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1. Michel

These lectures will be less focused on ergodic theory and more on equidistribu-
tion and its relation to ergodic theory.

1.1. The Problem of Linnik. We begin with the specific example of the low-
est dimensional case of Linnik’s problems. This example deals with representations
of integers by ternary quadratic forms. We consider the two forms

q1(a, b, c) = a2 + b2 + c2

q2(a, b, c) = b2 − 4ac

We say d ∈ Z is represented by a quadratic form q if there exist a, b, c ∈ Z such
that q(a, b, c) = d. For d 6= 0 we define

Rq(d) = {(a, b, c) ∈ Z3 | q(a, b, c) = d}.

A natural question is “how does Rq(d) vary?” A more basic question being “when
is Rq(d) 6= ∅?” The answer is

Rq(d) 6= ∅ ⇐⇒ d ≡ 0, 1 (mod 4) in the case of q1

Rq(d) 6= ∅ ⇐⇒ d = 4a(8b + 7) in the case of q2

In each case the direction =⇒ is simple to verify by considering congruences
modulo 8 (resp. modulo 4) in the q1 (resp. q2) case. The other direction is the hard
part. They are both special cases of Hasse’s principle.

One can show that for d → ∞ such that Rq(d) 6= 0, Rq(d) → ∞. Linnik asked
“how are these vectors distributed in R3?” To properly study this question we
define for ε = ±1

Vq,ε(R) = {(x, y, z) ∈ R3 | q(x, y, z) = ε}

=

 S2 if q = q1, ε = 1
a 1-sheeted hyperboloid if q = q2, ε = +1
a 2-sheeted hyperboloid if q = q2, ε = −1

Then
1√
|d|

Rq(d) ⊂ Vq,ε ε = sgn d,

Moreover, Vq,ε(R) carries a natural measure µq,ε. Indeed, since SOq(R) acts
on Vq,ε(R), by ‘natural’ we mean (as described more completely in Section 1.2) an
SOq(R)-invariant measure. For Ω ⊂ Vq,ε(R), the (unique up to constant) measure
is given by defining µq,ε(Ω) to be the Lebesgue measure of the ‘cone’ in R3 obtained
by taking all line segments between the origin and points of Ω.
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With these definitions in hand, we rephrase Linnik’s question as “how are
1√
|d|

Rq(d) distributed on Vq,ε(R) with respect to µq,ε?”

Theorem 1 (Linnik, Skubenko, Duke). As d → ∞, 1√
|d|

Rq(d) become equidis-

tributed on Vq,ε(R) with respect to µq,ε.

We describe the term equidistributed. Fix f0 ∈ Cc(Vq,ε(R)). Then for any
f ∈ Cc(Vq,ε(R)) this means that

(1)

∑
x∈Rq(d) f( x√

|d|
)∑

x∈Rq(d) f0( x√
|d|

)
−→

∫
f dµq,ε∫
f0 dµq,ε

as d → ∞.
Note that because Rq(d) consists of integral points its intersection with any

compact set is finite. Hence the sum in (1) is finite, and therefore well defined.
Michel tried to explain why the f0 is required. I don’t see why it is necessary,

but if Vq,ε(R) is compact obviously one can take f0 = 1. In this case one obtains
the ‘standard’ definition of equidistribution.

1.2. Translation to group theoretic language. Witt’s theorem tells us
that SOq(R) acts transitively on Vq,ε(R). So picking x∞ ∈ Vq,ε(R) gives that

Vq,ε(R) ' SOq(R)/SOq,x(R)

where SOq,x(R) = H is the stabilizer of x∞. The group H is a special orthogonal
group in two variables.

So the question of understanding points on Vq,ε(R) is equivalent to that of
understanding H-orbits in G = SOq(R). The H-orbits are the sets

{ga,b,c ∈ G | ga,b,cx∞ =
(a, b, c)√

|d|
}.

(At this point we introduce a discrete subgroup into the picture. I’m confused
at why this is permissible. My assumption is that understanding the distribution
of points on G is the same as understanding that on Γ\G if Γ is a lattice. Michel
made no mention of lattices at this point, but Einsiedler does exactly this in his
first lecture.)

Let Γ = SOq(Z) which acts on Rq(d). Hence

Rq(d) =
⊔

[a,b,c]∈Γ\Rq(d)

Γ(a, b, c).

So, we want to understand the distribution of Γ-orbits⊔
(Γga,b,cH)/H

in G/H.
Γ, a priori, does not act transitively on Rq(d), but the number of orbits is finite.

This is evident for q1 because Rq(d) itself is finite. For q2 this is a consequence
of Gauss’ reduction theory for binary quadratic forms under the indentification
q2(a, b, c) = d ↔ aX2 + bXY + cY 2.

There is an equivalence between Γ-orbits on G/H and H-orbits on Γ\G:

ΓgH/H ←→ Γ\ΓgH.
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This equivalence is valid at the level of measures:{
Γ-invariant Radon
measures on G/H

}
←→

{
H-invariant Radon
measures on Γ\G

}
In this setting we have the following.

Theorem 2 (Linnik, Skubenko, Duke). The finite collection of H-orbits

{Γ\Γga,b,cH} ⊂ Γ\G

becomes equidistributed on Γ\G with respect to the quotient of the Haar measure on
G by the counting (Haar) measure on Γ.

1.3. An equivalent formulation for q2. We take q = q2. The quadratic
space (Q3, q) is equivalent to the space M0

2 (Q) of traceless 2×2 matrices with form
−det under the linear map

(a, b, c) 7→
(

b −2a
2c −b

)
.

Under this identification SOq is PGL2 acting on M0
2 by conjugation.

In the case ε = −1 we take x∞ = ( 1
2 , 0, 1

2 ) which corresponds to m∞ =
(

0 −1
1 0

)
and H = PSO2(R). In the case ε = +1, we choose x∞ = (0, 1, 0) for which m∞ =(

1 0
0 −1

)
and H = Diag2(R)/R× = A. In either case, we have Γ ↔ PGL2(Z) '

GL2(Z)/±I.
Thus

V−1 ↔ PGL2(R)/PSO2(R) ' C \ R = H ∪ H−1,

and

V+1 ↔ PGL2(R)/A

under the formulation of the previous section.
Note that

Γ\G = PGL2(Z)\PGL2(R) ' PSL2(Z)\PSL2(R) ' T 1(SL2(Z)\H)

which is the unit tangent bundles of the modular surface.
To illustrate that the study of these types of orbits is of interest in number

theory, notice that if d < 0

Γ(a, b, c) ↔ Γ\Γga,b,cH ⊂ Γ\G ³ Γ\G/H ' Γ\H

because H = PSO2(R). The image of Γ(a, b, c) in Γ\H is [za,b,c] =
[
−b+i

√
|d|

2a

]
, the

so-called Heegner point.
The case d > 0 is also of arithmetic interest. In this case

Γ(a, b, c)H −→ Γ\Γga,b,cA ⊂ Γ\G = T 1(Γ\H) ³ Γ\H,

and, here the image is the projection onto the modular curve of the geodesic half
circle intersecting the real axis perpendicularly at −b±

√
d

a . This is the geodesic flow.
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2. Einsiedler

In general, we take G to be a ‘nice’ group, mG to be the left Haar measure on
G and Γ ⊂ G a discrete subgroup. The ‘niceness’ of G guarantees that there exists
a fundamental domain F which is a measurable set such that G = tγ∈ΓγF . The
subgroup Γ is a lattice if mG(F ) < ∞ for some (all) fundamental domain(s).

To prove the existence of F one uses the following notions. A set B ⊂ G is
Γ-injective if B ∩ γB = ∅. A set B ⊂ G is Γ-surjective if G = ∪γ∈ΓγB. (All
sets are taken to be measurable.) It is easy to see that to prove the existence of a
fundamental domain it suffices to show that there is a Γ-surjective set.

It is also a fact, and not difficult to prove, that any two fundamental domains
have the same left Haar measure.

2.1. Lattices in Rd. In the special case that G = Rd, lattices are all of the
form

Λ = Zv1 + · · · + Zvd

for 〈v1, . . . , vd〉 a basis of Rd. We call Λ unimodular if det(

 v1

...
vd

) = ±1. (The

basis vectors are considered as row vectors. Also, the choice of basis can only change
the sign of the determinant, so this is well defined.)

We consider

Ωd = Xd ={all unimodular lattices in Rd}

={Zdg | g ∈ SLd(R)}
=Γ\SLd(R)

where Γ = SLd(Z).
Two questions: Is Γ a lattice? Is Γ uniform, meaning is Γ\G compact? The

answer to the first question is yes, but in the d = 2 case,

X2 = SL2(Z)\SL2(R) = T 1(SL2(R)\H).

Since SL2(R)\H is not compact neither is X2. So, the answer to the second question
is no.

Theorem 3 (Minkowski’s Theorem on Convex Bodies). Let Λ ⊂ Rd be a lattice
and Q ⊂ Rd a convex symmetric subset. (i.e. Q = −Q.) If vol(Q) > 2d covol(Γ)
then Q ∩ Γ 6= {0}.

Theorem 4 (Minkowski’s Theorem on Successive Minima). Let Λ ⊂ Rd be a
lattice. Define

λi = min{r | Br(0) ∩ Λ has i linearly independant vectors}.

Then λ1 · · ·λd ³ covol(Λ).

The notation A ³ B here means that A ¿d B and B ¿d A.

Proof. In the case d = 1, λ1 = covol(Λ). We now proceed by induction.
Choose v1 ∈ Λ such that ‖v1‖ = λ1. Then v⊥1 ' Rd−1. Let π : Rd → v⊥

1 be the
orthonormal projection. So π(Λ) is a lattice in Rd−1. Define λ⊥

i = λi−1(π(V )). By
induction we have λ⊥

2 · · ·λ⊥
d ³ covol(π(Λ)). Moreover, λ1 covol(π(V )) = covol(Λ).
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To complete the proof it suffices to show that λ⊥
i ³ λi. The fact that λ⊥

i ≤
λi is immediate because the project decreases (or leaves unchanged) lengths. To
prove the other inequality, notice that if w ∈ Λ then w = v⊥

1 + (a + n)v1 where
a ∈ [−1/2, 1/2) and n ∈ Z. From this we see that we can choose a Z-basis of Λ
such that

(2) λ1 ≤ λi ≤
√

(λ⊥
i )2 + (

1
2
λ1)2.

Since λ1 ≤ λi this implies that λ1 ≤
√

2λ⊥
i . Using this in (2), we find that

λi ≤
√

3λ⊥
i . ¤

In the proof of Minkowski’s successive minima theorem we obtained via induc-
tion a basis with certain relations between their lengths which lead to the following.

Corollary 5. The set

B =


 1 0

. . .
nij 1


 c1

. . .
cd

 k

∣∣∣∣∣∣∣ nij ∈ [−1/2, 1/2),
c1 ¿ · · · ¿ cd, k ∈ SO(d)


is a surjective domain for the action of SLd(Z) on SLd(R). In particular, SLd(R) =
NAK.

This corollary and the following proposition are useful in proving that SLd(Z)
is a lattice.

Propostion 6. Let ρ : SLd → SLd′ be a homorphism defined by polynomials
with rational coefficients. We put H = {g ∈ SLd | ρ(g)v = v} for some v ∈ Qd′

.
The orbit SLd(Z)I ∈ SLd(Z)\SLd(R) is closed.

Proof. To see this, suppose Γhn → Γg as n → ∞ for some hn ∈ H(R)
and g ∈ SLd(R). We need to show that that g ∈ SLd(Z)H(R). The convergence
condition is equivalent to saying that there exist γn ∈ SLd(Z) such that γnhn → g.
Hence

(3) ρ(γn)v = ρ(γnhn)v → ρ(g)v.

Note that v ∈ 1
N1

Zd′
. Moreover, the polynomials associated to ρ are defined

over 1
N2

Z. It follows that ρ(γn)v ∈ 1
N Zd′

for some integer N independent of n.
Since 1

N Zd′
is discrete and closed (and ρ is continuous) the points ρ(γn)v must

eventually all be the same. So for n sufficiently large, ρ(γnhn)v = ρ(g)v. Applying
(3), this is equivalent to saying v = ρ(γ−1

n g)v. Hence γ−1
n g ∈ H(R). ¤

2.2. Exercises. Mahler’s compactness criterion says that a subset L ⊂ X has
compact closure if there exists a δ > 0 such that Λ ∈ L implies Λ ∩ Bδ(0) = 0. We
take this as granted. (It will be proved in tomorrow’s lecture.)

We write Γ = SLd(Z) and G = SLd(R) in this section unless otherwise specified.
Let Q be a quadratic form in d variables with rational coefficients. Equivalently

Q(x) = xAxt for a rational symmetric matrix A. Suppose Q(x) = 0 for x ∈ Qd

implies x = 0, i.e. Q does not represent o nontrivially. Let

H = SO(Q) = {g ∈ SLd | Q(xg) = Q(x) for all x} = {g ∈ SLd | gAgt = A}.

Exercise 7. Prove that the orbit ΓH(R) is compact in Γ\G. (This is the same
as saying that the H-orbit of the identity in Γ\G is compact.)
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Solution. Note that ρ(g) = gAgt satisfies the criteria of Proposition 6. The
fact that H-orbits on Γ\G are in continuous bijection with Γ-orbits in G/H then
implies closed.

Now we use Minkowski’s compactness criterion. Need to show that there exists
δ > 0 such that for every Λ ∈ SLd(Z), Λ ∩ Bδ(0) = {0} in Rd. Any δ < 1 works
because Λ ⊂ Zd. Therefore, the closure of the orbit is compact. But, by the above,
the orbit is already closed so we are done. ¤

Let K be a degree d number field. Fix a basis of (an ideal for an order O in)
K. Using this basis we can first identify K with (the row space) Qd and also embed
K into Matd(Q) via the linear map φ such that bφ(a) = ab.

Recall that the the norm form NK|Q(a) = det φ(a) which is a polynomial in the
coordinates of a (considered as an element of the d-dimensional space.) We define

H = {g ∈ SLd | gφ(a) = φ(a)g for all a ∈ K}.

Exercise 8. Prove that ΓH(R) is compact. Use this to prove Dirichlet’s unit
theorem.

Solution. Let 〈a1, · · · , ad〉 be the basis as above. Then by linearity

H = {g ∈ SLd | g−1φ(a)g = φ(a) for all a ∈ K} =
d⋂

i=1

H(ai)

where H(ai) = {g ∈ SLd | g−1φ(ai)g = φ(ai)}. Since a finite intersection of com-
pact sets is compact, it suffices to show that H(a) is compact for a ∈ {a1, . . . , ad}.

To do this define ρ : SLd → SLd to be ρ(g)b = g−1φ(b)g. We divide by detφ(a)
if necessary to make the image SLd. In any case, H is exactly of the type described
in Proposition 6, hence it’s closed. By definition, φ(a). ¤

Exercise 9. Finish the proof that Γ\G has finite volume.

Solution. It suffices to show is that there is a surjective set C with finite
volume. Indeed, we take C as in Corollary 5. To complete the proof one needs to
know that the measure on G is essentially the product of the measures on N , A and
K respectively: the measure on N (resp. A) being Lebesgue measure on R(d−1)d/2

(resp. Rd), and that on K the standard Haar measure.
Since C∩N has measure 1 and K is compact, the result now follows by observing

that the restriction of on the ci in C implies that A ∩ C has finite volume as well.
(THIS IS WRONG: Check what Haar measure is on A and then what the

measure on NA = B is. Since B is not unimodular its Haar measure is not the
product of that on A and N , but something twisted by a power of the modular
character on B. Moreover, A ∩ C does not have finite volume in A, but with this
‘corrected’ measure it does in B.) ¤

Exercise 10. Suppose G has a lattice Γ. Show that G is unimodular and that
X = Γ\G has a right G-invariant measure also called Haar measure.

Solution. This result follows from my notes on quotient measures. ¤

Exercise 11. Suppose H ⊂ SLd(Z) is a closed subgroup and x belongs to
SLd(Z)\SLd(R). for which xH has finite H-invariant volume. Show that xH is a
closed subset of SLd(Z)\SLd(R).
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3. Lindenstrauss

Want to study dynamics in Γ\G for G a linear algebraic group. We consider
H ⊂ G a subgroup and its action on G.

• If the acting group H is compact there are no dynamics.
• In the arithmetic case, a compact group can be the shadow of a bigger

periodic group.
• If generated by unipotents one gets polynomial dynamics. These are qual-

itatively (but not quantitatively) understood.
• For diagonalizable groups one has exponential dynamics. This case is only

partially understood. It is related to entropy.

Later we’ll look at applications to the number theory. In particular, we’ll see
how entropy relates to a conjecture of Littlewood: lim infn→∞ n‖nα‖‖nβ‖ = 0.

Also, we’ll look at distribution of closed orbits of diagonalizable groups. The
case of Diag2(R)/R× acting on PGL2(Z)\PGL2(R) is what happens in the situation
of b2 − 4ac = d being discussed in the lectures by Michel.

The general plan is to emphasize how to apply known results of ergodic theory.

3.1. Some elements of ergodic theory. The pointwise ergodic theorem
says that if (X,B, µ) is a measure space and T : X → X is a measure preserving
transform (i.e. T ∗µ = µ) then for any f ∈ L1(µ) there exists f (also in L1(µ)) that
is T -invariant, and

1
N

N∑
k=1

f(T kx) → f(x)

almost everywhere.
One can be more explicit about f . The notion of conditional expectation deals

with A ⊂ B a sub σ-algebra. For f ∈ L2(µ), E(f | A) is the projection of f to
the space of A-measurable functions. E(· | A) : L2 → L2 is a bounded operator of
norm 1. On L1 ∩ L2 it also has norm 1, hence can be extended to L1.

Suppose that (X,B, µ) is a standard Borel space. So, X is locally compact, B
is the Borel σ-algebra and µ is the Borel measure. In this case, any σ-algebra A is
equivalent to a countably generated σ-algebra Ã. This means that for any A ∈ A
there exists Ã ∈ Ã such that µ(A 4 Ã) = 0 and vice versa. Moreover, Ã is the
σ-algebra generated by a countable set A0. (A 4 B is symmetric difference of A
and B.)

We define the atom of x ∈ X to be

[x]
eA =

⋂
x∈A∩ eA

A

(
=

⋂
x∈A∩A

A

)
.

(This is up to a set of measure zero which is always implied although sometimes
not said.)

If we define µA
x to be the probability measure on [x]A. Then E(f | Ã) =∫

f dµ
eA

x .

Example 12. The example to keep in mind with this concept is X = [0, 1]2, B
is the standard Borel σ-algebra, and A is the product B × [0, 1] where B is Borel
on [0, 1]. The atoms of A are then vertical ‘lines.’
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The conditional expectation formulation of the ergodic theorem then says that
f = E(f | Σ) where Σ is the collection of T -invariant sets.

3.2. Information theory. Let X be a random variable with countably many
values S,

C : S → words in {0, 1}.
We say C is prefix free if for all distinct S, S′ ∈ S, C(S) is not a prefix of C(S′). In
other words if C(S) = w and S′ 6= S, C(S′) 6= wv. Note that, in particular, prefix
free implies injectivity. We `S = `(C(S)) be the number of bits (i.e. length) of C(S).

Lemma 13. There exists a prefix free code on S if and only if1
∑

2−lS ≤ 1.

We define

H(X) = E(− log Pr(x = Y )) =
∑
S∈S

−Pr(x = S) log Pr(x = S)

This measures, as the following lemma makes precise, how random prefix free codes
can be on S.

Lemma 14. For any prefix free code C : S → words in {0, 1}
E(`S) ≥ H(X).

Moreover, there exists a (prefix free) code C such that E(`(C(S))) ≤ H(X) + 1.

Proof. Let pS and qS be any sequences so that
∑

S∈S pS = 1 and
∑

S∈S qS ≤
1. Then by using Lagrange multipliers as in calculus on has that

(4) −
∑
S∈S

pS log2 qS ≥ −
∑
S∈S

pS log2 pS .

To prove the first statement let pS = Pr(x = S) and qS = 2−`S . By the previous
lemma, (4) applies. To prove the second statement, take `S = d− log2 pSe. Then
the previous lemma applies again because

∑
2−`S ≤ 1. It implies the existence of

a code C which satisfies, applying (4) again,

E(`(C(S))) =
∑

pS`S ≤ −
∑

pS(log2(pS) + 1) = H(X) + 1.

¤
3.3. Measure theoretic entropy. We now assume (X,B, µ, T ) is a measure

preserving metric space, and P is a countable partition of X. Then we define

Hµ(P) = −
∑
P∈P

µ(P ) log µ(P ).

Also define Pb
a = ∨b

i=aT−iP where P∨Q is the common refinement of the partitions
P and Q.

Note that
Hµ(P ∨Q) ≤ Hµ(P) + Hµ(Q)

Applying this to Pb
a, we get

Hµ(Pm+n
1 ≤ Hµ(Pm

1 ) + Hµ(Pm+n
m+1 )

and Hµ(Pn
1 ) = Hµ(Pm+n

m+1 ).

1I think it should say “for every S ∈ S” at this point, but this wasn’t what I copied down in
my notes.
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Let an = Hµ(Pn
1 ). The entropy is defined to be h(µ, T,P) = lim an/n which

exists, and h(µ, T ) = sup h(µ, T,P).
We say P is generating if for every ε > 0 and B ∈ B there exists N and B̃, a

union of atoms of PN
−N such that µ(B 4 B̃) < ε.

Theorem 15 (Kolmogorov). If P is generating h(µ, T ) = h(µ, T,P).

Theorem 16 (Entropy Theorem, S-M-B). Suppose (X,µ,B, T ) as above, P a
countable partition with Hµ(P) < ∞. Then

h(X,P) = lim− log µ(Pn
1 (X))

n

exists and
∫

h(X,P) dµ(x) = h(P).

If T is ergodic, can say that the limit of atoms tend toward the entropy.

3.4. Coding reformulation. There exists a function h(x) so that h(P) =∫
h(x)dx that satisfies

(1) For every sequence of prefix free codes CN : PN
1 → words in {0, 1},

lim inf `(CN
1 (x))/n ≥ h(x) a.e.

(2) There is a sequence of prefix free codes such that

lim sup `(CN
1 (x))/n ≤ h(x) a.e.

Claim: this is equivalent to the entropy theorem. To see this, define

hn(x) =
1
n

E(log µ(Pn
1 (·)) | T -invariant).

Then hn(x) → h(x). The first statement of the entropy theorem gives 1) by taking
Cn

1 to be the Shannon code for Pn
1 . Then `(Cn

1 (x)) = d− log µ(Pn
1 (X))e.

To prove 2) let
Yn = {x | `(Cn

2 (x)) ≤ (h(x) + δ)n},
Zn = {x | µ(Pn

1 (x)) ≤ 2−(h(x)+3δ)n},
W (α) = {x | αδ ≤ h(x) ≤ (α + 1)δ}.

It is enough to show that for almost every x ∈ W (α) if n is sufficiently large
x /∈ Yn ∩ Zn. To do this estimate:

µ(W (α) ∩ Yn ∩ Zn) ≤
∑

`(C(P))≤(α+2δ)n

µ(P) ≤ 2(α+2δ)m · 2−(α+3δ)n = 2−δn.





CHAPTER 2

June 2, 2009

1. Philippe

Review: We have G = SOq(R), H = SOq,x∞(R) and Γ = SOq(Z). Understand-
ing Rq(d) is equivalent to understanding the distribution of a set of H-orbits of
points za,b,c ∈ Γ\G: ⊔

[a,b,c]

za,b,cH ⊂ Γ\G.

We have a correspondence

za,b,c ↔ Γ(a, b, c) ↔ Γ\Γga,b,cH

and ga,b,cx∞ = (a,b,c)√
|d|

.

We remark that

Γ\Γga,b,cH = Γ\Γga,b,cHg−1
a,b,cga,b,c = Γ\ΓT(a,b,c)(R)ga,b,c

where T(a,b,c)(R) = SOq,(a,b,c)(R) is compact by the exercises.

Exercise 17. Show that ∪[a,b,c]Γ\Γga,b,cH is compact. In particular, that there
are only finitely many orbits associated with the representations of d by q. In other
words, the set of Γ-orbits in Rq(d) is finite. (This exercise is completely general for
q any integral quadratic ternary form.)

Remark: By Borel and Harish-Chandra a much more general result is true.
Today we will see that the set of H-orbits has an extra structure of a homo-

geneous space under a group. We’ll see that the group is a class group, hence
finite.

1.1. q(a, b, c) = b2 − 4ac. We assume that d is squarefree. A solution to
q(a, b, c) = b2 − 4ac corresponds to

ma,b,c =
(

−b 2c
2a b

)
∈ M0

2 (Z)

which has the property that m2
a,b,c = d.

This gives an injection

ia,b,c : K = Q(
√

d) → M0
2 (Z) x + y

√
d 7→ x · Id + y · ma,b,c.

Then Γ(a, b, c) corresponds to a Γ-conjugacy class of i : K ↪→ M2(Q) along with an
integrality property:

(5) i(K) ∩ M2(Z) = i(Od)

where Od is the ring of integers in K.

13



14 2. JUNE 2, 2009

In (5) we only consider those (a, b, c) that are primitive. If (a, b, c) represents
d then (fa, fb, fc) represents f2d. This is called a non-primitive representation. If
a representation can not be written in this way for some f it is primitive. Then
let R∗

q(d) be the set of primitive representations. We don’t lose any information in
studying primitive solutions because

R∗
q(d) =

⊔
f2|d

fR∗
q(d/f2)

We have that{
Γ-orbits of primitive

representations of (a, b, c)

}
↔

 Γ-conjugacy classes of
Od-integral embeddings of

K ↪→ M2(Q)


Under the embedding ia,b,c(K×) ↪→ GL2(Q), Ta,b,c = Q×\i(K×) ⊂ PGL2(Q).

So

Γ\ΓTa,b,c(R) ⊂ PGL2(Z)\PGL2(R) =
{

space of lattices
up to homothety

}
=

{
unimodular

matrices

}
By the exercise, the shortest vector has length bounded below by something

independent of a, b, c.
We now study the structure of the space of orbits. Pick y ∈ Q2 \ {0}. Define

the Q-vector space homomorphism

jy : K → Q2 via x 7→ i(x)y.

We have i(x)jy(z) = jy(xz). Let I = j−1
y (Z3). This is a rank 2 Z-module in K.

Moreover, it is an Od-ideal because of the integrality property (5).
If one replaces y by y′ then y′ = i(λ)y from which one deduces that Iy′ = λ±1Iy.

(It is either λ or λ−1, but Philippe wasn’t sure which.) In any case, Iy and I ′y are
homothetic in K.

We conclude that to each ia,b,c we obtain a homothety class of Od-ideals in K.
Assuming (a, b, c) primitive implies that the corresponding Od-ideals are proper,
meaning {λ ∈ K | λI ⊂ I} = Od. Moreover, if we replace (a, b, c) by γ(a, b, c) for
some γ ∈ Γ this changes Z2 by γ, hence has no effect. So there is a bijection{

Γ(a, b, c)-orbits of
primitive representations

}
↔

{
0 6= I ⊂ K | IOd = I

I is a proper Od-ideal

}
/K×.

This is the classgroup (Cl(Od)) or the Picard group (Pic(Od).) We conclude that
the space of orbits is a principal homogeneous space under Pic(Od).

Remark: I proper implies that there exists I−1 such that II−1 = Od.

1.2. q(a, b, c) = −(a2 + b2 + c2). In this case there is a correspondence, not
with a matrix algebra, but rather with the Hamilton quaternions. Indeed, the
vector space (Q3, q) is isomorphic to (B0

Q,−N) via (a, b, c) 7→ ai + bj + ck. Recall
that the quaternions are the 4-dimensional vector space with basis 1, i, j, k given a
ring structure under the relations

i2 = j2 = k2 = −1, ijk = −1

with norm N(z) = N(u + ai + bj + ck) = zz.
Under this vector space isomorphism SOq corresponds to PB×. The algebraic

group PB× has Q-points PB×(Q) = B×(Q)/Q× which act by conjugation on BQ.
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We choose x∞ = (0, 0, 1), so

H ↔ (R + Rk)/R× ' C×/R× = S1/{±1}.

The correspondence SOq(Z) ↔ PB×(Z) gives the analog to M2(Z) of the previous
case, and Γ = PB×(Z) = O×

B/{±1} where OB = Z[i, j, k, i+j+k
2 ].

As in the previous section we have za,b,c = ai + bj + ck satisfies z2
a,b,c = d

so we have a conjugacy class of embeddings i : K = Q(
√

d) ↪→ B(Q) such that
OB ∩ i(K) = i(Od).

Choose I ⊂ K a proper Od-ideal. Then i(I)OB is a right OB-module in BQ.
Essentially by Lagrange’s theorem on representations of integers by sums of four
squares, one deduces that OB is a PID. Hence i(I)OB = qOB .

The map

Ad(q) ◦ ia,b,c : K → B(Q)×

is Od-integral hence corresponds to ia′,b′,c′ for some (a′, b′, c′) ∈ Rq(d). Integrality:
q−1ia,b,cq ∩ OB = i(Od).

2. Elon

Last time we had a measure preserving transformation (X,µ,B, T ). We had
that Hµ(P) < ∞,

h(x,P) = lim
n→∞

− log µ(Pn
1 (x))

n
and h(P) =

∫
h(x,P) dµ(x).

(In the case that T is ergodic, h(x,P) = h(x) almost everywhere.)
There is also a coding reformulation: there exists a function h(x,P) such that∫

h(x,P) = h for any sequence of codes CN : PN → words in {0, 1}, and

(1) lim inf `(CN (x))
N ≥ h(x) almost everywhere, and

(2) there exists some sequence of codes CN
2 : PN → words in {0, 1} such that

lim sup
`(CN (x))

N
≤ h(x)

almost everywhere1.

We’ll talk more about 2):

hn(x) =
1
n

E(− log µ(Pn
1 (y)) | T -inv)(x)

∫
hn(x) =

1
n

∫
− log µ(Pn

1 (y))dµ(y) =
1
n

Hµ(Pn
1 )

Building blocks:

• Shannon code for P (or any code of finite expected length) for C′.
• Shannon code for Pn

1 for Cn. (The Shannon code satisfies `(Pn
1 (x)) =

d− log µ(Pn
1 (x))e.)

1I don’t know why in 2) he uses ‘≤’ instead of ‘=’
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2.1. Entropy in compact metric spaces. Let (X, d) be a compact metric
space. Define

Br,n(x) = {y | d(T kx, T ky) < r for all |k| < n/2}

Theorem 18 (Brin-Katok). Let

h(x, r) = lim inf − 1
n

log µ(Br,n(x)) and h(x, r) = lim sup− 1
n

log µ(Br,n(x))

Then

lim r ↘ 0h(x, r) = lim r ↘ 0h(x, r) = h(x) = h(µε
x = sup

P
h(x,P).

2.2. exercises.

3. Manfred

Recall
Xd = SLd(Z)\SLd(R) = {unimodular lattices in Rd}

Picture: (He drew a tear drop shaped surface not connecting at the ‘tip’ because
that is the cusp. However, it is a finite volume space.) Define

Xd(ε) =
{

Λ ∈ Rd |
Λ is unimodular, and

Λ ∩ BRd

ε (0) = {0}

}
Theorem 19 (Mahler’s compactness theorem). A subset L ⊂ Xd is compact

if and only if it is closed and there exists ε > 0 such that L ⊂ Xd(ε).

Proof. Need to find a compact subset in SLd(R) that mas onto L. For any

Γg there exists a representative g =

 v1

...
vd

 such that ‖vi‖ ³ λi. We know from

Minkowski’s theorem on successive minima that λ1λ2 · λd ³ 1. If Γg ∈ Xd(ε) then
λ1 ≥ ε hence λi ≥ ε for all i. Therefore, λd (as well as ‖g‖) ¿ ε−(d−1). ¤

The groups H ⊂ G, Γ = SLd(Z) and G = SLd(R) sit in the following picture:

Closed H-orbits finite volume orbitsks

rational stabilizer subgroups

KS 08hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh
compact orbits

KS

In general one has:

Closed H-orbits finite volume orbitsks

px h h h h h h h h h

h h h h h h h h h

rational stabilizer subgroups

KS 08hhhhhhhhh

hhhhhhhhh
+3____ ____ compact orbits

KS

where the dashed lines mean that sometimes you get such an implication. That
a finite volume comes from a rational stabilizer subgroups is the Borel density
theorem. The opposite implication is a result of reduction theory or non-divergence.

Theorem 20 (Borel density theorem). Suppose H ⊂ SLd(R), Λ ⊂ H a lattice.
Then the Zariski closure of Λ contains all unipotent elements of H and all elements
of H that are diagonalizable with positive eigenvalues.
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This doesn’t say anything if H is compact. However, if H = H(R) is the group
of R points of an algebraic group over R and Λ = SLd ∩ H is a lattice, and H is
generated by unipotents and positive diagonalizable elements, then H is defined
over Q. This means that there is a ρ : SLd → SLd′ and v ∈ Rd such that H is the
stabilizer group of v.

Remark: If one can’t get a compact orbit (→) for a situation like the exercise,
one can do ↗.

The tools that are used to prove the Borel density theorem come from the most
elementary (but nontrivial) results from ergodic theory and the theory of algebraic
groups. These are, respectively, the Poincaré and Chevellay theorems.

Lemma 21. Suppose Λ ⊂ H is discrete and X = Λ\H supports a right H-
invariant finite measure µX . Then Λ is a lattice.

Proof. We need to show that H is unimodular: µH = mright
H . Take f ∈

Cc(H). Then ∑
Λh=Λg

f(g) = F (λH) ∈ Cc(Λ\H),

and
∫

f dµH =
∫

F dµX is right H-invariant. It is also left Λ-invariant. We want
to show that it is left H-invariant.

Let h ∈ H and g ≈ e. Then, by Poincaré recurrence Λghnk → Λg for some
increasing sequence nk. Thus γkghnk → g for some γk ∈ Λ. Apply the modular
character to this sequence:

modH(γk)modH(g)modH(hnk) → modH(g).

Since g is arbitrarily close to e we may remove the terms modH(g). Hence

modH(γk)modH(hnk) → 1.

Since modH(γk) = 1 and h is arbitrary, we must have modH(h) = 1. ¤

3.1. Other fields. We have always worked with R so far, but it is possible to
use Qp. It is a fact that

Z[
1
p
] ↪→ R × Qp a 7→ (a, a)

is discrete. So we can play the same game:

Xnew
d = SLd(Z[

1
p
]\SLd(R × Qp)

is closely related to SLd(Z)\SLd(R).
By Gauss elimination, one can show that

SLd(Z[
1
p
])SLd(R × Zp) = SLd(Z[

1
p
])SLd(R × Qp).

It follows that

SLd(Z)\SLd(R) ' SLd(Z[
1
p
])\SLd(R × Qp)/SLd(Zp).

This is saying that Xnew
d is a compact extension (by SLd(Zp)) of Xd. In particular,

it has finite volume.
Besides with (R × Qp, Zp), this can be done with (A, Q) as well.
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Theorem 22 (Dani). Let X2 = SL2(Z)\SL2(R), H = {( 1 t
1 ) | t ∈ R} be

horocycle subgroup. Any H-invariant and ergodic probability measure on X2 is
either the natural measure on a periodic orbit or the Haar measure on X.

The periodic orbits in X2 are (the images of) horizontal line segments in the
upper half plane between Re(s) = −1/2 and Re(s) = 1/2. The natural measure on
them is thus the Lebesgue measure on R.

Theorem 23 (Donis-Smillie). Either x is periodic or x ( 1 t
1 ) becomes equidis-

tributed in X2 with respect to mX2 .



CHAPTER 3

June 3, 2009

1. Manfred

We want to know that the measures µX,T defined by∫
f dµX,T =

1
T

∫ T

0

f(xu(t))dt

(for any 1-parameter subgroup u(t)) have only probability measures as weak∗ lim-
its. But, geodesic flow doesn’t have this property. Think of the orbit of the line
Re(s) = 0; the measure from this flow won’t be probability. For horocycle orbits
this behavior doesn’t occur as evidenced by the following.

Theorem 24 (Margulis, Dani). For any K compact there exists L ⊂ X2 com-
pact such that if x ∈ K and T > 0 then 1

T mR({t ∈ [0, T ] | xu(t) ∈ L}) < ε.

This is saying (?) that equivalent weak∗ limits are probability measures.

Proof. We may assume that K = X2(η). Want to find L = X2(δ). Recall
that x ∈ K ⇐⇒ x = Λ ⊂ R2 satifies Λ ∩ Bη(0) = {0}. Let u(t) = ( 1 t

1 ). If
xu(t) /∈ L then there exists v = (v1, v2) ∈ Λ such that ‖(v1, v2) ( 1 t

1 )‖ < δ. The
question is for how many values of t does this happen?

If (v1, v2) ( 1 t
1 ) is δ small then |v1| < δ and |v2 + tv1| < δ. In other words,

(6) t ∈
[
−v1

v2
− δ

|v1|
,−v1

v2
+

δ

|v1|

]
We denote each of these intervals as bad(δ, v). We also define intervals protect(v)
defined as in (6) except we replace δ with 1/2. We think of δ as being much smaller
than η/2 so that each bad interval is contained within a protect interval.

So the game is to show that the protect intervals are disjoint. If so, since∣∣bad(v(i))
∣∣ < ε

∣∣protect(v(i))
∣∣, the size of all of the bad sets is less than ε times the

size of the union of protected sets (which must be less that T .) We claim that if
we only consider {v} that are not multiples of any smaller vector then the protect
sets are disjoint.

Suppose v, w ∈ Λ are Z-linearly independent and t ∈ [0, T ] are such that vu(t)
and wu(t) satisfy

|v1| < δ ≤ η

2
, |w1| < δ ≤ η

2
, |v2 + tv1| < δ ≤ η

2
, |w2 + tw1| < δ ≤ η

2
.

Then |vu(t)| < η and |wu(t)| < η, a contradiction. ¤

We can now prove the following.

Theorem 25. The space Xd has finite volume, and SLd(Z)\SLd(Z)SO(Q)(Z)
has finite volume if Q is any quadratic form in d ≥ 3 variables.

19
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Proof. We know that Xd supports a right invariant Haar measure, but we
don’t know that it is finite. Let K ⊂ Xd = X be compact with mX(K) > 0. Find
L for K and ε = 1

2 of the previous theorem. So

f(x) = lim
T→∞

1
T

∫ T

0

χL(xu(t))dt ≥ 1
2

on K. (χL is the characteristic function of L.)
Note that the convergence of f(x) is guaranteed by Fatou’s lemma. If we define

the integrand to be fT , then we can apply Fatou’s lemma to f2
T . We have

‖fT ‖2 ≤ ‖χL‖ =
√

mX(L) < ∞.

So,

‖f‖2 =
∫

(lim inf fT )2 =
∫

lim inf f2
T ≤ lim inf

∫
f2

t

which is finite. (Fatou’s lemma is applied to get the final inequality.)
Clearly, f is invariant under u(s). The claim is that f is constant. This would

then imply that the space has finite measure. The claim, and hence, the proof
follows by the Mautner phenomenon. ¤

Propostion 26 (Mautner phenomenon). Suppose that SLd(R) acts by π uni-
tarily on a Hilbert space H, and g 7→ 〈π(g)v, v〉 is continuous for all v ∈ H. If v ∈ H
is fixed by one unipotent u(t) or a positive diagonal matrix a (not the identity) then
v is fixed by SLd(Z).

Proof. Let v ∈ H, and φ(g) = 〈π(g)v, v〉. We prove the case d = 2. Let
a =

( e
1/e

)
. Suppose v is fixed by a. Then

φ(akgal) = 〈π(akgal)v, v〉 = 〈π(g)π(al)v, π(ak)v〉 = 〈π(g)v, v〉 = φ(g).

Now let e = ( 1
ε 1 ) so that φ(g) ≈ ‖v‖2. Moreover,

= φ(
(

1
e2kε 1

)
) = φ(a−kgak) = φ(g) ≈ ‖v‖2.

In other words, φ(( 1
t 1 ) g) ≈ ‖v‖2 for all t, and the ≈ must actually be =. Cauchy-

Schwartz tells us that

〈π(( 1
t 1 ) g)v, v〉 = ‖v‖2 ⇐⇒ π(( 1

t 1 ))v = v.

One argues similarly to show that u(t) fixes v for all t. Since SL2(R) is generated
by this subgroups the proposition follows.

In the case that π(u(s))v = v, we again take g as above and calculate that

ukgul =
(

1 + kε ∗
ε 1 − lε

)
where ∗ is a quadratic in k and l which can be made to be as close to zero as one
wishes. Now one proceeds as in the diagonal case. ¤

The following theorem deals with mixing of SLd(R) and vanishing of matrix
coefficients.

Theorem 27 (Howe-Moore theorem). Suppose SLd(R) acts unitarily on a
Hilbert space, and there are no fixed vectors. Then 〈π(g)v, w〉 → 0 as g → ∞.

For example, on X = Γ\SL2(R) and H = L2
0(X) the geodesic and horocycle

flows are mixing.
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Theorem 28 (Sarnak). The long periodic orbits for the horocyle flow on X2

equidistributes on X2 with respect to MX2 .

Proof. As discussed previously, the periodic orbits are line segments from
Re(z) = −1/2 to Re(z) = 1/2 at height y. The length of such an orbit is 1

y . The
region

(7) Q = SL2(Z)
(

1 [0, 1]
1

)
BA

δ (e)
(

1 0
[−1, 1] 1

)
is a neighborhood of the periodic orbit at SL2(Z). Multiply (7) on the right by
a =

(√
y

1/
√

y

)
:

Q = SL2(Z)aa−1

(
1 [0, 1]

1

)
aa−1BA

δ (e)aa−1

(
1 0

[−1, 1] 1

)
a

= SL2(Z)a
(

1 [0, 1/y]
1

)
BA

δ (e)
(

1 0
[−y, y] 1

)
which is a neighborhood around the periodic orbit at 1/y. Now take f ∈ Cc(X2).
Continuity of f implies that∫

long period

f dt ≈ 〈f,
1

m(Q)
χQ ◦ a〉.

Now mixing (the Howe-Moore theorem) implies that this goes to
∫

f . ¤

Remark: The Haar measure on N+AN− is the product of the Lebesgue mea-
sures on N± and A, so this proof is valid.

2. Elon: Entropy in Γ\G

Theorem 29 (Brin-Katok). Let Br,m(x) = {g | d(T kx, T ky) < r, |k| ≤ n/2}.
Denote

h(x, r) = lim inf − 1
n

log µ(Br,m(x))

and h(x, r) to be the analogous limsup. Then

h(µs
x) = h(x) = lim

r→0
h(x, r) = lim

r→0
h(x, r)

3. Philippe

We first clarify the integrality condition discussed at the end of last time. Recall
that we are in the case q(a, b, c) = −(a2 + b2 + c2). A solution to q(a, b, c) = d is
equivalent to a map

i = ia,b,c : K = Q(
√

d) ↪→ BQ via
√

d 7→ ai + bj + ck.

Then (a, b, c) ∈ Z3 ⇐⇒ i(K) ∩ B(Z) = OB = i(Od).
Suppose I ⊂ K is an Od-ideal. Then i(I)OB = qIOB for some qI ∈ B(Q)×. So

i′ = Ad qI ◦ i : λ ∈ K 7→ q−1
I i(λ)qI ∈ B(Q)

corresponds to a solution (a′, b′, c′) determined by i′(
√

d) = a′i + b′j + c′k. We
claim that (a′, b′, c′) ∈ OB which, by the above comment, happens if and only if
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(a′, b′, c′) ∈ Z3. We calculate

i′(
√

d) = q−1
I i(

√
d)qI ∈ q−1

I i(
√

d)qIOB

= q−1
I i(

√
d)qI ∈ q−1

I i(
√

d)i(I)OB

⊂ q−1
I i(

√
d)qI ∈ q−1

I i(I)OB since
√

dI ⊂ I

= q−1
I qIOB = OB .

So (I, i) 7→ i′ defines an action of PicOK on the points of Rq(d) if and only if
PicOK acts on the Γ-orbit Γ(a, b, c). Moreover, this action preserves primitivity:
if not, (a′, b′, c′) = f(a′′, b′′, c′′) for some f ∈ Z. Apply the ideal I−1 (which exists
by assumption) to i′ and this would imply that (a, b, c) is not primitive.

Remark: To show that the composition of maps

q = b2 − 4ac → ma,b,c =
(

−b 2c
2a b

)
∈ PGL2(Z)\PGL2(R) → Γ\H

has image z = −b+i
√

|d|
2a do not compute ga,b,c.

3.1. Adèles. The completions of Q are R, Q2, Q3Q5, . . .. Obviously, Q embeds
into each. Hence

Q ↪→ R ×
∏
p

Qp =
∏
v

Qv.

The problem is that under the product topology this group is not locally compact.
However, because only finitely many primes divide the denominator of any λ ∈ Q,
λ ∈ Zp for all but finitely many primes. So

Q ↪→
∏∗

Qv = {(qv) | qp ∈ Zp for almost all p} = AQ

which is locally compact under the restriction of the product topology. The em-
bedding of Q ↪→ AQ is discrete: a neighborhood of {0} intersection Q trivially is
(−1/2/, 1/2) ×

∏
Zp.

There is also an embedding of Qv into AQ given by

λv 7→ (0, · · · , 0, λv︸︷︷︸
v-th place

, 0, · · · )

We denote the finite adèles
∏∗

p
Qp by Af . Inside Af ⊃ Ẑ =

∏
p Zp which is

a maximal compact subring of Af . The fact that Q ↪→ Af is dense is equivalent
to the Chinese remainder theorem. Together with the discreteness of Q ↪→ A this
implies that Q is a lattice. The set [−1/2, 1/2) × Ẑ is a fundamental domain.

3.2. Idèles. The idèles are A× but the topology on them is not the restriction
of that on A. Rather, the following embedding is closed

A× ↪→ A × A via x 7→ (x, x−1)

and A× is given the topology obtained by restriction the topology of A × A.
The maximal compact Ẑ× sits in the finite idèles A×

f . The inclusion Q× ↪→ A×
f

is discrete. It is not dense but close to it: Q×Ẑ× = A×
f . More generally, if U is any
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compact open subgroup, #A×
f /U < ∞. For instance, for N ≥ 1, define

UN =
∏
p

UN,p where UN,p =
{

Z×
p if p - N

1 + pvp(N)Zp otherwise.

Then A×
f /QUN ' (Z/NZ)×.

3.3. More generally. If G is an algebraic group over Q, G(Q) ↪→ G(Q) is
discrete, but it need not be dense. However, if G is semisimple or if G(Q) is simply
connected then strong approximation says that

G(Q)G(Ẑ) = G(A).

In this case,

(8) G(Q)\G(A)/G(Ẑ) ' G(Z)\G(R).

In particular, this holds for G = SLd (which is semisimple.) Let K = G(Ẑ),
and Γ = G(Q). The map in one direction is

Γ\ΓgR 7→ G(Q)\(gR, ef )/K.

An element of the double coset can be represented as (gR, gf ). Write gf = gQg
bZ for

gQ ∈ G(Q) and g
bZ ∈ G(Ẑ). Then the map in the other direction is

(gR, gf ) = (gR, gQg
bZ) ≡ (g−1

Q gR, 1) 7→ g−1
Q gR.





CHAPTER 4

June 4, 2009

1. Elon: Measure classification results that involve entropy

Last time we finally related entropy to dynamics on Γ\G and developed suf-
ficiently adequate methods to calculate entropy. Now we’re going to start using
it.

2. Manfred

Recall that last time we discussed the following diagram:

Closed H-orbits finite volume orbitsks

px h h h h h h h h h

h h h h h h h h h

rational stabilizer subgroups

KS 08hhhhhhhhh

hhhhhhhhh
+3____ ____ compact orbits

KS

The implication that algebraic stabilizer groups give finite volume orbits follows
if the group is semisimple or if there are no Q-characters.1 If there are no unipotents
in Λ one gets that finite volume orbits are compact.

Recall that we took a neighborhood around the periodic orbit SL2(Z)
(

1 [0,1]
0 1

)
and moved it to height y. As y → 0 this equidistributes.

Remark: as a matter of terminology, finite volume orbits are sometimes called
periodic or homogeneous or algebraic in the literature.

Theorem 30 (Furstenberg). The subgroup H =
(

1 ∗
1

)
is uniquely ergodic

on compact quotients Γ\SL2(R).

A proof of this can be given using the same strategy. This strategy also proves
the following.

Theorem 31 (Dani). On a non-compact quotient, an ergodic H-invariant prob-
ability measure is either periodic or Haar.

Briefly, the strategy is to take a short periodic orbit, thicken it slightly, pull it
back to a longer periodic orbit, take the limit, use mixing to get the result. Conceiv-
ably, this would not work if the short orbit is far out in the cusp as is the case with
a geodesic orbit that goes straight up the cusp. However, this “counterexample” is
not a unipotent flow, and the upshot is that unipotent flows never have this type
of behavior.

A picture of all ergodic invariant measures on Γ\SL2(R) in the weak∗ topology:
If Γ = SL2(Z) you have a line with the Haar measure at one side and 0 at the other
(which is not a probability measure) connected by periodic orbits. So it is a ray.

1I don’t know what this means OR if I corrected copied it down.
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Other choices of Γ would give the same picture but with different rays emanating
from the same point corresponding to each of the cusps.2

One can compare this to the example of the torus T 2. In this case, H is the
projection of a line with rational slope. Note that each slope gives a circle of
probability measures. (Explicitly, one take H to be given by the line ay = bx with
a and b relatively primes integers. Then H fixes the probability measure defined
by the projection of ay = bx + c for c ∈ [0, 1). So there is a circle’s worth of
invariant measures for each rational number a/b.) For any sequence of rationals
that converges to an irrational number, the resulting measures converge to the
Lebesgue measure on T 2. So the picture is are countably many circles converging
to the point given by Lebesgue measure.

Theorem 32 (Mozes-Shah). Suppose mi are natural Haar measures on a se-
quence of homogeneous sets in Γ\G. (So each mi = mxiHi is the Haar measure on
a finite volume orbit xiHi.) Assume that mi is ergod and invariant under some 1-
parameter unipotent subgroup. Then a weak∗ limit is either 0 (plus additional info)
or th elimit is homogeneous and some unipotent acts ergodically (and additional
info.)

In T 2, take Hn = R(1, n) ⊂ R2 and notice that the limiting group (as n → ∞)
H∞ = {0} × R, and the limiting measure is the Lebesgue measure (as discussed
above.) Note that the limit group doesn’t act ergodically. (This doesn’t contradict
the Mozes-Shah theorem as Hn are not unipotent.)

Remark: If n is a nilpotent element of the Lie algebra of G, then nk = 0 for
some integer k, so exp(nt) has entries that are polynomials in t. So unipotent
dynamics are polynomial dynamics.

Theorem 33 (Special case of Ratner’s classification theorem). Let G be a Lie
group, H = SL2(R) ⊂ G a subgroup,3 Γ ⊂ G discrete. The H-invariant and ergodic
probability measures µ on Γ\G are precisely the homogeneous ones.

The details of this proof are contained in Einsiedler’s survey article available
on his website.

Sketch of proof. Assume µ is H-invariant. We need to show that µ = µxL

for some L. The trick will be to guess what L is. Put S = Stab(µ)◦ where

Stab(µ) = {g ∈ G | µ(Bg) = µ(B) for all B measurable} ⊃ H.

We want to show that µ is concentrated on a single S-orbit. If µ(xS) = 1 for
some x we are done by the exercises. Let s = Lie(S) ⊂ g = Lie(G). Since adH

acts on s, there exists s⊥ such that g = s⊕ s⊥. We will assume that there does not
exist x such that µ(xS) = 1 and from this deduce by Lemma 34 that µ is invariant
by more than originally claimed.

Let x ∈ supp(µ) be generic. Since almost all points are generic (see below)
there is a point y ≈ x such that y = xg is generic. We can take g = exp(v) for
some v ∈ s⊥ with v ≈ 0. Apply u(t):

yu(t) = xgu(t) = xu(t) u(−t)gu(t)︸ ︷︷ ︸
exp(Adu(t) v)

.

2In the picture he drew on the board the rays pointed in different directions, but since their

limits are the (same) 0 measure, they should all end up at the same point.
3In the general case, H is a subgroup of G generated by 1-parameter unitpotent subgroups.
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As has been mentioned, exp(Adu(t) v) has polynomial divergence.
Since v is small, there exists T = Tx,y such that supt∈[0,T ]‖Adu(t) v‖ = 1. We

want to know in what direction Adu(t) v gets big first. We take as an example
v = (c1, c2, c3)t:

u(t)v =

 1 t t2

1 t
1

  c1

c2

c3

 =

 c1 + tc2 + t2c3

c2 + tc3

c3


Notice that the divergence occurs fastest in the direction of (1, 0, 0)t which is pre-
cisely the eigenspace of u(t).

So we take the limit as y and x get closer and closer, while simultaneously
Adu(t) v gets closer and closer to commuting. In the limit, the lemma below would
then apply and we would be done IF the limiting points are generic. To guarantee
that the limiting points are generic one has to choose the time moment to stop
correctly which can be argued to be possible a certain percentage of the time. (For
complete details see the survey.) ¤

Lemma 34. Suppose x = yg are generic for U =
(

1 ∗
1

)
⊂ SL2(R) = H. If

g ∈ CG(U) = {h ∈ G | hu = uh for every u ∈ U}
then g ∈ Stab(µ).

A point x is generic for U if

1
T

∫ T

0

f(u(t)x)dt →
∫

f dµ as T → ∞

for every f ∈ Cc(X). Since the Mautner phenomenon says that SL2(R) acts ergod-
ically implies that U acts ergodically, almost every x ∈ X is generic.

Proof. Suppose g ∈ CG(U) and y = xg is generic. Then

yu(t) = xgu(t) = xu(t)u(−t)gu(t) = xu(t)g

which gives two parallel orbits. For f ∈ Cc(X) define fg(z) = f(zg). Then∫
f dµ ≈ 1

T

∫ T

0

f(yu(t))dt =
∫ T

0

fg(xu(t))dt ≈
∫

fg dµ.

Hence g preserves the measure. ¤

3. Philippe

The fact that Q× ↪→ A is discrete, and that Q×Ẑ× = A×
f gives an example of

a much more general fact. If G is any semisimple Q-algebraic group, then G(Q) ↪→
G(A) is discrete. Moreover, the following holds.

Theorem 35 (Borel, Harishchandra). For any subgroup K ⊂ G(Ẑ) that is open
and compact, G(Q)\G(A)/K is finite. In fact, G(Q) is a lattice in G(A).

This principle is easily demonstrated in the special case that G is simple and
simply connected and if G(R) is not compact. In this case, strong approximation
says that G(Q) is dense in G(Af ). So for any K ⊂ G(Ẑ),

(9) G(Q)K = G(R),
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and the basic isomorphism theorems of group theory imply

(10) G(Q)\G(A)/K ' Γ\G(R) where Γ = G(Q) ∩ K.

Some examples of such groups are SLd and B1 which is the Q-algebraic group of
norm 1 elements of any quaternion algebra such that B(R) ' M2(R).

Strong approximation does not apply to PGL2 or PB×
Q . (Note that BQ is the

Hamiltonian quaternions which are not split at ∞.) However, in these cases both
(9) and (10) are valid.

3.1. Adèles over number fields. Suppose that K is a degree d extension
of Q with r real embeddings K ↪→ R and s complex embeddings K ↪→ C. Each of
these affords a valuation. On the other hand each prime ideal p ⊂ OK determines
a (discrete) valuation vp and hence a completion Kp with respect to the valuation.
We let OK,p = {λ ∈ Kp | vp(λ) ≥ 0}.

As before, we let AK =
∏∗

Kv be the restricted product with respect to the
rings OK,p. Much of what was said about the rational adèles is still valid, and some
things are different:

• K ↪→ AK is discrete and a lattice.
• K\AK/OK ' OK\K∞ where K∞ =

∏
v|∞ Kv ' Rd.

• K× ↪→ A×
f is not dense (as before.)

• In general K×Ô×
K need not equal A×

K,f . Indeed,

A×
K,f/K×Ô×

K ' Pic(OK) =
{

finitely generated
OK − modules

}
/K×.

The map from left to right is obtained by letting Ip be the module gener-
ated by I in Kp. Since OK,p is a PID, Ip = λπOK,p for some λp ∈ K×

p . So
the map is I 7→ (λp) which is easily seen to be well defined up to K×O×

K .
In the other direction,

(λp) 7→ K ∩
∏
p

λpOK,p = I

which is an OK-module.
Remark: Can replace ÔK with Ô where O ⊂ OK is an order and Ô is the

completion of O in ÔK and is a compact subgroup. Then

K×\A×
K,f/Ô ' Pic(O) = {f.g. invertible ...}.

3.2. Idèles of number fields as points of an algebraic group. Let I ⊂ K
be an OK-ideal (or O-ideal) and choose a Z-basis of I which is a basis of K/Q.
This gives a map

i :K −→ Md(Q)
x 7→ the matrix of multiplication by x : K → K

such that i(K) ∩ Md(Z) = i(OK).
An alternative way of describing this is to take {xk} a Q-basis of K which gives

an injection i : K ↪→ Md(Q). Then i(K) ∩ Md(Z) = i(OI) where

I =
∑

Zxi OI = {λ ∈ K | kI ⊂ I} ⊂ OK .
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The image i(K×) in GLd(Q) is a Q-torus, meaning that it is the Q rational
points of an algebraic group; indeed, the group is ResK/Q(Gm). Call the image
TK(Q). We can think of i(K) as an algebraic group such that

i(K)(AQ) = AK and i(K)×(AQ) = A×
K .

Then TK(AQ) = A×
Q\A

×
K . Hence

K×\A×
K,f/OK ' Pic(OK) ' TK(Q)\TK(Af )/TK(Ẑ)

is finite.

3.3. Reinterpretation of Linnik’s problem. Fix b2
0 − 4a0c0 = d.

Choosing a basis we obtain a groups Ta,b,c as in the previous section so that⊔
[a,b,c]

Γ\Γga,b,cH =
⊔

[a,b,c]

Γ\ΓTa,b,c(R)ga,b,c

⊂ PGL2(Z)\PGL2(R) ' PGL2(Q)\PGL2(A)/PGL2(Ẑ) = X.

We can determine the image of the orbit Ta0,b0,c0(A).(ga0,b0,c0 , ef ) in X. Let
t ∈ T0(A), and write t = tRtf . By strong approximation tf = gQg

bZ. So

t(g0, ef ) = (tRg0, tf )

= (tRg0, gQg
bZ)

≡ (tRg0, gQ) modulo PGL2(Ẑ) on the right

≡ (g−1
Q tRg0, ef ) modulo PGL2(Q) on the left.

Note that if tf ∈ T0(A) and m0 =
(−b0 −2c0

2a0 b0

)
then, by definition, tfm0 = m0tf .

3.3.1. Linnik Skubenko proof. Fix p ≥ 5. Linnik and Skubenko proved that for
values of d such that d ≡ 1 (mod p), Rq(d) becomes equidistributed as d → −∞.
In this special case, d is a square modulo p so pOd = pp′ splits. This allows Linnik
to use the action of [p]Z = [p′]Z ⊂ Pic(Od). In this situation m0 is diagonalizable
in Qp, so T0(Qp) is noncompact. This is essential in the proof.

3.3.2. Duke proof. Duke removed the congruence condition by considering some-
thing different. In the S2 case he showed that

1
Rq(d)

∑
x∈Rq(d)

ϕ

(
x√
|x|

)
→

∫
S2

ϕ

as d → ∞ (d odd4) for any ϕ ∈ C(S2). By approximation, it suffices to take ϕ
nonconstant harmonic homogeneous polynomials. For such, need the average to
approach zero.

Let dK = Disc(K). By Waldspurger (this is not exactly Duke’s proof)∣∣∣∣ 1
Rq(d)

∑
x∈Rq(d)

ϕ

(
x√
|x|

)∣∣∣∣2 = c |d|o(1)
∏

p|d/dK

Ip × L(ϕ, d, 1
2 )

|d|1/2
,

L(ϕ, d,
1
2
) =

∞∑
n=1

λϕ(n)χd(n)
ns

=
∏
p

(
1 − αpχd(p)

ps

)−1 (
1 − βpχd(p)

ps

)−1

.

4If d = −2k, Rq(d) is bounded.
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If L(ϕ, d, 1
2 ) = o(

√
|d|) then we would be done. Note that the Riemann hy-

pothesis predicts that L(ϕ, d, 1
2 ) = o(1). In this problem we just need to beat d1/2

by a little bit. This is an example of “subconvexity.” Iwaniec was the first to do
this.

The ratio L(ϕ, d, 1
2 )/

√
|d| can be realized as a toral object. It has a so-called

Hecke integral representation:

(11) L(ϕ, d,
1
2
) =

∫
A(Q)\A(A)

ϕ̃(an(Td))χ(a)d×a

where A = Diag ⊂ PGL2, ϕ̃ is a function on PGL2(Q)\PGL2(A) and χ is a
quadratic character of A×

Q .
The integral (11) is equal to

∫
T (Q)\T (A)

ϕ(tga,b,c)dt, but it is much more conve-
nient, because T was not split (noncompact) at every place, but A is.



CHAPTER 5

June 5, 2009

1. Philippe: The subconvexity problem

The subconvexity problem is about L-functions:

L(π, s) =
∑
n≥1

λπ(n)
ns

=
∏
p

Lp(π, s), Lp(π, s) =
d∏

i=1

(
1 − απ,i(p)

ps

)−1

.

An example of such is ζ(s), the Riemann zeta function: λπ(n) = 1 for all n and
ζp(s) = (1 − 1

ps )−1.
Often the series converges absolutely uniformly on compact sets of Re(s) > 1.

So L(π, s) are analytic in that region. In fact, they have analytic (strictly speaking
meromorphic) continuation to C. This comes from a functional equation. There
are constants µπ,i such that, defining

L∞(π, s) =
d∏

i=1

Γ
(

s − µπ,i

2

)
,

one has that
L∞L(π, s) = ε(π)q1/2−s

π L∞L(π, 1 − s).

The constant ε(π) has absolute value 1, while qπ ∈ Z is the conductor of π. Some-
times one writes L∞L(π̃, 1 − s) = L∞L(π, 1 − s).

The function L is known for Re(s) > 1, so by the functional equation it is also
known for Re(s) < 0. The region Re(s) ∈ [0, 1] is called the critical strip. The
Riemann hypothesis is that the only zeros of L∞L(π, s) are on the line Re(s) = 1

2 .
Another question is what is the size of L(π, s) on Re(s) = 1

2 .
The analytic conductor is defined to be

C(π, s) = qπ

d∏
i=1

(1 + |s − µπ,i|).

The convexity bound says that for Re(s) = 1
2 ,

L(s, π) ¿d C(π, s)
1
4+o(1).

To obtain this one considers the function f(σ) where σ = Re(s) and

L(s, π) ¿d C(π, s)f(σ)+o(1).

When σ > 1, f(σ) = 0. By looking at the functional equation and Sterling’s
formula for the gamma function, one finds that f(σ) = 1

2 − σ when σ < 0. Then
the Phragman-Lindelof principle imples that f(σ) ≤ 1−σ

2 in the critical strip. (He
then drew the graph of f(σ) and pointed out that the Riemann hypothesis would
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imply that f(σ) = 0 for Re(s) > 1
2 and f(σ) = 1

2 − σ for σ < 1
2 and drew this on

the graph with dotted lines.) The Riemann hypothesis would imply that

L(s, π) ¿d C(π, s)o(1)

which is much stronger than the convexity bound. The subconvexity problem is to
show that for some δ > 0,

L(s, π) ¿d C(π, s)
1
2−δ.

This is a very hard problem in general.
Duke’s theorem is that

L(ϕ, dK ,
1
2
) ¿ |dK |

1
2−δ

.

Since in this case q0,d ³ |dK |2, this is an instance where equidistribution is equiva-
lent to solving the subconvexity problem. To see this, recall that the Waldspurger
formula says

(12)
∣∣∣∣ 1
Rq(d)

∑
x∈Rq(d)

ϕ

(
x√
|x|

)∣∣∣∣2 =
L(ϕ, d, 1

2 )√
|d|

1+o(1)
.

Since the left hand side of (12) is a probability measure it is ¿ϕ 1.
The first instance of subconvexity (for ζ(s)) was proven by Weyl in the 20s.

Later Burgos (in the 50s) had more results. After a big gap of time, Iwaniec started
doing work on this, and since then there has been a flurry of results.

1.1. The L-functions we are talking about. The are L-functions associ-
ated to number fields, elliptic curves, motives, etc. They should all come from
automorphic forms and automorphic representations. Examples of automorphic
forms are Dirichlet characters and modular forms. More generally, automorphic
forms are functions on G(Q)\G(A) for G a reductive group.

A typical example is G = PGL2. On L2(G(Q)\G(A)), the group G(A) acts
unitarily by right multiplication: if f ∈ L2 and g ∈ G,

gf : h 7→ f(hg).

An automorphic representation is an irreducible representation of G(A) “occurring”
in L2(G(Q)\G(A)). Formally

L2(G(Q)\G(A)) =
∫

π∈Ĝ(A)

VπdµP (π).

The measure µP is called the Plancherel measure. It has a point component and
a continuous component. An automorphic form is a vector inside any one of the
spaces Vπ.

Remark: Since G(Qv) ↪→ G(A) which acts on Vπ, this defines a (unitary) rep-
resentation πv of G(Qv) such that π = ⊗′

vπv which is “restricted” tensor product.
Being restricted means that, in particular, πp admits a G(Zp) invariant vector for
almost all p.

In the case at hand, G = PGL2, to each πv can associate a local L-factor

L(πv, s) =

{
(1 − απ(p)

ps )−1(1 − βπ(p)
ps )−1 if v = p is prime,∏

Γ( s−1
2 ) if v is real.
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1.2. The Whittaker model. Let ϕ ∈ Vπ. (We assume that Vπ ⊂ L2 is
literally a subrepresentation, then ϕ is square-integrable. When Vπ is not a sub-
representation of L2, ϕ is called an Eisenstein series.) The function

x ∈ AQ 7→ ϕ(n(x)g) = gϕ(n(x)) where n(x) = ( 1 x
1 )

is Q-periodic via the embedding N(Q) ⊂ G(Q). Hence there is a Fourier decom-
position on N(Q)\N(A) ' Q\A. Fix a nontrivial character ψ : Q\A → C×. Then
the Fourier decomposition is

(13) ϕ(g) =
∑

α∈Q×

Wϕ(a(α)g)

where

a(α) =
(

α
1

)
and Wϕ(g) =

∫
Q\A

ϕ(n(x)g)ψ(x) dx = Wgϕ(e).

(The measure is the Haar probability measure on Q\A.) The function g 7→ Wϕ is
a function on G(A) such that

(14) Wϕ(n(x)g) = ψ(x)Wϕ(g).

We describe how the above decomposition is obtained. Having fixed ψ, the
group of characters on Q\A is precisely

Q̂\A = {ψa : Q → C× | ψa(x) = ψ(ax), a ∈ Q} ' Q.

So by Fourier inversion

ϕ(g) =
∑
α∈Q

∫
Q\A

ϕ(n(x)g)ψ(−αx) dx.

In the case that α 6= 0, we make the change of variable x′ = αx. Then
dx′ = |α|A dx = dx, and∫

Q\A
ϕ(n(x)g)ψ(−αn(x)) dx =

∫
Q\A

ϕ(n(
x

α
)g)ψ(x) dx.

Since

n(
x

α
) =

(
1
α

1

) (
1 x

1

)(
α

1

)
,

this is equal to ∫
ϕ(n(x)a(α)g) dx = Wϕ(a(α)g).

When α = 0, by some work, can show that
∫

N(Q)\N(A)
= 0. This gives (13).

Theorem 36. The mapping ϕ 7→ Wϕ is an intertwining map from Vπ to an
irreducible subspace of functions satisfying (14). The image, W(π), is called the
Whittaker model of π. Moreover, Vπ → W(π) is an isomorphism.

In the first model π = ⊗′
vπv with the πv local representations. However, one

should keep in mind that given {πv} there is no guarantee that the resulting tensor
product will be G(Q) invariant, so there are many restrictions on the possible
choices of πv. On the other hand, we can define local Whittaker models so that
the global model factors as a product of locals, and unlike before, in the Whittaker
model there are fewer restrictions on the local representations.
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On the Whittaker model can define an inner product

〈W,W ′〉 =
∫

A×
W (a(y))W ′(a(y))

d×y

|y|
.

(This inner product is convenient to work with because one only has to integrate
along A ⊂ PGL2.) Now the map Vπ → W(π) is essentially an isometry1:

〈ϕ,ϕ〉L2(G(Q)\G(A)) = c(π,
1
2
)o(1)〈Wϕ,Wϕ〉W(π).

The constant appearing here is the value of the L-function attached to the adjoint
representation at 1.

Within the range of convergence,

L(π, s)
C(π, s)1/2+o(1)

≈
∫

Q×\A×
ϕ0(a(y)) |y|s−

1
2 d×y

for some distinguished vector ϕ0 which is sometimes the new vector. (The constant
C comes from the c above and some ‘laziness’ due to estimation.)

Formally,

ϕ0(a(y)) =
∫

Q×\A×

∑
α∈Q×

Wϕ0(a(α)a(y)) |y|s−
1
2 d×y

=
∫

A×
wϕ0(a(y)) |y|s−

1
2 d×y

=
∏
v

∫
Q×

v

Wϕ0,v(a(y)) |y|s−
1
2

v d×v y.

Note that to get the second line we need that Wϕ0 be rapidly decreasing. The local
integrals in the final expression can be computed. From the structure of unitary
admissible representations of PGL2(Qv) which admit a PGL2(Zv) fixed vector (the
so-called spherical representations),∫

Q×
v

Wϕ0,v(a(y)) |y|s−
1
2

v d×v y = L(πv, s).

We assume Re(s) = 1
2 .∣∣∣∣∫

A×
Wϕ(a(y)) |y|s−

1
2 d×y

∣∣∣∣2 =
∫

A×

∫
A×

W (y)W (y′)
∣∣∣∣ y

y′

∣∣∣∣s− 1
2

d×yd×y′ (y′′ =
y

y′ )

=
∫

A×
|y′′|s−

1
2

∫
A×

W (y)W (y/y′′)d×yd×y′′

=
∫

A×
|y|s−

1
2

∫
A×

W (y)a(y′)W (y)d×y′d×y

=
∫

A×
|y|s−

1
2 〈Wϕ, a(y′)Wϕ〉d×y.

This last expression is good for dynamics.

1The restriction of the Whittaker model to the diagonal is called the Kirillov model. It is
isomorphic to W(π).
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1.3. Back to Duke’s L-function. Recall that ϕ was a function on SO3. Now

L(ϕ, d,
1
2
) = L(π ⊗ χd,

1
2
)

where π is a representation of PGL2, χd : Q×\A× → {±} and

π ⊗ χd = {g 7→ χd(det g)ϕ(g) | ϕ ∈ Vπ}.

By our previous work,

L(π ⊗ χd)
C(π ⊗ χd)

≈
∫

Q×\A×
ϕ̃0(a(y))d×y

for some ϕ̃0 ∈ Vπ⊗χd
. More precisely,

ϕ̃0(g) = χd(det g)n(T )ϕ0(g)

for some T ∈ A such that |T | = C(π ⊗ χd)1+o(1) = d2+o(1).
It is a fact that

|n(T )ϕ0(g)|2 = n(T )
∣∣ϕ2

0

∣∣ (g) = |ϕ0|2 (gn(T )).

So, ∣∣∣∣∫ χd(y)n(T )ϕ0(a(y))d×y

∣∣∣∣2 ≤
∫

Q×\A×
|n(T )ϕ0(a(y))|2 d×y

=
∫

Q×\A×
n(T ) |ϕ0(a(y))|2 d×y.

By the spectral decomposition in L2(G(Q)\G(A),

‖ϕ0‖2
L2 =

∑
π′

∑
ψ∈Vπ′

〈|ϕ0|2 , ψ〉 =
∑
π′

∑
ψ∈Vπ′

∫
n(T )ψ(a(y))d×y.

This final integral is related to L(π, s).
If π′ 6= 1,∣∣∣∣∫ ∣∣∣∣2 =

∫
〈a(y)n(T )ϕ, n(T )ψ〉dy =

∫
〈n(T )−1a(y)n(T )ϕ,ψ〉dy

(I’m really not sure where to have ϕ and where to have ψ in this expression and
the next.) As

〈n(T )−1a(y)n(T )ϕ,ψ〉 ¿ ‖Ad(n(T )−1a(y)n(T )‖−β‖ϕ0‖2
L2

for some beta >, plugging into the above yields that∫
¿ T−δ

where δ = δ(β) > 0. So Duke is finished up to π′ = 1, because this gives ‖ϕ0‖2
L2 .

To complete the problem one uses the “amplification method:” replace ϕ0 by
a linear combination of translates. This still gives L-function with nearly the same
decay for π′ 6= 1, but the advantage is that the term for π′ = 1 is small.

(N.B. This method is due to Akshay Venkatesh.)
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The book by Morris Witte “Ratner’s Theorems on Unipotent Flows” is a good
source for reading up on these things in greater detail.

Theorem 37 (Ratner’s Equidistribution Theorem). Let X = Γ\G, Γ a lattice.
Let U ⊂ G be a 1-parameter unipotent subgroup. Let x ∈ X. Then there exists
L ⊂ G◦ a closed connected subgroup such that xL has finite volume and xu(t)
(u(t) ∈ U) equidistributes with respect to mxL: if f ∈ Cc(X),

1
T

∫ T

0

f(xu(t))dt →
∫

xL

fdmxL.

Note that this statement is out of the realm of the pointwise ergodic theorem
because we are choosing x ∈ X.

Theorem 38 (Ratner’s Orbit Closure Theorem). Suppose Γ ⊂ G is a lattice,
X = Γ\G, and H ⊂ G is generated by one-parameter unipotents. Let x ∈ X. Then
xH = xL for some L ⊂ G◦.

These very general theorems have particular meaning is specific cases. For
example, Margulis’ Theorem (Oppenheim’s conjecture) is a consequence: Q a qua-
dratic form in d ≥ 3 variables. Then either Q is rational (meaning Q has rational
coefficients) or Q(Zd) = R. One drawback to these theorems is that they don’t give
an “error rate.”

3.1. Effective equidistribution. We discuss, via almost dynamical meth-
ods, quantitative results on horocylces. The idea is to replace the analysis of just
sets with functions. Returning to our example of X2, let Py be horocycle flow in
upper half plane of height y. We want to find a constant δ > 0 such that

(15)

∣∣∣∣∣
∫

Py

f dmPy −
∫

f dmX2

∣∣∣∣∣ ¿ yδS(f).

The term S(f) is the Sobolov norm and is really a constant. The value of δ relates
to the spectral gap, hence Selberg’s theorem.

In order to get (15), you need to know effective decay of matrix coefficients:∥∥∥∥〈gf1, f2〉 −
∫

f1 dmX

∥∥∥∥ ¿ ‖g‖−δ′

2 S(f1)S(f2).

For bigger groups this is property T, hence easy. (This is shown in the survey
article.)

Theorem 39 (E,Margulis,Venkatesh). Let G = SL2(R)4, Γ = SL2(Z)4 ⊂ G,
and

H = {(h, h, h, h) | h ∈ SL2(R)}.
Then the finite volume orbits of H on Γ\G effectively equidistribute when the volume
gets big.

The subgroup L1 = {(h1, h1, h2, h2) | hi ∈ SL2(R)} also has closed orbits with
lots of closed H orbits in it.

This uses a lot more dynamical ideas effective decay but it also uses spectral
gap. It uses (uniformity of) property τ , a theorem by Clozel.
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3.2. Equidistribution on large spheres in Rd. If d ≥ 4 this is related to
the problem of equidistribution of orbits of an orthogonal group in d− 1 variables.

SO(d)(R)/SO(d − 1)(R) ' Sd−1,

so SO(d−1)(R) acts (on the right) on SO(d)(Z)\SO(d)(R). (Note that when d = 3
this gives a compact group acting on another compact space so it’s not easy.)

To make things work more nicely consider the compact orbit

SLd(Z[
1
p
])SO(d)(R × Qp)

in

(16) SLd(Z[
1
p
])\SLd(R × Qp) ' SLd(Z)\SL2(R × Zp).

This is interesting because SO(d)(Qp) need not be compact.
Because

Γ = SOd(R × Zp) ⊂ SOd(R × Qp)
is open, we get that

Γ\SOd(R × Qp) =
h⊔

i=1

Γ(g∞, gp)SOd(R × Qp).

Using (16), can assure that gp ∈ SLd(Zp). We may assume that (g∞, gp) = (e, e)
for i = 1.

Take mZd primitive such that ‖m‖2 = D. The action of SO(d)(Z) gives some
more points, but as D → ∞ the number of points obtained in this way is bounded.
We would like to find additional solutions ‘using’ Qp.

Let Hm = StabSOd
(m). Note that Hm ' SO(d− 1) but not over the rationals.

Mozes-Shah should tell us that ΓHm(R×Qp)+ become equidstributed in a g bigger
space2. (Similar to the exercise that SO(2, 1)(R) ⊂ SO(3)(R) is maximal compact.)

This is helpful for finding addtional points. Often ( 1
h of the time)

(17) Γ(e, hp) = Γ(e, e)(g∞, gp)

for some hp ∈ H(Qp) large. The claim is that g∞m

• has norm
√

D, and
• is integral.

The first statement is obviously true because g∞ ∈ SO. Equation (17) implies
that (γ, γ)(e, hp) = (g∞, gp), so

(1) g∞ = γ =⇒ g∞m ∈ Qd (or better Z[ 1p ]d) and
(2) γhp = gp ⇐⇒ γ = gph

−1
p =⇒ g∞m = gph

−1
p m = gpm. Since

gp ∈ SOd(Zp) this implies that gpm ∈ (Zp)d.
Hence, the claim is true.

2The + refers to the fact that one actually works in a Spin group instead of SO.


