values on K. So we only need to
show that f(k) = fΦ(k) if k ∈ K. Indeed, if k ∈ K,

fΦ(k) = µ1(det k)
∫
F×

µ1µ2(t) |t|Φ((0, t)k)d×t

= µ1(det k)
∫
O×F

µ1µ2(t)µ−1(tdet k)f
[(

1
t

)
k

]
d×t

=
∫
O×F

f(k)d×t = f(k).

In the last step we used that f(( 1
t ) k) = µ2(t)f(k), and we used that the measure

is normalized so that the measure of O×F is 1. �

Our next task is to explicitly define the Whittaker functions. If Φ ∈ S(F 2) then
we define

Φ∼(x, y) :=
∫
F

Φ(x, u)ψ(−yu)du.

This is the Fourier transform in the second variable, so, by Fourier inversion, the
mapping S(F 2)→ S(F 2) via Φ 7→ Φ∼ is a bijection. Additionally, [ρ(g)Φ]∼ satisfies
(3.14.4)(
ρ

[(
1 n

1

)
g

]
Φ
)∼

(x, y) =
∫
F

ρ

[(
1 n

1

)
g

]
Φ(x, u)ψ(−yu)du

=
∫
F

ρ(g)Φ
[
(x, u)

(
1 −n

1

)(
1 n

1

)]
ψ(−yu)du

= ψ(nxy)[ρ(g)Φ]∼.

The second equality comes after making the change of variables u 7→ u−nx. Thus,
if we define

FΦ(g, t) := [ρ(g)Φ]∼(t, t−1)

then it satisfies

FΦ(
(

1 n
1

)
g, t) = ψ(n)FΦ(g, t).

So it’s not surprising that this will be used to define a Whittaker function.
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It is also clear that

(3.14.5)
[
ρ

((
a

b

)
g

)
Φ
]∼

(x, y) = [ρ(g)Φ]∼(ax, b−1y).

To remove the dependence of FΦ(g) on t, we define

WΦ(g) := µ1(det g) |det g|1/2
∫
F×

µ1µ
−1
2 (t)FΦ(g, t)d×t

which, by (3.14.4), satisfies WΦ(( 1 n
1 ) g) = ψ(n)WΦ(g). Moreover, it is easy to see

that

(3.14.6) ρ(h)fΦ = fµ1(deth)|deth|1/2ρ(h)Φ,

which implies that

(3.14.7) ρ(h)WΦ = Wµ1(deth)|deth|1/2ρ(h)Φ.

Therefore, the map fΦ 7→WΦ is an intertwining map from B(µ1, µ2) to W (ψ) if it
is well defined.

If the map
A : B(µ1, µ2) −→W (ψ) via fΦ 7→WΦ

is injective and well defined then the above would provide the Whittaker model for
B(µ1, µ2). The following proposition gives this fact.

Proposition 3.14.9. The intertwining map A is well defined and injective. More-
over, ρ(g)fΦ = fµ1(det g)|det g|1/2ρ(g)Φ, and so A commutes with the right translation
action of G.

This proposition and Lemma 3.14.8 immediately give the following.

Corollary 3.14.10. Suppose µ1, µ2 are quasicharacters of F×, and s0 ∈ R satisfies∣∣µ1µ
−1
2

∣∣ = |·|s0 as above. If s0 > −1 and s0 6= 1 then W (µ1, µ2, ψ), the image of
A, is the ψ-Whittaker model of B(µ1, µ2).

Remark. Since B(µ1, µ2) ' B(µ2, µ1), the requirement that s0 > −1 in the corol-
lary does not really pose a problem for us. Even so, via analytic continuation, WΦ

can be made to be well defined even when s0 < −1. (See Lemma 3.9.6 and the
accompanying discussion.)

Lemma 3.14.11. If s0 > −1 then

(3.14.8) fΦ

[(
1

−1

)(
1 x

1

)]
=
∫
F×

WΦ

[(
a

1

)]
µ−1

2 (a) |a|1/2 ψ(ax)d×a.

Proof. It suffices to show that (3.14.8) holds for11 Φ∼. That is

(3.14.9) fΦ∼

((
−1

1

)(
1 x

1

))
=∫

F×
WΦ∼

(
a

1

)
µ−1

2 (a) |a|−1/2
ψ(ax)d×a.

11When the measure is appropriately chosen (Φ∼)∨ = Φ and (Φ∼)∼ = Φ− where Φ−(x, y) =
Φ(x,−y).
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This will follow by turning it into a double integral then switching the order of
integration. Since (0, t)

( −1
1

)
( 1 x

1 ) = (0, t) ( 1 x
1 ) = (t, tx), the left hand side of

(3.14.9) is

fΦ∼

((
−1

1

)(
1 x

1

))
=
∫
F×

µ1µ
−1
2 (t) |t|Φ∼(t, tx)d×t

=
∫
F××F

µ1µ
−1
2 (t) |t|Φ(t, u)ψ(−utx)dud×t,

which is absolutely convergent.
Working with the right hand side of (3.14.9), we use the facts shown above that

[ρ ( 1 n
1 ) Φ]∼(x, y) = ψ(nxy)Φ∼(x, y) and [ρ ( a b ) Φ]∼(x, y) = |b|−1 Φ∼(ax, b−1y).

Hence

(3.14.10)

WΦ∼ ( a 1 ) = µ1(a) |a|1/2
∫
F×

µ1µ
−1
2 (t)(ρ ( a 1 ) Φ∼)∼(t, t−1)d×t

= µ1(a) |a|1/2
∫
F×

µ1µ
−1
2 (t)(Φ∼)∼(at, t−1)d×t

= µ1(a) |a|1/2
∫
F×

µ1µ
−1
2 (t)Φ(at,−t−1)d×t

Plugging this into the right hand side of (3.14.9) gives∫
F×

µ2(a)−1 |a|−1/2
µ1(a) |a|1/2

∫
F×

µ1µ
−1
2 (t)Φ(at,−t−1)ψ(ax)d×tdt

=
∫
F××F

µ1µ
−1
2 (at)Φ(at,−t−1)ψ(ax)d×tda

=
∫
F××F

µ1µ
−1
2 (t)Φ(t,−at−1)ψ(ax)d×tda

=
∫
F××F

µ1µ
−1
2 (t)Φ(t, a)ψ(−atx) |t| d×tda.

This is the same as the left hand side (with order of integration switched.) Note
that we used the transformations t 7→ a−1t and a 7→ −at. As mentioned above, the
Fourier transform is a bijection on S(F 2) and so (3.14.9) implies (3.14.8). �

Proof of Proposition 3.14.9. To prove that A is well defined, suppose that fΦ = 0.
Then the right hand side of (3.14.8) is zero for all x. This implies that for all x

〈WΦ−

(
a

1

)
µ−1

2 (a) |a|1/2 , ψx(a)〉 = 0,

which means that WΦ(( a 1 )) = 0 for almost all a. But, since it’s locally constant,
this implies it’s zero for all a. In particular WΦ(e) = 0. We want to show that
0 = WΦ(g) = ρ(g)WΦ(e) = Wµ1(det g)|det g|1/2ρ(g)Φ(e). By our argument above, this
is zero provided

fµ1(det g)|det g|1/2ρ(g)Φ = 0

But this is obviously true because

fµ1(det g)|det g|1/2ρ(g)Φ = ρ(g)fΦ = 0

by assumption.
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Conversely, if WΦ− = 0 then (3.14.8) says that fΦ is trivial on wN , and hence
on the entire Bruhat cell PwN . But this is dense in G, and so fΦ = 0. Thus A is
injective. �

Proof of Theorem 3.14.7 for irreducible B(µ1, µ2). Corollary 3.14.10 says thatW (µ1, µ2;ψ)
is the Whittaker model of B(µ1, µ2). For W = WΦ we use (3.14.10) to compute

Ψ(e, s,W ) =
∫
F×

WΦ ( a 1 ) |a|s−1/2
d×a

=
∫
F××F×

µ1(a) |a|s Φ∼(at, t−1)µ1µ
−1
2 (t)d×td×a

=
∫
F××F×

µ1(at)µ−1
2 (t) |a|s Φ∼(at, t−1)d×td×a

=
∫
F××F×

µ1(a)µ−1
2 (t) |a|s

∣∣t−1
∣∣s Φ∼(a, t−1)d×ad×t

=
∫
F××F×

µ1(a)µ2(t) |a|s |t|s Φ∼(a, t)d×ad×t,

using the transformations a 7→ at−1 and t 7→ t−1. If12 Φ∼ = Φ1⊗Φ2, and we define
Z(Φ, µ1, µ2) :=

∫
F××F× Φ(x, y)µ1(x)µ2(y)d×xd×y then

Φ(e, s,W ) = Z(Φ∼, µ1 |·|s , µ2 |·|s) = Z(Φ1, µ1, s)Z(Φ2, µ2, s).

Hence L(s,B(µ1, µ2)) = L(s, µ1)L(s, µ2).
To get the functional equation, it suffices to check it on a spanning set. One

easily verifies that

Ψ̃(e, s,W ) =
∫
W

(
a

1

)
|a|s−

1
2 (µ1µ2)−1(a)d×a = Z(Φ∼, µ−1

2 |·|
s
, µ−1

1 |·|
s).

Therefore,

Ψ̃(w, s,W ) = Ψ̃(e, s, ρ(w)W ) = Z((ρ(w)Φ)∼, µ−1
2 |·|

s
, µ−1

1 |·|
s)

To simplify this expression we evaluate

(ρ(w)Φ)∼(x, y) =
∫
F

ρ(w)Φ(x, u)ψ(−uy)du

=
∫
F

Φ[(x, u)w]ψ(−uy)du

=
∫
F

Φ[(u, x)]ψ(ux)du.

When Φ∼ = Φ1 ⊗ Φ2 we have Φ = Φ1 ⊗ Φ∨2 , so we get

(ρ(w)Φ)∼(x, y) = Φ∨2 (x)
∫
F

Φ1(u)ψ(ux)du = Φ∨2 ⊗ Φ∨1 (x, y).

Plugging this into the above expression, we have

Ψ̃(w, s,W ) =Z([ρ(w)Φ]∼, µ−1
2 |·|

s
, µ−1

1 |·|
s)

=Z(Φ∨2 ⊗ Φ∨1 , µ
−1
2 |·|

s
, µ−1

1 |·|
s)

=Z(Φ∨2 , µ
−1
2 , s)Z(Φ∨1 , µ

−1
1 , s).

12Note that S(F 2) is spanned by functions of the type Φ1 ⊗ Φ2(x, y) = Φ1(x)Φ2(y).
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So

Φ(e, s,W ) = Z(Φ1, µ1, s)Z(Φ2, µ2, s)

and

Φ̃(w, 1− s,W ) = Z(Φ∨1 , µ
−1
1 , 1− s)Z(Φ∨2 , µ

−1
2 , 1− s),

and the functional equation comes now from the GL1 theory:

Ψ̃(w, 1− s,W )
L(1− s, π̃)

=
Z(Φ∨1 , µ

−1
1 , 1− s)Z(Φ∨2 , µ

−1
2 , 1− s)

L(1− s, µ−1
1 )L(1− s, µ−1

2 )

=ε(s, µ1, ψ)ε(s, µ2, ψ)
Z(Φ1, µ1, s)Z(Φ2, µ2, s)

L(s, µ1)L(s, µ2)

=ε(s, π, ψ)
Ψ(e, s,W )
L(s, π)

.

That ε(s, π, ψ) is exponential is obvious. �

Remark. Recall that Φ∨(x) =
∫
F

Φ(u)ψ(ux)dx and Φ∼(x) =
∫
F

Φ(u)ψ(−ux)dx.
In Tate’s thesis he uses Φ∼ which gives ψ−1 instead of ψ, and so the functional
equation has a slightly different look there.

3.14.5. Local L-factors: special representations. We still need to prove the theorem
for Sp(χ) which is a submodule of B(µ1, µ2) when µ1 = χ |·|1/2 and µ2 = χ |·|−1/2.
As in the case of principal series representations we want to have an explicit de-
scription of the Whittaker model of Spχ. Using the map A of Proposition 3.14.9
in this case, we still have a correspondence

B(µ1, µ2)←→W (µ1, µ2;ψ) ⊂W (ψ).

The goal (accomplished in the following lemma) is to describe the corresponding
space for Spχ ⊂ B(µ1, µ2).

Lemma 3.14.12. W (Spχ, ψ) = {WΦ ∈W (χ |·|1/2 , χ |·|−1/2
, ψ) |

∫
F×F Φ(x, y)dxdy =

0}.

Note that
∫
F×F Φ(x, y)dxdy = 0 if and only if

∫
F

Φ∼(x, 0)dx = 0, so the lemma
provides two ways of characterizing the Whittaker functions of Spχ.

Proof. Recall that by Lemma 3.10.2, Spχ is the annihlator of χ−1(det g) under
the pairing B(µ1, µ2) × B(µ−1

1 , µ−1
2 ) → C. So WΦ ∈ W (Spχ, ψ) if and only if

〈fΦ, χ
−1(det ·)〉 = 0. Since pairing is given by

〈f1, f2〉 :=
∫

GL2(OF )

f1(k)f2(k)dk = c

∫
F

f1f2(w ( 1 x
1 ))dx,
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we have

〈fΦ, χ
−1(det g)〉 =

∫
F

fΦ(w ( 1 x
1 ))χ−1(det(w ( 1 x

1 )))dx

=
∫
F

∫
F×

µ1µ
−1
2 (t) |t|Φ[(0, t)w ( 1 x

1 )]d×tdx

=
∫
F×F×

µ1µ
−1
2 (t) |t|Φ(−t,−tx)d×tdx

=
∫
F

∫
F×
|t|2 Φ(−t,−tx)d×tdx

=
∫
F

∫
F×
|t|Φ(−t,−x)d×tdx

=
∫
F×F×

Φ(−t,−x)dtdx

=
∫
F×F

Φ(t, x)dtdx.

Note that we used |t| d×t = dt. �

Proof of Theorem 3.14.7 for special representations. Now that we have identified
the Whittaker functions we are in good shape. We first show that L(s, Spχ) =
L(s, µ1) = L(s, χ |·|1/2) = L(s+ 1

2 , χ).
Notice that

Ψ(e, s,W ) =Z(Φ∼, µ1 |·|s , µ2 |·|s)

=
∫
F××F×

Φ∼(x, y)χ(x) |x|s+1/2
χ(y) |y|s−1/2

d×xd×y

is always holomorphic when χ is ramified. (See Lemma 3.9.6). So, if χ is ramified
L(s, Spχ) = 1 = L(s+ 1/2, χ).

Now we assume that χ is unramified and
∫
F

Φ∼(x, 0)dx = 0.
There exists pn such that Φ∼(x, y) = Φ∼(x, 0) for y ∈ pn. Then

Ψ(e, s,W ) =
∫
F×

∫
v(y)<n

Φ∼(x, y)χ(x) |x|1/2+s
χ(y) |y|−1/2+s

d×xd×y

+
∫
F×

∫
pn

Φ∼(x, 0)χ(x) |x|1/2+s
χ(y) |y|−1/2+s

d×xd×y.

The first integral is L(s+ 1/2, χ) times a holomorphic function, so write the second
as ∫

F×
Φ∼(x, 0)χ(x) |x|1/2+s

d×x

∫
pn
χ(y) |y|s−1/2

d×y = A ·B.

Now B has a (simple) pole precisely when χ |·|s−1/2 = 1. At this s,

A =
∫
F×

Φ∼(x, 0) |x| d×x =
∫
F

Φ∼(x, 0)dx = 0.

So the product AB is always holomorphic. Hence L(s, Spχ) = L(s+ 1/2, χ).
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To complete the proof, we must show that there exists an exponential function
ε(s, Spχ, ψ) such that

Ψ̃(w, 1− s,W )

L(1− s, S̃pχ)
= ε(s, Spχ, ψ)

Ψ(e, s,W )
L(s, Spχ)

.

Recall S̃pχ = Spχ−1 , so L(s, Sp∼χ ) = L(s+ 1/2, χ−1).
In the course of proving the theorem in the case of principal series representa-

tions, we showed that

Ψ̃(w, 1− s,W )
L(1− s, µ−1

1 )L(1− s, µ−1
2 )

= ε(s, µ1, ψ)ε(s, µ2, ψ)
Ψ(e, s,W )

L(s, µ1)L(s, µ2)

for any W ∈ W (µ1, µ2;ψ). In this case, we only need to worry about those W
satisfying Lemma 3.14.12. This will allow us to move some unnecessary L-factors
into the ε-factor.

Since L(s, Spχ) = L(s, µ1) and L(s, Spχ−1) = L(s, µ−1
2 ), defining

ε(s, Spχ, ψ) := ε(s, µ1, ψ)ε(s, µ2, ψ)
L(1− s, µ−1

1 )
L(s, µ2)

gives the correct functional equation.
To complete the proof, we need only verify that this choice of ε-factor is expo-

nential. But we know that if χ is ramified, L(1−s,µ−1
1 )

L(s,µ2) = 1. Otherwise,

L(1− s, µ−1
1 )

L(s, µ2)
=
L(1/2− s, χ−1)
L(s− 1/2, χ)

=
1− χ−1($) |$|1/2−s

1− χ($) |$|s−1/2
= −χ−1($) |$|1/2−s .

So ε(s, Spχ, ψ) is an exponential function. �

We finish this section with an exercise relating the ε-factors for different choices
of characters ψ.

Exercise 3.14.13. If ψ : F → C× is a nontrivial character, then it is a fact that
every other character of F is of the form ψ′(x) = ψb(x) = ψ(bx) for some b ∈ F .
Use this to prove that

(1) W (π, ψ′) = {W (( b 1 ) g) |W ∈W (π, ψ)}.
(2) ε(s, π, ψ′) = ω(b) |b|2s−1

ε(s, π, ψ).
(3) ε(s, π, ψ)ε(1− s, π̃, ψ) = ω(−1).

Solution. (1) Define the map

W (π, ψ) −→ W (π, ψ′)
W (·) 7→ W (( b 1 ) ·)

We calculate directly that W ′, the image of W under this map, satisfies

W ′(
(

1 x
1

)
g) = W (

(
b

1

)(
1 x

1

)
g)

= W (
(

1 bx
1

)(
b

1

)
g)

= ψ(bx)W (
(
b

1

)
g) = ψ′(x)W ′(g).
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So the map is well defined. Obviously, the right regular action is the same on both
sides, so, by irreducibility, the map must be an isomorphism.

(2) Let W ′ and W be as above. (Note that in order for ψ′ to be nontrivial, b
must be invertible.) Then

Ψ(g, s,W ′) =
∫
F×

W (
(
b

1

)(
a

1

)
g) |a|s−

1
2 d×a

=
∫
F×

W (
(
a

1

)
g)
∣∣ab−1

∣∣s− 1
2 d×a

= |b|
1
2−s Ψ(g, s,W ).

and

Ψ̃(g, s,W ′) =
∫
F×

W (
(
b

1

)(
a

1

)
g) |a|s−

1
2 ω−1(a)d×a

=
∫
F×

W (
(
a

1

)
g)
∣∣ab−1

∣∣s− 1
2 d×ω−1(ab−1)a

= ω(b) |b|
1
2−s Ψ̃(g, s,W ).

Plugging this into the functional equation for ψ′, we have

ω(b) |b|s−
1
2 Φ̃(wg, 1− s,W ′) = ε(s, π, ψ′)Φ(wg, s,W ′) = |b|

1
2−s ε(s, π, ψ′)Φ(g, s,W ).

From the functional equation for ψ this immediately implies that

ε(s, π, ψ) = ω(b)−1 |b|1−2s
ε(s, π, ψ′).

(3) Recall that Proposition 3.14.2 says that the Whittaker model of π̃ is given
by

W (π̃, ψ) =
{
W (g)ω−1(det g) |W ∈W (π, ψ)

}
.

Write W̃ (·) = ω(det ·)W (·). Note that

Ψ̃(g, s,W ) =
∫
F×

W (( a 1 ) g)ω−1(a) |a|s−
1
2 d×a

= ω(det g)
∫
F×

W (( a 1 ) g)ω−1(adet g) |a|s−
1
2 d×a

= ω(det g)
∫
F×

W̃ (( a 1 ) g) |a|s−
1
2 d×a

= ω(det g)Ψ(g, s,W ).

Since the central character of π̃ is ω−1, we also have that

Ψ̃(g, s, W̃ ) =
∫
F×

W̃ (( a 1 ) g)ω(a) |a|s−
1
2 d×a

=
∫
F×

W̃ (( a 1 ) g)ω(a) |a|s−
1
2 d×a

= ω−1(det g)Ψ(g, s,W ).

The functional equations for π and π̃ give

ε(s, π, ψ) =
L(s, π)

L(1− s, π̃)
· Ψ̃(w, 1− s,W )

Ψ(e, s,W )
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and

ε(1− s, π̃, ψ) =
L(1− s, π̃)
L(s, π)

· Ψ̃(−e, s, W̃ )
Ψ(w, 1− s,W )

respectively. Combining these equations and the above gives the result. �

4. Classification of local representations: F archimedean

Harish-Chandra is the mathematician most responsible for developing the theory
of representations of Lie groups. His original idea was the notion of a (g,K)-
module, which is a completely algebraic object, but, as we will see, can be used
to classify unitary representations of GL2(R). The notion closely resembles the
nonarchimedean theory.

4.1. Two easier problems. To aid us in the classification of Lie groups, we con-
sider two easier problems. First, we look at the linearization of our action. This
corresponds to looking at the action of a finite dimensional vector space, the Lie
algebra whose modules are much easier to classify. Second, we restrict our at-
tention to a maximal compact subgroup. Again, it is much easier to classify the
representations of such groups.

4.1.1. Some background on Lie groups. Let G be a Lie group. (A group in the cat-
egory of differentiable real manifolds.) In this section we discuss (briefly!) modules
of its Lie algebra, Lie(G), the tangent space to the identity. It is a fact that there
is an embedding ρ : G → GLn(R) for some n. So we can think of G as a sub-
group/manifold of GLn. The tangent space of GLn(R), denoted gln, consists of all
n×n matrices with real coefficients. There is an exponential map exp : gln → GLn
given by

exp(X) = eX =
∞∑
n=0

Xn

n!
,

and X ∈ Lie(G) if and only if eX ∈ G. Also, gln acts on smooth functions
f : GLn(R)→ C via

Xf(g) =
d

dt

∣∣∣∣
t=0

f(getX).

Suppose G acts smoothly on V , a finite dimensional vector space over C. Then
there is an induced action of Lie(G) on V . For X ∈ Lie(G), X ·v = d

dt |t=0 π(etx)v.
This definition agrees with how, whenever ϕ : M → N is a map of manifolds, there
is linear map between the tangent space at any point and that of its image. In our
case, {etX} is a line in G with tangent vector X at the identity. Then {etXv} is
the image of the line in V , and X · v is the induced linear map.

4.1.2. Background on representation theory of compact groups. Let K be a com-
pact group, K̂ the collection of equivalence classes of finite dimensional continuous
representations of K. An element of K̂ will be called a K-type. For a K-type
(Wγ , γ) where γ is the action and Wγ the underlying space, consider the γ-isotopic
component V (γ) =

∑
ϕ∈HomK(Wγ ,V ) ϕ(Wγ) of V . We record the following facts:

(1) If π is a continuous action of K on a Hilbert space then one can change
the pairing so that the topology of H is unchanged and the action of K is
unitary. To do this, let 〈u, v〉new :=

∫
K
〈π(k)u, π(k)v〉olddk. We can assume

then that all continuous K-modules are unitary.
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(2) Matrix coefficients of finite dimensional unitary representations of K span
a dense subspace of Lp(K), p ≥ 1. This is the Peter-Wyel theorem for
p = 1.

(3) All irreducible unitary representations of K are finite dimensional.
(4) A unitary representation of K on a Hilbert space V is the Hilbert space

direct sum of finite dimensional irreducible subrepresentations of K . In
other words, V = ⊕γ∈K̂V (γ). The bar denotes topological closure. So
given a V how do we pick out the γ-component?

(5) Let σi (i = 1, · · · , n) be inequivalent finite dimensional unitary representa-
tions of K then define the elementary idempotent

(4.1.1) ξ(k) :=
n∑
i=1

dim(σi) tr(σi(k)−1).

Then ξ ∗ ξ = ξ. If γ ∈ K̂, let ξγ = dim(γ) tr(γ(·)−1). If v ∈ V , v =
∑
vδ

with vδ ∈ V (δ), and vδ = π(ξδ)v, where

π(f)v =
∫
K

f(k)π(k)vdk.

A readable reference for this is Bump’s book [2].

4.2. From G-modules to (g,K)-modules.

4.2.1. (g,K)-modules. In the previous sections, we discussed g-modules (g a Lie
algebra) and K-modules (K a compact group.) Harish-Chandra’s idea was to
classify G-modules by first considering (g,K)-modules where K ⊂ G is a maximal
compact subgroup and g = Lie(G). We now discuss this notion for G = GL2(R),
and g = gl2,R its Lie algebra. K = O(2,R) is a maximal compact subgroup of G
(all others being conjugate to it.) Note that both G and K have two connected
components: GL+

2 (R) and SO(2,R) are the identity components of each.

Remark. To prove that K is maximal use Iwasawa decomposition G = PK. If
K ′ ⊃ K is a group then there exists ( a1 x

a2 ) ∈ K ′. We may assume a1, a2 > 0.
If a1a2 6= 1 by taking powers of this element K ′ is not compact. If a1, a2 = 1
and x 6= 0 we may again take powers to see that ( 1 xn

1 ) ∈ K ′ and so it is not
compact. So K ′ compact implies the only parabolic element in it is the identity.
Hence K ′ = K

Definition 4.2.1. A (g,K)-module is a complex vector space V together with an
action π of g and K such that

(1) every vector is K-finite. That is, the space spanned by {π(k)v : k ∈ K} is
finite dimensional, and the action of K on any finite dimensional invariant
subspace of V is continuous.

(2) For X ∈ Lie(K) = so(2,R), π(X)v = d
dt

∣∣
t=0

π(etX)v. (Notice that π(etx)v
lives in a finite dimensional space, so we are just doing calculus.)

(3) For k ∈ K, Y ∈ g, π(Ad(k)Y )v = π(k)π(Y )π−1(k)v. (Ad(k)Y = kY k−1.)

Remark. Items (2) and (3) are natural compatibility relations arising between the
Lie algebra and group actions.

Also, the third condition, for k ∈ SO(2,R) follows from the first condition. The
new requirement is about the action of

(
1
−1

)
.
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Suppose that V is a continuous G-module. As our real goal is to understand
G-modules, we begin with some definitions of the types of G-modules that we will
be considering. By the facts of the previous section, under the action of K,

V =
⊕
γ∈K̂

V (γ).

Moreover, each isotypic component V (γ) is itself a direct sum of irreducible finite
dimensional K-modules.

Definition 4.2.2. Let π be a continuous action of G on a Hilbert space V . V is
called (topologically) irreducible if there is no nontrivial G-invariant closed sub-
space. V = ⊕γ∈K̂V (γ). We say that V is admissible if all V (γ) are finite dimen-
sional.

Proposition 4.2.3. If (π, V ) is an irreducible unitary representation of G on a
Hilbert space V then it’s admissible.

So, in order to understand unitary G-modules, we first try to understand admis-
sible modules.

Definition 4.2.4. Let (π, V ) be a continuous action of G on a Hilbert13 space V .
A vector v ∈ V is smooth if the map g → π(g)v is infinitely differentiable.

Lemma 4.2.5. For f ∈ C∞c (G) we can define an action π(f)v :=
∫
G
f(g)π(g)vdg.

(The integral being in the sense of Riemann.) Then π(f)v is a smooth vector for
any f ∈ C∞c , v ∈ V . In particular, V∞, the set of smooth vectors in V , is dense
in V .

Proof. Choose a sequence of (positive) functions fn ∈ C∞c such that the support
shrinks to the identity {e} and

∫
G
fn(g)dg = 1. So π(fn)v → v as n→∞. Then

|π(fn)v − v| =
∣∣∣∣∫
G

fn(g)π(g)vdg −
∫
G

fn(g)vdg
∣∣∣∣

= |fn(g)(π(g)v − v)dg|
≤ max
g∈supp(fn)

|π(g)v − v|.

Since the action is continuous, the right side approaches zero as n→∞. �

Lemma 4.2.6. Let (π, V ) be a continuous representation of G, V a Hilbert space,
V∞ the set of smooth vectors of V . Then the following hold.

(i) For X ∈ g, can define

π(X)v =
d

dt

∣∣∣∣
t=0

(π(etX)v) = lim
t→0

π(etX)v − v
t

whenever v ∈ V∞.
(ii) V∞ is G-invariant.

Definition 4.2.7. A vector v ∈ V is K-finite if span{π(k)v | k ∈ K} is finite
dimensional. V f will denote the set of all K-finite vectors of V .

Lemma 4.2.8. If v ∈ V∞ ∩ V f then, for X ∈ g, π(X)v ∈ V f .

13One could actually consider V as a Frechet space, but for our purposes Hilbert space is
sufficient.
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Remark. In general, if v is K-finite π(g)v need not be.

Proof. Consider

π(k)[π(X)v] = π(k) lim
t→0

π(etX)v − v
t

= lim
t→0

π(k)π(etX)v − π(k)v
t

= lim
t→0

π(ketXk−1)π(k)v − π(k)v
t

= lim
t→0

π(etAdkX)π(k)v − π(k)v
t

= π(AdkX)π(k)v ∈ π(AdkX)span{π(k)v}.

Since v is K-finite, span{π(k)v} is finite dimensional, and so the action of AdkX
on it must also give a finite dimensional space. �

The main corollary of this result is that V∞ ∩ V f is a (g,K)-module.
The next result relates K-finiteness and smoothness.

Lemma 4.2.9. Let V be a Hilbert space that is a continuous G-module. Let δ ∈ K̂
and V (δ) the δ-isotypic component of δ in V . If V (δ) is finite dimensional then
V (δ) ⊆ V∞.

Proof. Let v ∈ V (δ). We need to show that v is smooth. By Lemma 4.2.5 if f ∈ C∞c
and w ∈ V , π(f)w is always smooth. Also, v = limn→∞ π(fn)v where the support
of fn decreases to the identity and

∫
G
fn(x)dx = 1. Let ξ = dim(δ) tr(δ−1), the

elementary idempotent associated to δ. Since v ∈ V (δ), we have v = π(ξ)v. Also,
π(ξ ∗ fn ∗ ξ)v ∈ V (δ). Since V (δ) is finite dimensional, there exists n1, . . . , nl such
that π(ξ ∗ fni ∗ ξ)v is a basis of W = span{π(ξ ∗ fn ∗ ξ)v}. Moreover, v ∈W . So

v =
l∑
i=1

ciπ(ξ ∗ fni ∗ ξ)v = π(f)v

where f =
∑l
i=1 ciξ ∗ fni ∗ ξ ∈ C∞c . By our remark above, this completes the

proof. �

Suppose (π, V ) is a continuous G-module with V a Hilbert space. Then Lem-
mas 4.2.8 and 4.2.9 imply that V f = V∞∩V f is an admissible (g,K)-module. The
next two propositions say that when π is unitary and irreducible this association is
faithful.

Theorem 4.2.10. If (π, V ) is an admissible continuous G-module then it is topo-
logically irreducible if and only if V f is an irreducible admissible (g,K)-module.

Proof. Suppose V f is an irreducible admissible (g,K)-module. Assuming that V
is not irreducible as a G-module, there exists 0 ( W ( V fixed by G. Clearly
W f ⊆ V f and W f is dense in W . Since V f is dense in V this implies W f 6= V f ,
and W f is a nontrivial (g,K)-module, a contradiction.

Now suppose that V is topologically irreducible. Let 0 ( W ( V f be a (g,K)-
submodule. We claim that (1) W is G-invariant; (2) W ( V . This would give a
contradiction and complete the proof.
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We prove (2) first. W ( V f implies that there exists δ ∈ K̂ such that W (δ) (
V (δ). (Note that both of these are finite dimensional because V is admissible.)
Choose v ∈ V (δ) \ W (δ). Then v /∈ W because, if it were, there would exist
wn ∈W such that wn → v hence π(ξδ)wn → π(ξδ)v = v, and this would imply that
v ∈W (δ) since π(ξδ)wn ∈W (δ), and W (δ) is closed (since it’s finite dimensional.)

To prove (1), we need to show that for v ∈W , π(g)v ∈W for all g ∈ G. Choose
vn ∈W such that vn → v. Hence π(g)vn → π(g)v. It will suffice to show that

(∗) if u ∈W,π(g)u ∈W.

To do this, we prove that if u ∈W and u′ ∈ U⊥ then π(g)u ⊥ u′.
Also, note that (*) is true for g ∈ K, so it suffices to check it for elements of

the type ( x x ) (x ∈ R+) and ( 1 ∗
1 ). In both cases g = eX for some X ∈ g. It will

suffice to show that π(g)W ⊂ W because given any v ∈ W there exist wn ∈ W
with wn → v, and if π(g)wn ∈W then π(g)v = limn→∞ π(g)wn ∈W .

We claim that if v ∈ V f then, when X is sufficiently small,

π(eX)v =
∞∑
n=0

π(X)nv
n!

.

Assuming this, for w ∈W , π(eX)w = limn→∞
∑n
k=0

π(X)kw
k! when X is small. Since

the term inside of the limit is in W the result follows. So Proposition 4.2.14 and
Exercise 4.2.11 �

Exercise 4.2.11. Show further that W is invariant for all G. In other words, even
if g = eX for X ‘too big,’ show that π(g)W ⊂W .

Definition 4.2.12. A vector v ∈ V is smooth if g 7→ π(v)g is a smooth function.
Similarly, v ∈ V is analytic if g 7→ π(v)g is an analytic function.

Example 4.2.13. The function f(t) = e−t
−2

satisfies f (n)(0) = 0, but it is not
constant. In other words, f(t) does not equal its Taylor series in any neighborhood
of 0.

When Harish Chandra first began his study of representations of Lie groups, this
difference between smooth and analytic vectors occupied a lot of his work. For us,
the following propositions make things easy, and allow one to complete the proof
above.

Proposition 4.2.14. When (π, V ) is an irreducible continuous admissible G-module,
every vector in V f is analytic.

We remark that irreducibility is crucial in the Proposition 4.2.14.

Proposition 4.2.15. If V is analytic, then there exists a neighborhood U ⊂ g of
zero such that when X ∈ U , π(eX)v =

∑∞
n=0

π(X)nv
n! .

We skip the proofs. See Harish-Chandra[4] for details. (The paper is pretty
readable.)

We conclude that if (π, V ) is an irreducible admissible G-module then V f is an
admissible irreducible (g,K)-module. Moreover, if G = GL2(R) then we have the
following.

Proposition 4.2.16. Given (π1, V1) and (π2, V2) irreducible GL2(R)-modules as
above. Then V1 ' V2 if and only if V f1 ' V

f
2 as (g,K)-modules.
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This proposition is not true for a general Lie group G. The proof is left to the
reader.

To recap, we have shown that the classification of irreducible admissible G-
modules can be accomplished by, first, classifying all irreducible admissible (g,K)-
modules, and second, determining which give rise to a unitary G-module.

4.3. An approach to studying (gl2, O(2,R))-modules. In the previous section,
one could have taken (except in Proposition 4.2.16) G to be any real Lie group, g its
Lie algebra and K a maximal compact subgroup of G. In this section we specialize
to the specific situation

G = GL2(R), g = gl2,K = O(2,R) = SO(2,R)× {e, ε =
(

1
−1

)
}.

Recall that a (g,K)-module V is a g-module with an action of ε such that
• π(ε)π(X)π(ε) = π(Adε(X)), and
• the action of so(2,R) on V gives a decomposition of V as a direct sum

of spaces κn, n ∈ Z where κn is the action of so(2,R) induced from the
irreducible representations of SO(2,R).

(The irreducible representations of SO(2,R) are given by
(

cos θ sin θ
− sin θ cos θ

)
7→ einθ.)

The first item is a compatibility relation between the adjoint action of the group
on its Lie algebra and the action on V . The second item is necessary because
so(2,R) ' R so its representations are given by eix for arbitrary x ∈ R, but we
want only those that agree with a representation of SO(2,R) after exponentiating.

Let UgC be the universal enveloping algebra of gC = g⊗R C.

Definition 4.3.1. An admissible UgC-module is a UgC-module such that the action
of so(2,R) gives direct sum of κn’s each occuring finitely many times.

Hence, we have the following correspondence. Admissible
UgC-modules such that
π(ε)π(X)π(ε) = π(AdεX)

 oo //
{

Admissible
(g,K)-modules

}
We call an element of the left category a (UgC, ε)-module.

The next lemmas discuss restricting a (UgC, ε)-module to a UgC-module and
inducing an action of ε on a UgC-module to make it a (UgC, ε)-module.

Lemma 4.3.2. Let (σ, V ) be an irreducible (UgC, ε)-module. Then exactly one of
the following holds:

(i) As a UgC-module V is irreducible and σ |UgC' σ |UgC ◦Adε.
(ii) As a UgC-module V ' σ |UgC ⊕σ |UgC ◦Adε and σUgC � σ |UgC ◦Adε.

Lemma 4.3.3. Let (π1, V1) be an irreducible UgC-module. Then
(i) If π1 ' π1 ◦Adε, one can define an action of ε so that V1 is an irreducible

(UgC, ε)-module.
(ii) If π1 � π1 ◦Adε then it induces an irreducible (UgC, ε)-module V = V1⊕V1

such that π |UgC= π1 ⊕ π1 ◦Adε and π(ε)(v1 ⊕ v2) = v2 ⊕ v1.

Remark. If (σ,W ) is an irreducible admissible UgC-module then σ and σ ◦ Adε
induce the same representation. So in the induction map is either one-to-one or
two-to-one depending on whether σ is equivalent to σ ◦Adε or not.

Similarly, if (π, V ) is a (UgC, ε)-module then π |UgC is either irreducible or iso-
morphic to π1 ⊕ π2. So the restriction map is either one-to-one or one-to-two.
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Remark. This property of restriction and induction is essentially the same as what
occurs in the theory of finite groups. A good exercise would be to work out the
relation in the case of H an index two subgroup of a finite group G. (This will
perhaps be one of the topics of the appendix.)

4.4. Composition series of induced representations. This section is very sim-
ilar to the discussion of induced representations of GL2(F ) when F is a nonar-
chimedean field. In particular we will study

B(µ1, µ2) :=

f : GL2(R)→ C

∣∣∣∣∣∣ f
((

a1 x
a2

)
g

)
= µ1(a1)µ2(a2)

∣∣∣a1
a2

∣∣∣1/2 f(g)

f is K-finite on the right


(Note: These conditions force B(µ1, µ2) to consist of continuous functions.)

Under the right regular action ρ of G, B(µ1, µ2) is admissible. In this section we
determine the composition series of B(µ1, µ2). The following theorem of Harish-
Chandra (not proven) tells us that we don’t need to look further for irreducible
(g,K)-modules.14

Theorem 4.4.1. Any admissible irreducible UgC-module is a subquotient of B(µ1, µ2)
for some choice of µ1 and µ2.

We will do the following:
(1) determine all B(µ1, µ2) UgC-submodules and subquotients, (i.e. find the

composition series such that each successive quotient is irreducible)
(2) glue the components together to make (g,K)-modules

First, B(µ1, µ2) has a basis consisting of functions {ϕn | n ∈ Z} where

ϕn(
(

cos θ sin θ
− sin θ cos θ

)
) = einθ.

Let g = gl2(R) and gC = g⊗R C, and consider the elements

J =
(

1
1

)
, H =

(
1
−1

)
, X+

(
0 1
0 0

)
, X−

(
0 0
1 0

)
U =

(
1

−1

)
, V+ =

(
1 i
i −1

)
, V−

(
1 −i
−i −1

)
.

(4.4.1)

Also, let Ω = X+X−+X−X++H2

2 , the Casismir element. Notice that {X+, X−, H, J}
is a basis for g (and of gC), and that {V+, V−, U, J} is a basis for gC. The center of
UgC is Z(UgC) = C[J,Ω].

Let [·, ·] denote the Lie bracket on g. A direct computation reveals that

[U, V±] = ±2iV±, [H,X±] = ±2X±, [V+, V−] = −4iU, [X+, X−] = H.

Remark. Whenever g acts on a finite dimensional space V , V decomposes as a
direct sum of H-weight spaces (eigenspaces.) X ∈ g acts on g via adX = [X, ·].
The above identities reflect the decomposition of g = RX−

⊕
(RH ⊕ RJ)

⊕
RX+

where RX− is the weight −2 subspace, RH ⊕ RJ the weight 0 subspace and RX+

the weight 2 subspace.
In this decomposition, RH is called the Cartan subalgebra. Choosing U instead

of H (now in the comlexified algebra gC) the above identities give a similar decom-
position of gC. This second choice is better for our purposes because SO2(R) is

14This is in contrast to the nonarchimedean theory where there are representations not ap-
pearing as a subquotient/submodule of B(µ1, µ2), i.e. the supercuspidals.
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obtained by exponentiating tU . Since our modules will be K = O2(R) finite, it is
this action that we are interested in.

The following lemma describes the action of all of these elements on B(µ1, µ2).

Lemma 4.4.2. Let µ1, µ2 : R× → C× be quasicharacters. (Then µi(t) = |t|si
(
t
|t|

)mi
with mi ∈ {0, 1}.) Let s = s1− s2 and m = |m1 −m2|. Then the action of (UgC, ε)
on ϕn ∈ B(µ1, µ2) is determined by

ρ(U)ϕn = inϕn, ρ(ε)ϕn = (−)m1ϕ−n, ρ(V±)ϕn = (s+ 1± n)ϕn±2,

ρ(J)ϕn = (s1 + s2)ϕn, ρ(Ω)ϕn =
s2 − 1

2
ϕn.

Proof. We calculate ρ(U)ϕn. As it must be a scalar multiple of ϕn, and

ρ(U)ϕn(e) =
d

dt

∣∣∣∣
t=0

(ρ(etU )ϕn)(e) =
d

dt

∣∣∣∣
t=0

ϕn(etU )

=
d

dt

∣∣∣∣
t=0

ϕn(
(

cos t sin t
− sin t cos t

)
) =

d

dt

∣∣∣∣
t=0

eint = in,

it follows that ρ(U)ϕn = inϕn. The other cases are similar. We leave them as
exercises. �

Remark. ϕn ∈ B(µ1, µ2) if and only if n ≡ m (mod 2).

This lemma allows us to describe the irreducible submodules (and subquotients)
of B(µ1, µ2). First, note that ϕn ∈ B(µ1, µ2) if and only if n ≡ m (mod 2). While
U and Z(UgC) fix each Cϕn, the elements V+ and V− raise and lower, respectively,
the weight by two. The only question is whether or not the action of V± has any
kernel.

Case I: When s /∈ Z or s ∈ Z and s ≡ m (mod 2), the action of V+ and V− has
no kernel. In this case, B(µ1, µ2) is irreducible. The following diagram illustrates
the situation. Each dot represents Cϕn for some n and the arrows show how the
operators V± permute these subspaces. (Note that Z(UgC) and U act by scalar and
hence preserve each dot.)

· · · •
V−

ii

V+
%%•

V+
%%

V−

ee •
V+

))

V−

ee · · ·

Now expand this action to ε =
(−1

1

)
. We note that ρ(µ1, µ2) Adε ' ρ(µ1, µ2), so

there is a natural action of ε on this module.
Case IIa: Suppose s ∈ Z and s 6≡ m (mod 2) and s ≥ 0. By Lemma 4.4.2,

V±ϕ±(s+1) = 0. So W+ =
⊕

n≥s+1Cϕn and W− =
⊕

n≥−s−1Cϕn are UgC in-
variant subspaces and B(µ1, µ2)/W+⊕W− is a finite dimensional irreducible UgC-
module.

· · · •
V−

ii

V+
%%•

V−

ee
V+=0

,,
· · · · · · •

V+
%%

V−=0
ll •

V+
))

V−

ee · · ·

The irreducible subquotients are B(µ1, µ2)/(B+⊕B−), B+ and B−. Notice that
B+ and B− are ε-conjugates of each other. Combining them we get a (UgC, ε) sub-
module. AlsoB(µ1, µ2)/(B+⊕B−) is ε conjugate of itself. Recall that ρ(µ1, µ2)(ε)ϕn =
(−1)m1ϕ−n.
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Case IIb: Suppose s ∈ Z and s 6≡ m (mod 2) and s < 0. Now V∓ϕ±(s+1) = 0,
so Bf =

⊕−s−1
s+1 Cϕn is an irreducible subspace of B(µ1, µ2) with quotient the sum

of two irreducible subspaces.

· · · •
V−

ii

V+
%%•

V−

ee · · · · · ·
V+=0

((

V−=0

gg •
V+

%%•
V+

))

V−

ee · · ·

Here we have the submodules

B+(µ1, µ2) =
⊕
n≥s+1

ϕn and B−(µ1, µ2) =
⊕

n≤−s−1

ϕn.

The intersection Bf (µ1, µ2) = B+ ∩ B− provides a third submodule. Bf is ir-
reducible. The irreducible subquotients are Bf and B+/Bf and B−/Bf are as
well. Additionally, B+/Bf and B−/Bf are ε-conjugates of each other and Bf is ε
conjugate of itself.

Putting this together, we have the following description of all irreducible admis-
sible (UgC, ε)-modules (i.e. (g,K)-modules.)

(1) Irreducible B(µ1, µ2). We denote these by π(µ1, µ2) and call them principal
series.

(2) s ∈ Z such that s ≡ m (mod 2) we get two types.
(a) If s ≥ 0, let π(µ1, µ2) be the submodule B/(B+⊕B−), and let σ(µ1, µ2)

be the UgC-module induced from the UgC-module B+ (or B− since
they induce the same thing. Can think of this as B+ ⊕B−.)

(b) If s < 0, let π(µ1, µ2) be the module Bf , and let σ(µ1, µ2) be the
(UgC, ε)-module induced from the UgC-module B+/Bf (or B−/Bf .
They are conjugates so they induce the same module.)

Remark. Note the similarity to the nonarchimedean theory where the special repre-
sentations are the infinite dimensional irreducible representations occurring in the
composition series of the induced representations.

Lemma 4.4.3. We have the following relations between π(µ1, µ2) and σ(µ1, µ2).
(i) π(µ1, µ2) 6= σ(µ′1, µ

′
2)

(ii) π(µ1, µ2) = π(µ′1, µ
′
2) if and only if (µ1, µ2) = (µ′2, µ

′
1) or (µ′1, µ

′
2).

(iii) σ(µ1, µ2) = σ(µ′1, µ
′
2) if and only if (µ1, µ2) = (µ′1, µ

′
2), (ηµ′1, ηµ

′
2), (ηµ′2, ηµ

′
1),

or (µ′2, µ
′
1). (ν = sgn.)

Proof. For (i), we note that if π is finite dimensional they are not equal since σ is
infinite dimensional. If π is infinite dimensional then π contains all ϕn with n ≡ m
(mod 2) but σ only contains part of the spectrum, hence they can not be equivalent
representations.

For (ii) and (iii), we consider the action of a different module. Recall that by
Lemma 4.4.2,

ρ(J)ϕn = (s1 + s2)ϕn, ρ(Ω)ϕn =
s2 − 1

2
ϕn,

with s = s1 − s2. If π(µ1, µ2) = π(µ′1, µ
′
2) or σ(µ1, µ2) = σ(µ′1, µ

′
2) then Ω and J

should act by the same scalar on both sides.
So we get s1 + s2 = s′1 + s′2 and (s1 − s2)2 = (s′1 − s′2)2. This implies that

(s1, s2) = ±(s′1, s
′
2) or ±(s′2, s

′
1). Notice since µi = |t|si

(
t
|t|

)mi
and mi either ±1.
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So for fixed si there are finitely many choices. We leave it as an exercise to check
the finitely many cases.

To complete the proof, one must actually define the intertwining maps between
the spaces. This is straightforward. Once you have a map, it is unique. �

4.5. Hecke algebra for GL2(R). As in the nonarchimedean theory, we have a
notion of a Hecke algebra H. Let H1 be the set of f ∈ C∞c (G) such that f is
K-finite on the left and right, and let H2 be the C-span of the matrix coefficients15

of the finite dimensional irreducible complex representations of K = O(2,R).
We set H = H1 ⊕H2. For f ∈ H1 and ξ ∈ H2 we have

f ∗ ξ =
∫
K

f(gu−1)ξ(u)du, ξ ∗ f =
∫
K

ξ(u)f(u−1g)du.

Definition 4.5.1. A representation of H (on a complex topological space) is called
admissible if

• for all v ∈ V , v =
∑l
i=1 π(fi)vi for some vi ∈ V, and fi ∈ H,

• for all elementary idempotents ξ, π(ξ)V is finite dimensional, and
• for all ξ and v ∈ π(ξ)V , the map ξH1ξ → π(ξ)V given by f 7→ π(f)V

is continuous. Note that ξH1ξ consists of smooth continuous functions of
K-type ξ on both sides.

For fn, f ∈ C∞c (G) we write fn → f if for every Ω ⊂ G(R) compact fn converges
uniformly to f on Ω and all derivatives ∂kfn

∂x
i1
1 ···∂x

i4
4

converge to ∂kf

∂x
i1
1 ···∂x

i4
4

uniformly

on Ω. So if fn → f then π(fn)v → π(f)v.
Admissible H-modules are closely related to (g,K)-modules, i.e. if V is an ad-

missible H-module, one can associate an admissible (g,K)-module as follows.16 If
v = π(f)u =

∫
f(g)π(g)udg then we would like to have

π(h)v :=
∫
f(g)π(h)π(g)udg =

∫
f(h−1g)π(g)du = π(λhf)u.

The problem here is that for general h ∈ G, λhf may not be in the Hecke algebra
anymore. So we really only get this if we already have an action of G. However,
this does work for Lie algebra.

Remark. In the nonarchimedean case H consists of locally constant functions so
translates are still locally constant, and the above G-action goes through.

In the Lie algebra we have the following heuristic deduction

π(etX)v = π(λetXf)v =
∫
G

f(e−tXg)π(g)vdg.

Taking derivatives we have

π(X)v =
d

dt

∣∣∣∣
t=0

π(etX)v =
∫
G

d

dt

∣∣∣∣
t=0

f(e−tXg)π(g)vdg.

We have the following actions:

15Matrix coefficients are functions of the form 〈δ(g)w1, w2〉 where δ : K → GL(W ) is a finite

dimnsional (unitary) representation.
16We cannot define a G-action just a (g,K)-action.
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• For v ∈ V write v =
∑l
i=1 π(fi)vi, and define an action of X ∈ g via

π(X)v :=
l∑
i=1

π(Xfi)vi, with Xf =
d

dt

∣∣∣∣
t=0

f(e−tXg).

(As in the p-adic case, this action doesn’t depend on a choice of fi and vi.)
• Similarly, define the action of k ∈ K to be

π(k)v =
∑

π(λkfi)vi.

Again, this is well defined.

Theorem 4.5.2. Let V be an admissible H-module. By the above, one can consider
it as a (g,K)-module. Then

(i) V is irreducible as an H-module if and only if it is irreducible as a (g,K)-
module.

(ii) V1 ' V2 as H-modules if and only if V1 ' V2 as (g,K)-modules.

By our above classification of (g,K)-modules, we also have.

Proposition 4.5.3. Irreducible H-modules are are π(µ1, µ2), σ(µ1, µ2).

The proof of Theorem 4.5.2 requires differential operators. Jacquet-Langlands[5]
has a sketch.

4.6. Existence and uniqueness of Whittaker models. The theory of Whit-
taker models of G = GL2(R) is nearly parallel to the p-adic theory, but the tech-
niques used are very different—the main technique being the use of differential
equations.

Theorem 4.6.1. Let π be an infinite dimensional admissible H-module, and ψ :
R→ C× a nontrivial additive character. Then there exists a space W (π, ψ), unique
up to isomorphism, consisting of functions W : G→ C with the following properties.

(1) W (( 1 x
1 ) g) = ψ(x)W (g).

(2) Given W there exists N > 0 such that W (( t 1 )) = O(|t|N ). (moderate
growth)

(3) W is continuous, and the action of H on W (π, ψ), given by

ρ(f)W (g) =
∫
G

W (gh)f(h)dh

when f ∈ H1, and

ρ(f)W (g) =
∫
K

W (gk)f(k)dk

when f ∈ H2, is equivalent to π.

Proof of Uniqueness. Let π = π(µ1, µ2) or σ(µ1, µ2). Let W (π, ψ) be a space
satisfying the conditions of the theorem, and let κn denote the K-type sending(

cos θ sin θ
− sin θ cos θ

)
7→ einθ. Let Wn be the function in W (π, ψ) of K-type κn. Set

fn(t) = Wn

(
t/ |t|1/2

1/ |t|1/2

)
.
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Since Wn is of type κn, the Iwasawa decomposition G = PK implies that Wn is
determined by fn. (The function fn is something like the Kirillov model of the
p-adic case.) For X ∈ g, set

ρ(X)fn = ρ(X)W

(
t/ |t|1/2

1/ |t|1/2

)
.

We want to analyze this action of g on {fn}. We denote the elements of g as in
(4.4.1). Using the fact that Wn has K-type κn, we calculate directly that

ρ(U)fn(t) =ρ(U)Wn

(
t/ |t|1/2

1/ |t|1/2

)

=
d

ds

∣∣∣∣
s=0

Wn

((
t/ |t|1/2

1/ |t|1/2

)(
cos s sin s
− sin s cos s

))

=
d

ds

∣∣∣∣
s=0

Wn

(
t/ |t|1/2

1/ |t|1/2

)
eins

=infn(t),

and

ρ(X+)fn(t) =
d

ds

∣∣∣∣
s=0

Wn

((
t/ |t|1/2

1/ |t|1/2

)(
1 s

1

))

=
d

ds

∣∣∣∣
s=0

Wn

((
1 ts

1

)(
t/ |t|1/2

1/ |t|1/2

))

=
d

ds

∣∣∣∣
s=0

ψ(ts)fn(t) = 2πiutfn(t).

Note that ψ(x) = e2πiux for some u ∈ R×. Similarly, we obtain

ρ(H)fn = 2t
dfn
dt
, ρ(V±)fn = 2t

dfn
dt
∓ (4πut∓ n)fn.

Suppose π = σ(µ1, µ2). So µi = |t|si
(
t
|t|

)mi
with s = s1 − s2 and m =

|m1 −m2|, and s ∈ Z with s 6≡ m (mod 2). If s ≥ 0, ρ(V−)fs+1 = 0. Combining
this with the above, this gives the first order ODE

(4.6.1) 2t
dfn
dt

+ (4πut+ n)fn = 0.

(n = s+1.) This is a separable ODE and easily solvable. We leave it as an exercise
to verify that the solutions are of the form C |t|−n/2 e−2πut. Actually, since the
domain is R \ {0} is disconnected,

fn(t) =
{

Ct−n/2e−2πut if t > 0
D |t|−n/2 e−2πut if t < 0.

However, the growth condition forces one of C or D to be zero, hence there is a
unique solution fn(t) (up to constant.) To see this, note that if ut < 0 then the
growth condition is satisfied if and only if C = 0 (but D can be anything.) If ut > 0
any C satisfies the growth condition, but D must be zero. Putting this together
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gives uniqueness of Wn up to scalar. Thus W (π, ψ) = ρ(UgC)Wn is unique. In the
case that s < 0, π(V−)ϕ−s+1 = 0. One can argue similarly to the above.

In the case that π = π(µ1, µ2) is infinite dimensional, s /∈ Z and π = B(µ1, µ2).
The relation coming from the action of Ω, recall that Lemma 4.4.2 says that
ρ(Ω)fn = λfn, gives a second order differential equation. Using this and the growth
condition, one argues uniqueness as above. �

Remark. This same method can be used to show if π(µ1, µ2) is finite dimensional
then there does not exist W (π, ψ) 6= 0. The idea is that if π(V±)f±(s+1) = 0, then
only solution to the resulting ODEs is fn = 0.

We sketch the proof of existence when π = π(µ1, µ2) infinite dimensional. In
this case π ' B(µ1, µ2). We use the same construction of the Whittaker functions
as in the p-adic theory. Let Φ ∈ S(R2)K = {f ∈ S(R2) | f is K-finite}17. Define

fΦ(g) := µ1(det g) |det g|1/2
∫

R×
µ1µ2(t)Φ[(0, t)g]d×t

and

WΦ(g) = µ1(det g) |det g|1/2
∫

R×
µ1µ

−1
2 (t)[ρ(t)Φ]∼(t, t−1)d×t.

Since Φ is K-finite, so are fΦ and WΦ, and B(µ1, µ2) is the span of the functions fΦ.
Set W (µ1, µ2, ψ) to be the span of {WΦ | Φ ∈ S(R2)K}. Now define B(µ1, µ2) →
W (µ1, µ2, ψ) by fΦ 7→ WΦ. This map has the same integral relations as in the
p-adic case, see Section 3.14.4, and the following is true.

Theorem 4.6.2. When Re(s) > −1 fΦ 7→ WΦ is well defined, bijective and com-
mutes with the action of (UgC, ε).

Compare this to Corollary 3.14.10. Theorem 4.6.2, together with a simple check
of the growth condition, implies that B(µ1, µ2) irreducible has a Whittaker model.
When π = σ(µ1, µ2) we need a different (but similar) construction.

4.7. Explicit Whittaker functions and the local functional equation. From
the discussion above (Theorem 4.6.2), we have the following diagram.

B(µ1, µ2)
Re s>−1 // W (µ1, µ2;ψ)

S(R2)K
Re s>−1

eeLLLLLLLLLL

88ppppppppppp

In this section we find Φn ∈ S(R2)K such that fΦn = ϕn ∈ B(µ1, µ2) where
ϕn
(

cos θ sin θ
− sin θ cos θ

)
= einθ. The advantage of doing this is that we get WΦn , and so we

have explicit Whittaker functions. We then use these to assert the local functional
equation.

Set
Φn(x, y) = e−π(x2+y2)(x+ iy sgn(n))|n|.

In polar coordinates, Φn(r, θ) = e−πr
2
r|n|einθ. So in the r-direction the function is

rapidly decreasing.

17An example of a K-finite function is e−(x2+y2).
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We will show that fΦn = λϕn. Although it seems that S(R2) is a huge space we
will only need these simple functions to get the Whittaker functions. The point is
that the kernel of S(R2)→W (µ1, µ2, ψ) is large.

First, note that fΦn and ϕn have the same K-type. This follows from the
following identity.

Φn[(x, y)
(

cos θ sin θ
− sin θ cos θ

)
] = Φn[(x, y)]einθ.

Therefore, to compare fΦn and ϕn one only needs to calculate fΦn(e).

fΦn(e) =
∫

R×
µ1µ2(t) |t|Φn((0, t)e)d×t

=
∫

R×
|t|s sgn(t)m |t| e−πt

2
(it sgn(n))|n|d×t

=(i sgn(n))|n|
∫

R×
sgn(t)m+|n| |t||n|+s+1

e−πt
2
d×t

=2(i sgn(n))|n|
∫ ∞

0

|t||n|+s+1
e−πt

2
d×t

=(i sgn(n))|n|
∫ ∞

0

e−t(t/π)(s+|n|+1)/2d×t

=(i sgn(n))|n|π−
s+|n|+1

2 Γ
(
s+ |n|+ 1

2

)
.

We have used the fact that m ≡ n (mod 2) and the change of variables t→ 1√
π

√
t.

Note that when Re(s) > −1 the argument of Γ is positive and thus fΦn(e) 6= 0. We
conclude that fΦn = λϕn for some λ 6= 0.

Now we consider

(4.7.1) WΦn ( a 1 ) = µ1(a) |a|1/2
∫

R×
µ1µ

−1
2 (t)Φ∼(at, t−1)d×t.

If Φ = e−π(x2+y2)P (x, y) and P is a polynomial and ψ(x) = e2πiux then Φ∼ =
e−π(x2+u2y2)Q(x, y) with Q a polynomial. Note that the Fourier transform with
respect to ψ(x) = e2πix of e−πt

2
is e−πs

2
. This implies that (4.7.1) is equal to

(4.7.2) WΦn ( a 1 ) = µ1(a) |a|1/2
∫

R×
µ1µ

−1
2 (t)e−π(a2t2+u2t−2)Q(at, t−1)d×t.

Substituting µ1µ
−1
2 = |t|s sgn(t)m, we want to verify the growth condition. We do

not need worry about µ1(a) |a|1/2 since this is already a power of a. We split the
integral into a part near 0 and one near ∞.∣∣∣∣∣
∫ δ

0

|t|s sgn(t)me−π(a2t2+u2t−2)Q(at, t−1)d×t

∣∣∣∣∣
≤
∫ δ

0

|t|s e−π(a2t2+a2t−2) |a|degQ
cδd
×t

≤ cδ |a|degQ
∫ δ

0

|t|s e−2π|au|d×t ≤ c′δ |a|
degQ

e−2π|u||a|.

We have used that |a| � 0 in the first line and Cauchy-Schwarz (α2 + β2 ≥ |αβ|.)
The final integral decays exponentially, so everything is good.
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Now near ∞ we have∣∣∣∣∫ ∞
δ

|t|s sgn(t)me−π(a2t2+u2t−2)Q(at, t−1)d×t
∣∣∣∣

≤
∫ ∞
δ

cδe
−π(a2t2) |a|degQ |t|s+degQ

d×t = o(|a|N )

for any N > 0. So WΦn = O(|a|N ) for any N > 0.

Remark. For π = σ(µ1, µ2) we have

W (π, ψ) =
{
WΦ ∈W (µ1, µ2;ψ)

∣∣∣∣∫ ∞
−∞

xi
∂j

∂yj
Φ∼(x, 0)dx = 0 for all i, j

}
.

This is comparable to the p-adic case. See Lemma 3.14.12.

Note given ϕ ∈ π with ϕ =
∑
ciϕi correspondingly we have W a Whittaker

function with W =
∑
ciWΦi .

Theorem 4.7.1. Let π be an infinite dimensional irreducible admissible represen-
tation of H. For W ∈W (π, ψ) define

Ψ(g, s,W ) :=
∫

R×
W (( a 1 ) g) |a|s−1/2

d×a

and

Ψ̃(g, s,W ) :=
∫

R×
W (( a 1 ))ω−1(a) |a|s−1

d×a

where ω is the central quasicharacter. Then there exists an Euler factor L(s, π) and
L(s, π∼) such that

(1) Ψ(g, s,W ), Ψ̃(g, s,W ) converge absolutely when Re(s)� 0,
(2) Φ(g, s,W ) = Ψ(g,s,W )

L(s,π) , Φ̃(g, s,W ) =
eΨ(g,s,W )
L(s,eπ) are holomorphic, and

(3) there exists an exponential function ε(s, π, ψ) such that

Φ̃(ωg, 1− s,W ) = ε(s, π, ψ)Φ(g, s,W ).

If W ∈ W (π, ψ) we have W =
∑
WΦi with each Φi = Φi,1(x)Φi,2(y). So to

prove the functional equation we only need to check it for those WΦi .

Remark. Φ(r, θ) =
∑

Φi(r, θ) =
∑
fi(r)einθ so finite K-type alone is not what

allows us to consider split cases.

Proof in case π = π(µ1, µ2). As in the nonarchimedean case, it suffices to prove
everything for g = e. When π = π(µ1, µ2), W (π, ψ) = W (µ1, µ2, ψ) and we consider
the pure tensors Φ(x, y) = Φ1(x)Φ2(y) ∈ S(R2)K then

Ψ(e, s, w) = Z(s, µ,Φ1)Z(s, µ2,Φ2)

which are the GL1 zeta integrals. Additionally,

Ψ(ω, 1− s,W ) = Z(1− s, µ−1
1 ,Φ∼1 )Z(1− s, µ−1

2 ,Φ∼2 ).

The meromorphic part of Z(s, µ,Φ1) is L(s, µ1), and the calculations are the same
as the p-adic theory.

Set L(s, π) = L(s, µ1)L(s, µ2), ε(s, π, ψ) = ε(s, µ1, ψ)ε(s, µ2, ψ). All statements
for π follow from the corresponding statements for GL1 theory for R. (See below
for the statements.) For π = σ(µ1, µ2) one can argue in a simialr way. �
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In the GL1 theory every quasicharacter µ : R× → C× is of the form x 7→
|x|r sgn(x)δ for some r ∈ C and δ ∈ {0, 1}. Let ψ : R → C× be the character18

ψ(x) = e2πiux. If Φ ∈ S(R), define

Z(s, µ,Φ) =
∫

R×
µ(x) |x|s Φ(x)d×x,

L(s, µ) = π−(s+r+δ)/2Γ(
s+ r + δ

2
) =: ΓR(s+ r + δ)

and

(4.7.3) ε(s, µ, ψ) = [i sgn(u)]δ |u|s+r−1/2
.

Then the following are true.
• The Z(s, µ,Φ) converges absolutely for Re(s) > s0 for certain s0 depending

on µ.
• Z(s,µ,Φ)

L(s,µ) is holomorphic.

• Z(1−s,µ−1,Φ∼)
L(1−s,µ−1) = ε(s, µ, ψ)Z(s,µ,Φ)

L(s,µ) .

4.7.1. A brief description of the GL1(C) theory and the L-factor for σ(µ1, µ2).
There is an analogous theory for quasicharacters ω : C× → C×. These are given
by z 7→ |z|rC zmz

n with m,n ≥ 0 and on of them is 0. So, for Φ ∈ S(C),

Z(ω, s,Φ) =
∫

C×
ω(z) |z|s Φ(z)d×z,

and

L(s, ω) = 2(2π)−(s+r+m+n)Γ(s+ r +m+ n) =: ΓC(s+ r +m+ n).

Then Z(ω, s,Φ) converges absolutely when Re(s)� 0 and Z(ω,s,Φ)
L(s,ω) is holomorphic.

There is a similar local functional equation. The ε-factor is a bit more complicated.
All of this is done in [7].

Alternatively, C× ' R>0 × S1 via z 7→ (|z|C ,
z
|z| , every character of C× is the

product of a character on R>0 and a character on S1. It is well known that such
characters are of the form x 7→ xt (for t ∈ C) and eiθ 7→ eikθ (for k ∈ Z) respectively.

A simple calculation (left as an exercise) reveals that the character ω, which
depends on m,n, r, above is equal to the character z 7→ |z|tC ( z

|z| )
k if

k = m− n and t =
m+ n

2
=
|k|
2
.

In the case that π = σ(µ1, µ2), then π is a discrete series representation of weight
k and

L(s, π) = L(s, ω) = ΓC(s+ t+
k

2
).

Note that in this case

µ1µ
−1
2 = xp sgn(x) and µ1µ2 = |x|2r sgn(x)p+1.

Although not done here, it shouldn’t be hard to see the relation between this r and
p and the t and s above.

18My original notes from the class didn’t include any definition for ψ, but the u appearing in
(4.7.3) is never defined, so this seemed a reasonable guess.



88 AUTOMORPHIC FORMS ON GL2 – JACQUET-LANGLANDS

4.8. GL2(C). Here the theory is similar. In short, every admissible representation
is of the form π = π(ω1, ω2) where ωi : C× → C× are characters. The local factors
are (I think)

L(s, π) = L(s, ω1)L(s, ω2)

See [5] for details.

5. Global theory: automorphic forms and representations

In this final section we consider automorphic representations of GL2(AF ) where
AF is the ring of adeles associated to a number field F . Due to time limitations, we
do not include proofs, but we will try to touch on the big ideas. We let G = GL2,
Kv = GL2(Fv) if v is finite, Kv = O(2,R) if v is real and Kv = U(2) if v is complex.
Then define K∞ =

∏
v|∞Kv.

We remark that most of what we will say is true for G any reductive group over
a number field, and Kv maximal compact subgroups of G(Fv). However, we do not
work in this generality as the definitions are slightly more complicated. When a
result is particular to GL2, we will try to make that clear.

5.1. Restricted products. We have G(AF ) =
∏∗

v

G(Fv). The ∗ denotes the

restricted product with respect to {Kv}. This means that g = (gv) ∈ G(AF ) if
and only if gv ∈ Kv for all but finitely many v. Also, let G(AF,f ) the subgroup
of G(AF ) consisting of elements (gv) with gv = 1 for all v | ∞. (Recall that these
notions were introduced in Section 2.1.)

For each place v of F , let Vv is a complex vector space over C. Fixing a vector
ev ∈ Vv for almost all v allows us to define the restricted tensor product

V =
⊗∗

v

V

which is generated by the set of all tuples (wv) ∈
∏
Vv such that wvev for almost

every v, modulo the usual tensor relations.
We also define a global Hecke algebra in this fashion. Let

H =
⊗∗

v

Hv

with respect to ev = 1Kv (the characteristic function of Kv) for almost all v.

Definition 5.1.1. A pure tensor ξ = ⊗ξv ∈ H is called an elementary idempotent
if each ξv is an elementary idempotent in Hv.

Definition 5.1.2. A representation π of H is a vector space V is a called admissible
if

(1) every w ∈ V is of the form
∑l
i=1 π(fi)wi with wi ∈ V , fi ∈ [

⊗∗

v|∞
H1,v]⊗

[
⊗∗

v-∞
Hv],

(2) for every elementary idempotent ξ ∈ H the range of π(ξ) is finite dimen-
sional, and



AUTOMORPHIC FORMS ON GL2 – JACQUET-LANGLANDS 89

(3) if v0 is an archimedean place and ξv0 ∈ Hv0 is an elementary idempotent for
each v 6= v0, choose an elementary idempotent ξv set ξ = ξv0 ⊗ (⊗v 6=v0ξv).
Then for any w ∈ V the map ξv0Hv0ξv0 → π(ξ)v by fv0 7→ π[fv0 ⊗
(⊗v 6=v0)ξv)]w is continuous.

Remark. The first two conditions are as usual and the third is to control the
archimedean place. See Definitions 2.2.7 and 4.5.1.

We now have the tools needed to build a global representation from local ones.
To do this, for each v, let (πv, Vv) be an admissible representation of Hv. Assume
that dimV kvv ≤ 1 and that for almost all v equality holds. Choose ev ∈ V Kvv for
almost all v and let V be the restricted tensor product with respect to these vectors.
Define the action π of H on V to be

π((fv)v)(⊗wv) = π(fv)wv.

Note that ev is a Kv fixed vector, so this action only depends on the finitely many
places for which fv 6= ξv and wv 6= ev. So this makes V an admissible H-module.

Definition 5.1.3. Let (π, V ) be an admissible representation of H. It is irreducible
if there is no nontrivial H-invariant subspace.

Remark. If π = ⊗πv then π is irreducible if and only if πv is irreducible for every
v.

Proposition 5.1.4. If (π, V ) is an irreducible admissible representation of H, it
is factorizable. In other words, there exists irreducible admissible representations
(πv, Vv) of Hv with πv unramified for almost all v such that V '

⊗∗

v
Vv and

π '
⊗∗

v
πv. The local representations πv are unique up to isomorphism.

In practice, one is often presented with a global expression, for example a period
integral, and one would like to express this as a product of local objects. This
passage from global to local, although expected, is often difficult to achieve.

5.2. The space of automorphic forms. A function ϕ : G(F )\G(AF )→ C is an
automorphic form if the following are satisfied.

• ϕ is right invariant by Kf an open compact subgroup of G(AF ).
• For any gf ∈ G(AF,f ) the map G(F∞) → C given by g∞ 7→ ϕ(g∞ · gf ) is

smooth. Also, ϕ is K∞ finite.
• ϕ is Z-finite.
• ϕ is of moderate growth.

We explain the terms K∞-finite, Z-finite and moderate growth below.
Denote A the set of automorphic forms.

Definition 5.2.1. A function ϕ : G(F )\G(AF ) → C is K∞-finite if span{K∞ϕ}
is finite dimensional. Compare with .

Definition 5.2.2. Let Z denote the center of UgC, which is the tensor product of
the universal enveloping algebras at each local place. Then ϕ : G(F )\G(AF ) → C
is Z-finite if ϕ is annihilated by an ideal of finite codimension in Z.
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We note that, in particular, all eigenvectors are Z-finite.
Consider i : G ↪→ SL4 by g 7→

(
g

g−1

)
write i(g) = (gm,n). We use this to

define a norm on G(AF ): for each v set |gv|v = maxm,n{|i(gv)m,n|v}. Then define
|g| =

∏
v |gv|v.

Definition 5.2.3. ϕ : G(F )\G(AF ) → C is of moderate growth (or slowly in-
creasing) if

|ϕ(g)| = O(|g|N )

for some N ≥ 0 as |g| → ∞. In other words, ϕ is polynomially bounded as |g| → ∞.

Remark. The norm | · | : G(AF )→ C satisfies the following.
• There exists c > 0 such that |g| > c for all g ∈ G(A).
• There exists c > 0 such that |g1g2| < c|g1||g2|.
• There exists c, r > 0 such that |g−1| < c|g|r.
• For compact sets Ω,Ω′ ⊂ G(AF ) there exists c1, c2 such that c1|g| ≤
|g1gg2| ≤ c2|g| for g1 ∈ Ω and g2 ∈ Ω′.

Theorem 5.2.4. Fix an ideal I of Z with finite codimension, a K∞-type ξ, and a
compact open subgroup Kf ⊂ G(AF,f ). Let V to be the set of ϕ ∈ A such that ϕ is
right invariant by Kf , ρ(ξ)ϕ = ϕ and ρ(I)ϕ = 0. Then dimV <∞.

Corollary 5.2.5. The action of H on A is admissible.

Definition 5.2.6. An irreducible representation of H is automorphic if it is a
subquotient of A, meaning that there exists U ⊂ V ⊂ A such that π ' V/U .

Definition 5.2.7. A continuous function ϕ : G(F )\G(AF ) → C is cuspidal if∫
F\AF ϕ[( 1 x

1 ) g] = 0 for all g. The condition for all g implies our usual notion of
vanishing at all cusps.

An automorphic form ϕ is a cusp form if it is cuspidal. Set A0 to be the set of
all cusp forms.

Theorem 5.2.8. A0 is a semisimple H-module and each irreducible admissible
representation π of H occurs with finite multiplicity.

Remark. For our special case of G = GL2, the multiplicity is actually one.

5.3. Spectral decomposition and multiplicity one. One obtains a measure
m on G(AF ) by specifying a Haar measure mv on GL2(Fv) for almost all v. We
require mv(Kv) = 1, and with this choice of measure the following is true.

Proposition 5.3.1. If Z+ is the identity component of the center of G(AF,∞) then
m (G(F )Z+\G(AF )) <∞.

This result is similar to the fact that GL2(Z)\GL2(R) has finite volume.
Suppose that F = Q. In this case19 we write AQ = A and AQ,f = Af . Then

there exists a finite set C such that

G(A) =
⊔
c∈C

G(Q)cG(R)Kf

19If we allow other groups besides G = GL2, then this really isn’t a restriction at all, and the
argument here goes through.
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for any compact open subgroup Kf ⊂ G(Af ). This implies that

G(Q)\G(A)/Kf =
⊔
c∈C

Γc\G(R)

where Γc = G(Q)∩cKfc
−1 which is a congruence subgroup. In our case ofG = GL2,

this looks like finitely many copies of the upper half plane modulo a congruence
subgroup which has finite volume.

The main corollary to Proposition 5.3.1 is that there exists a spectral decom-
position of L2 (G(F )Z+\G(AF )). The main references for this theory are Mœglin
and Waldspurger[6] (which is a reworking of Langlands’ work on Eisenstein series)
and Godement’s papers in [1].

Let N = {( 1 ∗
1 )} and B = {( ∗ ∗∗ )} as usual20, and Z+ the connected component

of Z(A). G(A) acts (via the right regular representation) on L2(Z+G(Q)\G(A)).
We restrict our discussion to the cuspidal spectrum:

L2
0(G) :=

{
ϕ ∈ L2(Z+G(Q)\G(A))

∣∣∣∣∣
∫
N(Q)\N(A)

ϕ(ng)dn = 0 for all g ∈ G

}
.

The portion of L2(G) ‘orthogonal’ to L2
0(G) is called the continuous spectrum.

Remark. When the space is compact there is only a discrete spectrum. That is
there is no continuous part.

Theorem 5.3.2. L2
0(G) is the Hilbert space direct sum of irreducible unitary sub-

representations of G(A) each of which occurs with finite multiplicity.

The general proof follows from the theory of compact self adjoint operators and
it works for all reductive groups. (See Godement’s papers in [1].)

Example 5.3.3. For G = S1, the Laplacian is ∆ = ∂2

∂θ2 and the eigenfunctions are
einθ. This is just classical Fourier analysis.

The action of the center of the universal enveloping algebra is critical. In our case
it is freely generated by ( 1

1 ) and the Kasimir element Ω. When Z+G(Q)\G(A)/K
consists of one component, and so equals Γ\H, the action of Ω as an operation on
functions is −2∆ where

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
.

This is the hyperbolic Laplacian acting on the upper half space H. Using this action,
we decompose L2

0(G) into unitary representations. The papers by Godement in the
PSPUM series from the Boulder Conference[1] discuss the classical situation.

Let χ : Q×R+\A× → S1 be a character. Define

L2
χ(G) := {ϕ ∈ L2(G(Q)Z+\G(A)) : ϕ(zg) = χ(z)ϕ(g) for z ∈ Z(A)},

and L2
χ,0(G) = L2

χ(G) ∩ L2
0(G), the χ-part of the cuspidal spectrum. To deduce

multiplicity one we use the Whittaker model and Fourier expansion. Let π = ⊗pπp
be an irreducible component in L2

0(G). Then define π∞ to be the set of all ϕ ∈ π
such that ϕ is invariant by open subgroup Kf , ϕ(g∞gf ) is a smooth function of
G(A∞) for every choice of gf ∈ G(Af ), and ϕ is K∞-finite.

So π∞ = ⊗pπ∞p . (π∞p is just the set of smooth vectors in πp as defined in the
sections on local representations.) For ϕ ∈ π∞ we can do Fourier decomposition

20For a more general group, B = NA is a Borel subgroup of G.
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when restricting it to the nilpotent radical. By this we mean choose a nontrivial
character ψ : Q\A→ C. (All character are then of the form ψξ(x) = ψ(ξx).) Then
for a fixed g, ϕ[( 1 x

1 ) g] is a function on Q\A, and Fourier expansion tells us that

(5.3.1) ϕ(( 1 x
1 ) g) =

∑
ξ∈Q

ψ(ξx)Wφ,ξ(g),

where Wφ,ξ(g) =
∫
n∈Q\A ϕ(( 1 n

1 ) g)ψ−1(ξn)dn. φ 7→Wφ,ξ(1) is a global Whittaker
functional on π∞. We derive this in Section 5.6.2.

Remark. Multiplicity one follows from the uniqueness (up to scalar) of the Whit-
taker model. This follows from the fact that the local Whittaker models are unique.
See Proposition 5.6.3

Remark. Equation (5.3.1) implies that at least one of the Whittaker functional is
nonzero. Therefore, all π∞p are infinite dimensional. (See Theorem 3.13.4.)

Theorem 5.3.4 (Multiplicity One). Each irreducible component of L2
0(G) occurs

only once.

This theorem holds for G = GL2, but not in complete generality.

Proof. Suppose π1 ' π2 are irreducible components in L2
0(G), and let L be an

intertwining operator between them. Then ϕ 7→Wϕ,ξ(1) and ϕ 7→WLϕ,ξ(1) are two
ψξ Whittaker functionals. By uniqueness one is a scalar of the other. WLϕ,ξ(1) =
λξWϕ,ξ(1) for all ϕ ∈ π∞. But all λξ are equal, say to λ. Using the Fourier inversion
formula we see Lϕ = λϕ. So π1 = π2. �

Theorem 5.3.5 (Strong Multiplicity One). For two irreducible components π1, π2 ∈
L2

0(G), π1,p ' π2,p for almost all p implies π1 ' π2.

The proof involves twisted L-functions.
Set A0 = A∩L2

0(G) and A0(ψ) = A∩L2
ψ,0(G). For an irreducible component π

of L2
0(G) set A(π) = A ∩ π.

Theorem 5.3.6. Suppose πp is an infinite dimensional irreducible admissible rep-
resentation of G(Qp). For l ∈ Z≥0 set

K0(pl) = {gp ∈ G(Zp) | gp ≡ ( ∗ ∗∗ ) (mod pl)}.

Then there exists a smallest l such that dimπ
K0(pl)
p 6= 0. Moreover, for this smallest

l, dimπ
K0(pl)
p = 1.

c(πp) = pl is called the conductor of πp. If π is an irreducible component of
L2

0(G), c(π) =
∏
c(πp) is called the conductor of π. Since l = 0 whenever πp is

unramified, c(π) is a well-defined integer.

5.4. Archimedean parameters. Since L2
0(G) is unitary, if π is an irreducible

component of L2
0(G) then π∞ is unitarizable.

Theorem 5.4.1. If an infinite dimensional irreducible admissible represenation π
of HR is unitarizable then it is either σ(µ1, µ2) or π(µ1, µ2) with µ1 = µ, µ2 =
µ−1 and µ(t) = |t|s/2 sgn(t)m with s ∈ (−1, 1) or µ1 = |t|ia1 sgn(t)mi and µ2 =
|t|ia2 sgn(t)m2 .

The requirement on s is so that we can make the form positive definite.
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Sketch of Proof. Clearly σ(µ1, µ2) are unitarizable. Suppose π(µ1, µ2) is unitariz-
able then π(µ1, µ2) ' π(µ−1

1 , µ−1
2 ) which implies that µi = µ−1

i or µ1 = µ−1
2 and

µ2 = µ−1
1 . In the first case the norm part of µ1 and µ2 are imaginary. In the second

case µ1 = µ and µ2 = µ−1 with µ as above. To see the condition for s construct
the Hermitian pairing. �

If π∞ ' σ(µ1, µ2) then π is called a discrete series representation and it corre-
sponds to a space of holomorphic modular forms. The case π ' π(µ1, µ2) corre-
sponds to Maass forms. In either case, if |t|ia are purely imaginary these are called
continuous series. In the other case we call the representations complimentary
series.

5.5. Classical forms on H. In this section we discuss the relation between clas-
sical modular and Maass forms and automorphic representations.

5.5.1. Holomorphic cusp forms. Define the action of g ∈ GL2(R)+ on z ∈ H in
the usual way: z 7→

(
a b
c d

)
· z = az+b

cz+d , and define the automorphy factor j(g, z) =
(cz + d)(det g)−1/2. We assume that k ∈ Z≥0. Define

f[g]k(z) = f(g · z)j(g, z)−k.
For Γ a congruence subgroup of SL2(Z) set Sk(Γ) to be the set of all f : H → C
such that

• f |[γ]k= f for all γ ∈ Γ
• f is holomorphic on H
• at every cusp of Γ f vanishes.

Some examples of congruence subgroups are

Γ(N) :={γ ∈ SL2(Z) : γ ≡ ( 1
1 ) (mod N)},

Γ0(N) :={γ ∈ SL2(Z) : γ ≡ ( ∗ ∗∗ ) (mod N)},
Γ1(N) :={γ ∈ SL2(Z) : γ ≡ ( 1 ∗

1 ) (mod N)}.

We will focus on Γ = Γ0(N). Set

Kf (N) =
∏
p-∞

K0(pvp(N))

with K0(pl) = {g ∈ GL2(Zp) | g ≡ ( ∗ ∗∗ ) (mod pl)} as before. Also, set K∞ =
SO(2,R). Then if K = KfK∞,

G(Q)Z+\G(A)/K ' Γ0(N)\H.

Now let χ be a character of (Z/NZ)× with χ(−1) = (−1)k. Set Sk(N,χ) to be the
set of all f ∈ Sk(Γ1(N)) such that f[γ]k(z) = χ(d)f(z) for all γ =

(
a b
c d

)
∈ Γ0(N).

Note that Γ0(N)/Γ1(N) ' (Z/NZ)×. Then Sk(Γ1(N)) = ⊗χSk(N,χ).

5.5.2. Maass forms. By shifting weights we only need to worry about weight21 0 or
1. Let Ws(Γ) be the set of all f : H→ C with

• f is bounded and smooth
• f(γz) = f(z) for all γ ∈ Γ

21This seems a little funny because the definition seems to only involve weight 0 forms. Al-
though, from the representation theory below it will be clear that it suffices to consider weight 0

and weight 1 only.
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• ∆f = 1−s2
4 f

The reason for writing the eigenvalue as 1−s2
4 is that if µ1µ

−1
2 = |t|s sgn(t)m then

Ω acts according to (s2 − 1)/2 and ∆ = − 1
2Ω. So ∆ acts by (1− s2)/4.

5.5.3. Mapping Sk(N,χ) to A0. Given f ∈ Sk(N,χ) we associate a function φf on
G(A). Write g = γg∞k0 with22 γ ∈ G(Q), g∞ ∈ G∞, k0 ∈ Kf (N). Set

φf (g) = f(g∞ · i)j(g∞, i)−kχ̃(k0).

Here χ̃ : Kf (N)→ S1 is a character of the level group with χ̃p = 1 for p - N . When
p | N , χ̃p

(
a b
c d

)
= χ([a]) where [·] : Z×p → (Z×p /NZ×p )× ⊆ (Z/NZ)×. This map is

well defined because G(Q)+∩G∞Kf (N) = Γ0(N). What is the image of this map?
They are special types of automorphic forms.

Proposition 5.5.1. Consider the set of all φ ∈ A0 such that φ is right translation
invariant by Kf (N), of K∞ type k, having central character χ and Ω eigenvalue
(k−1)2−1

2 . Then f 7→ φf is an isomorphism from Sk(N,χ) to this space.

Injectivity is easy. Surjectivity is not too difficult. The k type tells you the
lowest point in the discrete series. The conditions on the central character and the
action of Ω are equivalent to f having character χ and being killed by the order
one differential operator d/dz. This last equation is exactly the condition for f to
be holomorphic.

5.6. Hecke theory and the converse theorem. The final section of these notes
will be to apply the theory we have developed, first to discuss the theory of L-
functions attached to a global representation, and second to apply this theory to
prove Weil’s converse theorem. We will see how the representation theoretic view-
point makes the converse theorem actually quite easy to prove. We first state the
theorems:

Theorem 5.6.1. Let π = ⊗vπv be a irreducible admissible H-module and assume
π occurs in A. Define L(s, π) =

∏
v L(s, πv). Then

(i) L(s, π) and L(s, π̃) converge in a right half plane and can be meromorphi-
cally continued to C.

(ii) If π ⊂ A0, the continuations of L(s, π) and L(s, π̃) are holomorphic on all
of C. If π 6⊂ A0, they have finitely many poles. In either case they are
bounded in any finite width vertical strip (not containing the poles).

(iii) L(s, π) = ε(s, π)L(1− s, π̃), with ε(s, π) =
∏
ε(s, πv, ψv) where ψ : A/F →

C is a character.

Remark. We will see that ε(s, π) does not depend on the choice of ψ even though
each local ε-factor does.

Theorem 5.6.2 (Converse Theorem). Let π = ⊗vπv be an irreducible admissible
H-module. Then π occurs in A if and only if for all quasicharacters χ : A×F /F× → C
L(s, π ⊗ χ) is holomorphic and satisfies

L(s, π ⊗ χ) = ε(s, π ⊗ χ)L(1− s, π̃ ⊗ χ′).

[Include a discussion of the classical formulation of the converse the-
orem here.]

22For any choice of N , G(A) = G(Q)G(R)Kf (N).
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Remark. One advantage of the number theoretic method is that it is it general-
izes Weil’s original proof to any number field without making the proof any more
difficult.

5.6.1. Global Whittaker model. Fix ψ : AF /F → C a character. Let π = ⊗πv be
an irreducible admissible H-module and all πv infinite dimensional.

Proposition 5.6.3. There exists a unique space W (π, ψ) of continuous functions
on GA with the following properties:

• W (( 1 x
1 ) g) = ψ(x)W (g)

• W (π, ψ) is right invariant H and this action is ' π.
• For each v | ∞ there exists N ∈ R such that W ( a 1 ) = O(|a|N ) as a→∞

in F×v .

Proof. We begin with existence. For each v there exists local Whittaker model
W (πv, ψv). For almost all v, πv is spherical. Therefore, for such v, let W ◦v be the
spherical vector of W (πv, ψv) such that W ◦v (e) = 1. Consider ⊗vW◦vW (πv, ψv) and
define

W (π, ψ) := {W ∈
∏
v

Wv(gv) : Wv(ev) = 1 ⊗Wv ∈ ⊗vW◦vW (πv, ψv)}.

Uniqueness follows from local uniqueness. We leave this as an exercise or one
can look at the book. �

5.6.2. Fourier expansion. Suppose π is an irreducible component inA0, ψ : AF /F →
C, ϕ ∈ π,

Wψ
ϕ (g) =

∫
F\AF

ϕ[( 1 x
1 ) g]ψ−1(x)dx.

Then the span of {Wψ
ϕ | ϕ ∈ π} is a Whittaker model of π. If ξ ∈ F then ψξ-

Whittaker model is determined by the ψ-model:

W
ψξ
ϕ (g) =

∫
F\AF

ϕ[( 1 x
1 ) g]ψ−1

ξ (x)dx

=
∫
F\AF

ϕ[( 1 x
1 ) g]ψ−1(ξx)dx

=
∫
F\AF

ϕ[
(

1 ξ−1x
1

)
g]ψ−1(x)dx

=
∫
F\AF

ϕ[
(
ξ−1

1

)
( 1 x

1 )
(
ξ

1

)
g]ψ−1(x)dx

=
∫
F\AF

ϕ[( 1 x
1 )
(
ξ

1

)
g]ψ−1(x)dx

=Wψ
ϕ

((
ξ

1

)
g
)
.

Since every character is of the form ψξ, as a consequence

ϕ (( 1 x
1 ) g) =

∑
ξ∈F

W
ψξ
ϕ (g)ψξ(x) =

∑
ξ∈F

Wψ
ϕ

((
ξ

1

)
g
)
ψ(ξx).

We can recover φ from Wψ
φ by setting x = 0:

ϕ(g) =
∑
ξ∈F

Wψ
ϕ (
(
ξ

1

)
g).
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This is crucial for the converse theorem as we will see.
By uniqueness, the Whittaker model defined from the Fourier coefficients must

coincide with the Whittaker model obtained from local the Whittaker models. So,
one can modify the local identification πv ' W (πv, ψv) such that ADD DIA-
GRAM (One has ev 7→ Wv for almost all v. Then the remaining choices can be
made so that the diagram commutes.

5.6.3. Functional equation for global Ψ-integral.

Proposition 5.6.4. Let π be an irreducible component of A0 with central character
η. Then there exists s0 ∈ R>0 such that for all W ∈W (π, ψ)

Ψ(g, s,W ) =
∫

A×F
W (( a 1 ) g) |a|s−1/2

d×a,

Ψ̃(g, s,W ) =
∫

A×F
W (( a 1 ) g) |a|s−1

η−1(a)d×a

converge absolutely if Re(s) > s0. Furthermore, Ψ and Ψ̃ have holomorphic con-
tinuation to C and satisfy

Ψ(wg, 1− s,W ) = Ψ(g, s,W ).

Proof. When Re(s)� 0

Ψ(g, s,W ) =
∫

A×F
W (( a 1 ) g) |a|s−1/2

d×a

=
∫
F×\A×F

∑
ξ∈F×

W
((

ξ
1

)
( a 1 ) g

)
|a|s−1/2

d×a

=
∫
F×\A×F

ϕ[( a 1 ) g] |a|s−1/2
d×a

Similarly,

Ψ̃(g, s,W ) =
∫
F\A×F

ϕ (( a 1 ) g) η−1(a) |a|s−1/2
d×a.

It follows that

Ψ̃(wg, 1− s,W ) =
∫
F×\A×F

ϕ (( a 1 )wg) η−1(a) |a|1/2−s d×a

=
∫
ϕ (w ( a 1 )wg) η−1(a) |a|1/2−s d×a

=
∫
η(a)ϕ

((
a−1

1

)
g
)
η−1(a) |a|1/2−s d×a

=
∫
ϕ (( a 1 ) g) |a|s−1/2

d×a

=Ψ(g, s,W ).

In the second equality we have used that ϕ is GQ-invariant on the left. Recall that
w =

(
1

−1

)
. Convergence property and being holomorphic follows from the fact

that ϕ is cuspidal. �
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Proof of Theorem 5.6.1. We prove Theorem 5.6.1 in the case when π ⊂ A0. For
example take F = Q. Then L(s, π) =

∏
v L(s, πv) and L(s, π̃) =

∏
v L(s, π̃v). For

almost all p, πp is spherical, so it equals π(µ1,p, µ2,p). Hence

L(s, πp) =
1

1− µ1,p(p)p−s
· 1

1− µ2,p(p)p−s

When η is unitary π is unitary which implies that πp is unitary. Hence µj,p are
either purely imaginary or µ1 = µ2

−1 = µ with µ(x) = |x|t and Re(t) ∈ (−1/2, 1/2)
or maybe (−1, 1). So |µj,p(p)| < p. This implies that L(s, π̃v) and L(s, πv) converge
on the right half plane. If η is not unitary, then twist: |µj,p(p)| < pN for fixed N .
Similar conclusion.

For for W =
∏
Wv we have the following:

Ψ̃(wg, 1− s,W ) = Ψ(g, s,W )

but since Ψ̃ is an integral over A×F and not F×\A×F we have

Ψ̃(wg, 1− s,W ) =
∏
v

[L(1− s, π̃v)Φv(wg, 1− s,W )]

=
∏
v

[L(s, πv)Φv(g, s,W )]

= L(1− s, π̃)
∏
v

ε(s, πv, ψv)Φv(g, s, πv).

Cancel the Φv(g, s, πv) to get for ε(s, π) =
∏
v ε(s, πv, ψv) and

L(s, π) = ε(s, π)L(1− s, π̃).

For almost all v, ε(s, πv, ψv) = 1, hence ε(s, π) is an exponential function. �

The advantage of this method is that we can handle all levels simultaneously.

Proof of Converse Theorem. Given π = ⊗πv satisfying the listed conditions, we
want to show that π occurs in A0. We use the Whittaker models to define a map

π ' ⊗W (πv, ψv)→ A0.

For W =
∏
Wv with ⊗Wv ∈ ⊗◦vW (πv, ψv) set

φW (g) =
∑
ξ∈F×

W
((

ξ
1

)
g
)
.

Then φW is left invariant by B(F×). Need to check that φW is left invariant by w =(
1

−1

)
. This would imply (Bruhat decoposition) φW is a function on G(F )\G(A)

and the conditions of φW being an automorphic form follow from the conditions
for Whittaker functions naturally. This implies that π ↪→ A0 via W 7→ φW . So π
occurs in A0.

To show φW (wg) = φW (g) one can argue φW (w ( x 1 ) g) = φW (w ( x 1 ) g) =
φW (( x 1 ) g) as functions on F×\A×F . To do this one needs only to show that for
all characters χ : A×F /F× → C× the Mellin transform∫

ΦW (w ( x 1 ) g)χ(x) |x|s−1/2
d×x =

∫
φW (( x 1 ) g)χ(x) |x|s−1/2

d×x

But the first of these integrals equals

Ψ̃(wg, 1− s, χ−1 ⊗ π̃) = Ψ(g, s, χ⊗ π)
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and the second is equal to Ψ(g, s,W ). Thus it is true by assumption that the
L-factors satisfy the functional equation. �
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