STRUCTURE OF INTERNAL MODULES AND A FORMULA FOR THE SPHERICAL VECTOR OF MINIMAL REPRESENTATIONS

GORDAN SAVIN AND MICHAEL WOODBURY

1. Introduction

Let G be a simply connected Chevalley group, and $P=M N$ a maximal parabolic subgroup of G. Let \mathfrak{n} be the Lie algebra of N. A choice of Chevalley basis defines a \mathbb{Z}-structure on \mathfrak{n}, The structure of M orbits over \mathbb{Z} on irreducible subquotients of \mathfrak{n} could be highly non-trivial, and very interesting as Bhargava [B] shows. In the first part of this paper we deal with this question in the case when G is simply laced and N is abelian. In a sense, this is the most banal case. Our results can be described as follows. Let $M_{s s}$ be the "semi-simple" part of M. It is more natural to work with $M_{s s}$. Starting with the highest root β one can, in a canonical fashion, define a maximal sequence of orthogonal roots $\beta, \beta_{1}, \ldots, \beta_{r-1}$ in the Lie algebra \mathfrak{n}. Let $e_{\beta}, \ldots, e_{\beta_{r-1}}$ be the corresponding Chevalley basis elements in \mathfrak{n}. Then every $M^{s s}(\mathbb{Z})$-orbit in \mathfrak{n} contains an element

$$
d e_{\beta}+d_{1} e_{\beta_{1}}+\ldots+d_{r-1} e_{\beta_{r-1}}
$$

such that $d_{1}\left|d_{2}\right| \ldots \mid d_{r-1}$. Moreover, all d_{k} can be picked to be non-negative except perhaps d_{r-1}. This result is a generalization of a result of Richardson Röhrle and Steinberg [RRS], who considered the same question for groups over a field k. Then

$$
\mathfrak{n}=\Omega_{0} \cup \ldots \cup \Omega_{r}
$$

where $\Omega_{0}=\{0\}$ and Ω_{j} is the $M_{s s}(k)$-orbit of $e_{\beta}+e_{\beta_{1}}+\ldots+e_{\beta_{j-1}}$ except, perhaps, Ω_{r} which could be a union of orbits parameterized by classes of squares in k^{\times}. Also, the case when \mathfrak{n} is a 27 -dimensional representation of $E_{6}(\mathbb{Z})$ was recently obtained by Krutelevich $[\mathrm{K}]$ in his Yale Ph. D. thesis.

Our next result is an application to minimal representations of p-adic groups. Let G be a simple split group of adjoint type and G. Let $P=M N$ be a maximal parabolic subgroup with abelian nil radical. Let Ω_{1} be the the set of rank $=1$ elements in the opposite nil-radical \bar{N}. The minimal representation of G can be realized as a space of functions f on Ω_{1} (see [MS]) such that the action of P is given by

$$
\left\{\begin{array}{l}
(\pi(n) f)(y)=f(y) \psi(-\langle n, y\rangle) \text { and } \\
(\pi(m) f)(y)=\chi^{s_{0}}(m) \Delta^{-1 / 2}(m) f\left(m^{-1} y m\right)
\end{array}\right.
$$

where ψ is an additive character of \mathbb{Q}_{p} of conductor $0,\langle n, y\rangle$ the natural pairing between N and \bar{N}, and $\chi^{s_{0}}(m)$ an unramified character of M, described in Section 3. The main disadvantage of this model is that we do not have any explicit formula for the action of the maximal compact subgroup $K=G\left(\mathbb{Z}_{p}\right)$. In particular, it is not clear a priori how to
determine the spherical vector of the minimal representation. We accomplish this as follows. First of all, under the action of $M\left(\mathbb{Z}_{p}\right)$ the orbit Ω_{1} decomposes as a union of orbits each containing $p^{m} e_{-\beta}$ for some integer m. Thus a spherical vector f, since it is fixed by $M\left(\mathbb{Z}_{p}\right)$, is determined by its value on $p^{m} e_{-\beta}$ for all integers m. Furthermore, since f is fixed by $N\left(\mathbb{Z}_{p}\right)$ as well, it must vanish on these elements if $m<0$. To determine f exactly we shall use the fact that it is an eigenvector for the Hecke algebra. More precisely, we have $T_{i} * f=c_{i} \cdot f$ where T_{i} is a Hecke operator corresponding to a miniscule coweight ω_{i}. Such a coweight exists since we assume that G has a maximal parabolic subgroup with abelian nilpotent radical. The support of the Hecke operator is $K \omega_{i} K$. The Cartan decomposition implies that $K \omega_{i} K$ can be written as a union $K \omega_{i} K=\cup_{j} p_{j} K$ for some p_{j} in P. Then

$$
T_{i} * f=\sum_{j} \pi\left(p_{j}\right) f
$$

Thus the action of T_{i} can be explicitly calculated since we know how P acts! This gives us a recursive relation

$$
c_{i} \cdot f\left(p^{n} e_{-\beta}\right)=a_{1} f\left(p^{n+1} e_{-\beta}\right)+a_{0} f\left(p^{n} e_{-\beta}\right)+a_{-1} f\left(p^{n-1} e_{-\beta}\right)
$$

from which it is not too difficult to determine f completely. In fact, the answer is a geometric series

$$
f\left(p^{n} e_{-\beta}\right)=1+p^{d}+\ldots+p^{n d}
$$

where d depends on the pair (G, M). In particular, this formula is a generalization of the wellknown formula for $G L_{2}$. Indeed, if f is a spherical vector of the representation (parabolically) induced from two unramified characters χ_{1} and χ_{2}, then

$$
f\left(p^{n} e_{-\beta}\right)=\chi_{1}(p)^{n}+\chi_{1}(p)^{n-1} \chi_{2}(p)+\ldots+\chi_{1}(p) \chi_{2}^{n-1}(p)+\chi_{2}(p)^{n}
$$

The question of spherical vector was addressed in several papers. For p-adic groups, but working with a different model of the minimal representation, a formula for the spherical vector was found by Kazhdan and Polishchuk in [KP]. For real groups, in a situation similar to ours, the spherical vector was determined in a beautiful paper of Dvorsky and Sahi [DS]. Their result is a bit more restricted, for they assume that \bar{N} is conjugated to N, which is not always the case.

Acknowledgment: We would like to thank Wee Teck Gan for his interest in this work and asking the right questions, in particular. This work has been supported by NSF grants DMS-0138604 and DMS-0551846.

2. Maximal Parabolic subalgebras

Let \mathfrak{g} be a simple split Lie algebra over \mathbb{Z} and $\mathfrak{t} \subseteq \mathfrak{g}$ a maximal split Cartan subalgebra. Let Φ be the corresponding root system. We assume that Φ is a simply laced root system, meaning that all roots are of equal length. In particular, the type of Φ is A, D or E. Fix $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$, a set of simple roots. Every root can be written as a sum $\alpha=\sum_{i=0}^{l} m_{i}(\alpha) \alpha_{i}$ for some integers $m_{i}(\alpha)$. To every simple root α_{i} we can attach a subalegebra $\mathfrak{p}=\mathfrak{m} \oplus \mathfrak{n}$ such that

$$
\left\{\begin{array}{l}
\mathfrak{m}=\mathfrak{t} \oplus\left(\oplus_{m_{i}(\alpha)=0} \mathfrak{g}_{\alpha}\right) \\
\mathfrak{n}=\oplus_{m_{i}}(\alpha)>0 \\
\mathfrak{g}_{\alpha}
\end{array}\right.
$$

Note that $\mathfrak{m}^{s s}=[\mathfrak{m}, \mathfrak{m}]$ is a semi-simple Lie algebra which corresponds to the Dynkin diagram of $\Delta \backslash\left\{\alpha_{i}\right\}$. Let β be the highest root, and $b=n_{i}(\beta)$. For every j between 1 and b, define

$$
\mathfrak{n}_{j}=\oplus_{m_{i}(\alpha)=j} \mathfrak{g}_{\alpha} .
$$

Then $\left[\mathfrak{n}_{j}, \mathfrak{n}_{k}\right] \subseteq \mathfrak{n}_{j+k}$. In particular, if $b=1$ then \mathfrak{n} is commutative. Here is the list of all possible pairs $(\mathfrak{g}, \mathfrak{m})$ with \mathfrak{n} commutative. (The simple root defining \mathfrak{m} will be henceforth denoted by τ.)

\mathfrak{g}	A_{n-1}	D_{n}	D_{n+1}	E_{6}	E_{7}
$\mathfrak{m}^{s s}$	$A_{k-1} \times A_{n-k-1}$	A_{n-1}	D_{n}	D_{5}	E_{6}
$\operatorname{dim}(\mathfrak{n})$	$k(n-k)$	$n(n-1) / 2$	$2 n$	16	27

Explanation: in the first case, \mathfrak{n} is equal to the set of $k \times(n-k)$ matrices. In the second case it is equal to the set of all skew-symmetric $n \times n$ matrices, and in the third case \mathfrak{n} is the standard representation of $\mathfrak{s o}(2 n)$. In the fourth case \mathfrak{n} is a 16 dimensional spin representation and, in the fifth and last case, it a 27 dimensional representation of E_{6}.

We would like to determine $M^{s s}(\mathbb{Z})$-orbits on \mathfrak{n}. Consider the case when \mathfrak{n} is the set of $n \times m$ matrices. As is well known, using row-column operations, every matrix A can be transformed (reduced) into a matrix with integers $d_{1}\left|d_{2}\right| \ldots$ on the diagonal. The column operations correspond to multiplying A by certain elementary matrices. For example, if $m=2$, then multiplying A from the right by

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { and }\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

corresponds, respectively, to
(i) Adding the first column of A to the second.
(ii) Permuting the two columns of A.
(iii) Changing signs in the first column of A.

Similarly, row operations correspond to multiplying A by the elementary matrices from the left. An inconvenience here is the the last two matrices are not in $S L_{2}(\mathbb{Z})$ since they have determinant -1 . In order to remedy this, we shall replace them by the following matrices of determinant 1 :

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \text { and }\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right) .
$$

Multiplying A by these three matrices corresponds to so-called strict column operations:
(i) Adding the first column of A to the second.
(ii) Permuting two columns of A, and changing the signs in one.
(iii) Changing the signs in both columns of A.

Since elementary matrices (of determinant one) generate $S L_{n}(\mathbb{Z})$, the strict row column reduction can be formulated as the following:
Every $S L_{n}(\mathbb{Z}) \times S L_{m}(\mathbb{Z})$-orbit in the set of $n \times m$ matrices contains a diagonal matrix $d_{1}\left|d_{2}\right| \ldots$ where all entries, save perhaps one, are non-negative.

The proof of this result is inductive in nature. The first number d_{1} is the GCD of all matrix entries. Using row-column operations we can arrange to have d_{1} on the left upper
corner, with 0 in all other positions in the first row and column. In this way we reduce to $(n-1) \times(m-1)$.

We claim that this inductive procedure can be done in general. To explain, we need another parabolic subgroup $\mathfrak{q}=\mathfrak{l} \oplus \mathfrak{h}$, so-called Heisenberg parabolic subgroup. Here $\mathfrak{l}^{s s}=[\mathfrak{l}, \mathfrak{l}]$ corresponds to the subset of Δ given by $\left\{\alpha_{i} \mid\left\langle\beta, \alpha_{i}\right\rangle=0\right\}$. The possible cases are

$$
\begin{array}{c||c|c|c|c}
\mathfrak{g} & A_{n+1} & D_{n+1} & E_{6} & E_{7} \\
\hline \mathfrak{l}^{s s} & A_{n-1} & A_{1} \times D_{n-1} & A_{5} & D_{6}
\end{array}
$$

2.1. Fourier-Jacobi towers. (As described in the work of Weissman [W].) Fix a pair (G, M). Let \mathfrak{g}_{1} be the unique summand of $\mathfrak{l}^{s s}$ which is not contained in \mathfrak{m}. Put

$$
\left\{\begin{array}{l}
\mathfrak{m}_{1}=\mathfrak{m} \cap \mathfrak{g}_{1} \\
\mathfrak{n}_{1}=\mathfrak{n} \cap \mathfrak{g}_{1}
\end{array}\right.
$$

Thus, starting from a pair $(\mathfrak{g}, \mathfrak{m})$ we have constructed another pair $\left(\mathfrak{g}_{1}, \mathfrak{m}_{1}\right)$. note, as a simple observation, that this process can be continued as long as the pair is not equal to $\left(A_{n}, A_{n-1}\right)$, which we will call a terminal pair. The length of the tower

$$
\begin{gathered}
(\mathfrak{g}, \mathfrak{m}) \\
\left(\mathfrak{g}_{1}, \mathfrak{m}_{1}\right) \\
\vdots
\end{gathered}
$$

finishing with a terminal pair, is the rank of \mathfrak{n}. In particular, the rank of \mathfrak{n}_{1} is one less then the rank of \mathfrak{n}.

Some examples (of rank 3):

$(\mathfrak{g}, \mathfrak{m})$	$\left(E_{7}, E_{6}\right)$	$\left(D_{6}, A_{5}\right)$	$\left(A_{5}, A_{2} \times A_{2}\right)$
$\left(\mathfrak{g}_{1}, \mathfrak{m}_{1}\right)$	$\left(D_{6}, D_{5}\right)$	$\left(D_{4}, A_{3}\right)$	$\left(A_{3}, A_{1} \times A_{1}\right)$
$\left(\mathfrak{g}_{2}, \mathfrak{m}_{2}\right)$	$\left(A_{1},-\right)$	$\left(A_{1},-\right)$	$\left(A_{1},-\right)$

In the last tower, the corresponding sequence $\mathfrak{n}, \mathfrak{n}_{1}$ and \mathfrak{n}_{2} can be identified with $3 \times 3,2 \times 2$ and 1×1 matrices, respectively.

Theorem 2.1. Fix a pair $(\mathfrak{g}, \mathfrak{m})$ such that the rank of \mathfrak{n} is r. Let $\beta, \beta_{1}, \ldots, \beta_{r-1}$ be the highest roots for \mathfrak{g}, $\mathfrak{g}_{1}, \ldots, \mathfrak{g}_{r-1}$, respectively. Then every $M^{s s}(\mathbb{Z})$-orbit in \mathfrak{n} contains an element

$$
d e_{\beta}+d_{1} e_{\beta_{1}}+\ldots+d_{r-1} e_{\beta_{r-1}}
$$

such that $d_{1}\left|d_{2}\right| \ldots \mid d_{r-1}$. Moreover, all d_{k} can be picked to be non-negative except perhaps d_{r-1} which can happen only if the terminal pair is $\left(A_{1},-\right)$.

Proof. The proof is the induction on r. If $r=1$, then the pair is terminal and we have two cases. If the pair is $\left(A_{1},-\right)$ then $M^{s s}$ is trivial and orbits are parameterized by integers. If the pair is $\left(A_{n}, A_{n-1}\right)$ then $M^{s s}=S L_{n}(\mathbb{Z})$, and $\mathfrak{n}=\mathbb{Z}^{n}$. Here orbits are parameterized by non-negative integers.

Let Φ_{M} be the roots of \mathfrak{m} and $\Sigma \subseteq \Phi$ be the set of all roots in \mathfrak{n}. Then any element of \mathfrak{n} can be written as

$$
n=\sum_{\alpha \in \Sigma} t_{\alpha} e_{\alpha}
$$

for some integers t_{α}. If γ is in Φ_{M} then the adjoint action of the one-parameter group $e_{\gamma}(u)$ on e_{α} is given by

$$
e_{\gamma}(t)\left(e_{\alpha}\right)=e_{\alpha}+t\left[e_{\gamma}, e_{\alpha}\right] .
$$

Indeed, $\left[e_{\gamma}\left[e_{\gamma}, e_{\alpha}\right]\right]=0$ since $\gamma \neq-\alpha$, so the exponential series defining the action of $e_{\gamma}(u)$ reduces down to the first two terms.

Now assume that $r>1$. Let n be in \mathfrak{n}. If $n=0$, then there is nothing to prove. Otherwise, let $\Sigma_{1} \subseteq \Sigma$ the set of all roots in \mathfrak{n}_{1}. Then

$$
\Sigma=\{\beta\} \cup \Sigma_{\beta} \cup \Sigma_{1}
$$

where Σ_{β} is the set of all roots α in Σ such that $\langle\alpha, \beta\rangle=1$. In order to use induction, we have to show that n contains in its $M_{s s}(\mathbb{Z})$-orbit an element such that
(i) $t_{\beta}>0$ and $t_{\alpha}=0$ for all α in Σ_{β}.
(ii) t_{β} divides t_{α} for all α in Σ_{1}.

We deal first with (i). Recall that the Weyl group W_{M} of M acts transitively on the set of roots in Σ. After conjugating n by an element in W_{M}, if necessary, we can assume that

$$
0<\left|t_{\beta}\right| \leq\left|t_{\alpha}\right|
$$

for all α in Σ such that $t_{\alpha} \neq 0$. If $t_{\alpha} \neq 0$ for a root α in Σ_{β}, then we can write $t_{\alpha}=q t_{\beta}+r$ where $|r|<\left|t_{\beta}\right|$. Notice that $\gamma=\alpha-\beta$ is a root. Furthermore, since $n_{\tau}(\alpha-\beta)=0$ it is a root in Φ_{M}. (Recall that τ is the simple root defining \mathfrak{m}.) It follows that

$$
e_{\gamma}(q)\left(t_{\beta} e_{\beta}+\ldots+t_{\alpha} e_{\alpha}+\ldots\right)=t_{\beta}+\ldots+r e_{\alpha}+\ldots
$$

(This formula is correct if $\left[e_{\gamma}, e_{\beta}\right]=-e_{\alpha}$. If $\left[e_{\gamma}, e_{\beta}\right]=e_{\alpha}$ then q has to be replaced by $-q$.) In any case, if $t_{\alpha} \neq 0$ for some α in Σ_{β} then we can decrease the smallest non-zero coordinate of n. Proceeding in this fashion we can accomplish (i) in finitely many steps.

Next, we deal with (ii). Let α be in Σ_{1} such that t_{β} does not divide t_{α}. After conjugating by an element of $W_{M_{1}}$, if necessary, we can assume that $\alpha=\beta_{1}$. Let δ be a simple root such that $\langle\beta, \delta\rangle=1$. Then $\alpha=\beta_{1}+\delta$ is a root in Σ_{β} and

$$
e_{\delta}(1)\left(t_{\beta} e_{\beta}+t_{\beta_{1}} e_{\beta_{1}}+\ldots\right)=t_{\beta}+\ldots \pm t_{\beta_{1}} e_{\alpha}+\ldots
$$

Thus we are back in the situation of the proof of (i) and, in the same fashion, we can decrease the smallest coordinate of n. This process has to stop in finitely many steps. This proves part (ii) and, therefore, the theorem.

Corollary 2.2. [RRS] Let k be any field. If $\left(A_{1},-\right)$ is not the terminal pair, then $\mathfrak{n}=$ $\Omega_{0} \cup \ldots \cup \Omega_{r}$ where Ω_{i} is the $M^{s s}(k)$-orbit of $e_{\beta}+\ldots+e_{\beta_{i-1}}$. If $\left(A_{1},-\right)$ is the terminal pair then Ω_{r} is a union of $M(k)$-orbits parameterized by classes of squares in k^{\times}. In any case, elements in Ω_{i} are said to have rank i.

3. Degenerate principal series

In this section we shall assume that $G=G_{a d}$ is of adjoint type. We give an explicit model of the minimal representation of G. The discussion here is based on [S] and [W]. basic properties of the Since G is assumed to be of adjoint type, it acts faithfully on the Lie algebra \mathfrak{g} and the torus T of G is isomorphic to $\Lambda_{c} \otimes k^{\times}$where Λ_{c} is the lattice of integral coweights.

It is the lattice dual to the root lattice with respect to the usual form $\langle\cdot, \cdot\rangle$. Let $\lambda(t)$ denote the element $\lambda \otimes t$ in T. It acts on e_{α} by the formula

$$
\lambda(t) e_{\alpha} \lambda(t)^{-1}=t^{\langle\lambda, \alpha\rangle} e_{\alpha}
$$

Let τ be the simple root defining P, and ρ and $\bar{\rho}$ the half-sum of all roots in N and \bar{N}, respectively. Let $\Delta: M \rightarrow \mathbb{R}^{+}$be the modular character with respect to \bar{N}, which means that

$$
\int_{\bar{N}} f\left(m x m^{-1}\right) d x=\Delta(m) \int_{\bar{N}} f(x) d x
$$

Let ρ_{N} and $\rho_{\bar{N}}$ be the half-sum of all roots in \mathfrak{n} and $\overline{\mathfrak{n}}$, respectively. Then the composition of Δ with the embedding of T into M is given by

$$
\Delta^{\frac{1}{2}}(\lambda(p))=|p|^{\left\langle\lambda, \rho_{\bar{N}}\right\rangle}
$$

Furthermore, let $\chi: M \rightarrow \mathbb{R}^{+}$be a character such that $\chi^{2\left\langle\tau, \rho_{N}\right\rangle}=\Delta$. Define the principal series $I(s)=\operatorname{Ind} d_{\bar{P}}^{G}\left(\chi^{s}\right)$, the space of all locally constant functions on G such that

$$
f(\bar{n} m g)=\chi(m)^{s} \Delta^{\frac{1}{2}}(m) f(g)
$$

There is a non-degenerate G-invariant hermitian pairing $(\cdot, \cdot)_{s}: I(-s) \times I(s) \rightarrow \mathbb{C}$ defined by

$$
\left(f_{-s}, f_{s}\right)_{s}=\int_{\bar{P} \backslash G} f_{-s}(x) \bar{f}_{s}(x) d x=\int_{N} f_{-s}(x) \bar{f}_{s}(x) d x
$$

Here the last equality follows since $\bar{P} N$ is an open subset of G. Inside $I(s)$ there is a P submodule of all functions in $I(s)$ supported in the open subset $\bar{P} N$. This can be identified with $S(N)$, the space of locally constant, compactly supported functions on N. The action of the maximal parabolic $P=M N$ on $S(N)$ is given by

$$
\left\{\begin{array}{l}
\pi(n) f(x)=f(x+n) \\
\pi(m) f(x)=\chi(m)^{s} \Delta(m)^{1 / 2} f\left(m^{-1} x m\right)
\end{array}\right.
$$

Next, we shall analyze the structure of $S(N)$, as a P-module, using the Fourier transform. To that end, notice that we have a natural pairing $\langle\cdot, \cdot\rangle$ between N and \bar{N} induced by the Killing form. Thus \bar{N} can be identified with the dual of N. The Fourier transform is an isomorphism of (vector spaces) $S(N)$ and $S(\bar{N})$ defined by

$$
\hat{f}(y)=\int_{N} f(x) \psi(\langle x, y\rangle) d x
$$

Using the Fourier transform we shall transfer the action of P from $S(N)$ to $S(\bar{N})$. Let $f \in S(\bar{N})$, and $m \in M$. Then the Fourier transform of $\pi(m) f$ is

$$
(\widehat{\pi(m) f})(y)=\chi(m)^{s} \Delta(m)^{1 / 2} \int_{N} f\left(m^{-1} x m\right) \psi(\langle x, y\rangle) d x
$$

We introduce a new variable z by $z=m^{-1} x m$. Then $d x=\Delta(m)^{-1} d z$, and the formula simplifies to

$$
(\widehat{\pi(m) f})(y)=\chi(m)^{s} \Delta(m)^{-1 / 2} \hat{f}\left(m^{-1} y m\right)
$$

This gives a formula for the action of M on $S(\bar{N})$. Similarly - but much easier - we can derive the action of N on $S(\bar{N})$. The two formulas are summarized below:

$$
\left\{\begin{array}{l}
(\pi(n) f)(y)=f(y) \psi(-\langle n, y\rangle) \text { and } \\
(\pi(m) f)(y)=\chi^{s}(m) \Delta^{-1 / 2}(m) f\left(m^{-1} y m\right)
\end{array}\right.
$$

where $m \in M, n \in N$ and $f \in S(\bar{N})$.
Let Ω_{i} be the set of elements of rank i in \bar{N}. Let S_{i} be the subset of $S(N)$ of all functions f such that the Fourier transform \hat{f} vanishes on $\cup_{j<i} \Omega_{j}$. Then S_{i} is a P-submodule, and the quotient S_{i} / S_{i+1} is isomorphic to $S\left(\Omega_{i}\right)$ - the space of locally constant and compactly supported functions on Ω_{i} - with the action given by the previous formulas. Every subquotient is irreducible by Mackey's lemma.

Let's look now at the special case $s=s_{0}$ when the minimal $V_{\min }$ representation is the unique submodule of $I\left(-s_{0}\right)$. Notice that the pairing $(\cdot, \cdot)_{s_{0}}$ restricted to $V_{\min } \times S(N)$ is left non-degenerate. Indeed, any $f \neq 0$ in $V_{\min }$ will give you a non-trivial function when restricted to N (since N is dense in $\bar{P} \backslash G$) and, therefore, a non-trivial distribution of $S(N)$. In fact, we have a bit more. The pairing is left non-degenerate even when restricted to $V_{\min } \times S_{1}$. To see this recall that $V_{\min }$ is unitarizable. In particular, by a theorem of Howe and Moore, if an element v in $V_{\min }$ is fixed by N then $v=0$. Since any vector in $V_{\min }$ perpendicular to S_{1} is N-fixed it must be zero. This shows that the pairing, restricted to $V_{\min } \times S_{1}$, is left non-degenerate. Since the N-rank of $V_{\min }$ is one the pairing is trivial on $S_{2} \subseteq S_{1}$. (This is basically a definition of the N-rank). Thus the pairing descends to a non-degenerate pairing in both variables of $V_{\min }$ and $S_{1} / S_{2}=S\left(\Omega_{1}\right)$, where the action of P on $S\left(\Omega_{1}\right)$ is given by

$$
\left\{\begin{array}{l}
(\pi(n) f)(y)=f(y) \psi(-\langle n, y\rangle) \text { and } \\
(\pi(m) f)(y)=\chi^{s_{0}}(m) \Delta^{-1 / 2}(m) f\left(m^{-1} y m\right)
\end{array}\right.
$$

Here $m \in M, n \in N$ and $f \in S\left(\Omega_{1}\right)$. It follows that $V_{\min }$, as a P-module, embeds into the P-smooth dual of $S\left(\Omega_{1}\right)$. This dual can be described in the following way. While there is no M-invariant measure on Ω_{1}, there exists a (modular) character δ_{1} of M and a measure $d y$ on Ω_{1} such that

$$
\int_{\Omega_{1}} f\left(m y m^{-1}\right) d y=\delta_{1}(m) \int_{\Omega_{1}} f(y) d y
$$

for every locally constant and compactly supported function f on Ω_{1}. The P-smooth dual of $S\left(\Omega_{1}\right)$ is isomorphic to the space of locally constant, but not necessarily compactly supported, functions on Ω_{1} with the action of P given by

$$
\left\{\begin{array}{l}
(\pi(n) f)(y)=f(y) \psi(-\langle n, y\rangle) \text { and } \\
(\pi(m) f)(y)=\chi_{1}(m) f\left(m^{-1} y m\right)
\end{array}\right.
$$

where the character χ_{1} is defined by $\chi_{1} \cdot\left(\chi^{s_{0}} \cdot \Delta^{-1 / 2}\right)=\delta_{1}$. It appears that we have an annoying issue of figuring out what δ_{1} is. It turns out that is not necessary. To this end, note that $V_{\min }$ is a quotient of $I\left(s_{0}\right)$ and the pairing of $V_{\min }$ and $I\left(s_{0}\right)$ descends down to a pairing between $V_{\min }$ and $V_{\min }$. It follows that S_{1} / S_{2} is a submodule of $V_{\min }$ (the second factor) which shows that $\chi_{1}=\chi^{s_{0}} \cdot \Delta^{-1 / 2}$.

The possible cases for s_{0} (see $[\mathrm{W}]$) and $\left\langle\tau, \rho_{N}\right\rangle$ are

\mathfrak{g}	A_{n+1}	$A_{2 n+1}$	D_{n+1}	D_{n+1}	E_{6}	E_{7}
$\mathfrak{m}^{s s}$	A_{n}	$A_{n} \times A_{n}$	A_{n}	D_{n}	D_{5}	E_{6}
s_{0}	0	n	$n-2$	1	3	5
$\left\langle\tau, \rho_{N}\right\rangle$	$n / 2+1$	$n+1$	n	n	6	9

4. Eigenvalues of Hecke operators

Consider the root system of type A_{n}, D_{n} or E_{n}, and let ω_{j} be the fundamental coweights as in Bourbaki tables. Let $\hat{\omega}_{b}$ be the fundamental weight corresponding to the unique branching vertex of the Dynkin diagram for D_{n} and E_{n}. This is ω_{4} for all three exceptional groups. For the root system of type A_{n} there is no branching point, but we define $\hat{\omega}_{b}$ to be the fundamental coweight of the middle vertex if n is odd, or the arithmetic mean of the two middle vertices if n is even. Let ρ be the half sum of all positive roots. The Satake parameter of the minimal representation is $\lambda_{\min }(p) \in \hat{G}$, the dual group of G, where

$$
\lambda_{\min }=\rho-\hat{\omega}_{b} .
$$

If ω_{i} is a miniscule fundamental coweight, then the eigenvalue of the Hecke operator $p^{-\left\langle\rho, \omega_{i}\right\rangle} T_{i}$ on the spherical vector of the minimal representation is

$$
\operatorname{Tr}_{V\left(\omega_{i}\right)}\left(\lambda_{\min }(p)\right)=\sum_{\mu \sim \omega_{i}} p^{\left\langle\lambda_{\min }, \mu\right\rangle},
$$

the trace of $\lambda_{\min }(p)$ on the representation $V\left(\omega_{i}\right)$ of \hat{G} with the highest weight ω_{i}. Here the sum is taken over all weights μ of $V\left(\omega_{i}\right)$. (Weight spaces of the miniscule representation are one-dimensional and are Weyl group conjugate to ω_{i}.) We now give explicit formulas in the following cases:

Case $A_{2 n-1}$, and $\omega_{i}=\omega_{1}$, the highest weight of the standard $2 n$-dimensional representation. Then the eigenvalue of the Hecke operator $p^{-\left\langle\rho, \omega_{1}\right\rangle} T_{1}$ is

$$
p^{n-1}+p^{n-2}+\ldots p+2+p^{-1}+\ldots p^{2-n}+p^{1-n} .
$$

Case $A_{2 n}$, and $\omega_{i}=\omega_{1}$, the highest weight of the standard $2 n$-dimensional representation. Then the eigenvalue of the Hecke operator $p^{-\left\langle\rho, \omega_{1}\right\rangle} T_{1}$ is

$$
p^{n-1 / 2}+p^{n-3 / 2}+\ldots p^{1 / 2}+1+p^{-1 / 2}+\ldots p^{3 / 2-n}+p^{1 / 2-n}
$$

Case D_{n+1}, and $\omega_{i}=\omega_{1}$, the highest weight of the standard $2 n+2$-dimensional representation. Then the eigenvalue of the Hecke operator $p^{-\left\langle\rho, \omega_{1}\right\rangle} T_{1}$ is

$$
p^{n-1}+\ldots p^{2}+2 p+2+2 p^{-1}+p^{-2}+\ldots+p^{1-n}
$$

Case E_{6}, and $\omega_{i}=\omega_{1}$, the highest weight of the standard 27-dimensional representation of E_{6}. In the terminology of Bourbaki, the Satake parameter is

$$
\lambda_{\min }=(0,1,1,2,3,-3,-3,3)
$$

It will be convenient to realize $V\left(\omega_{1}\right)$ as an internal module in E_{7}. More precisely, consider the root system of type E_{7} as in Bourbaki tables. If we remove the last simple root α_{7} then
we get a root system E_{6}. As usual, write every positive root of E_{7} as $\alpha=\sum m_{i}(\alpha) \alpha_{i}$. The subspace

$$
\bigoplus_{m_{7}(\alpha)=1} \mathfrak{g}_{\alpha}
$$

is the 27 -dimensional representations of E_{6} with the highest weight ω_{1} i.e. the first fundamental weight. Thus to tabulate the weights of this representation, we have to write down all roots α of E_{7} such that $m_{7}(\alpha)=1$ which is the same as $\left\langle\alpha, \omega_{7}\right\rangle=1$, where $\omega_{7}=e_{6}+\frac{1}{2}\left(e_{8}-e_{7}\right)$. These are $\pm e_{i}+e_{6},(1 \leq i \leq 5) e_{8}-e_{7}$ (total of 11 roots here) and

$$
\frac{1}{2}\left(e_{8}-e_{7}+e_{6}+\sum_{i=1}^{5}(-1)^{\nu(i)} e_{i}\right)
$$

where $\sum \nu(i)$ is odd. This, second, group has 16 roots.
(Warning: ω_{7} is the fundamental weight for E_{7}. While simple roots for E_{6} are also simple roots for E_{7} this is not true for fundamental weights. First 6 fundamental weights for E_{7} are not the fundamental weights for E_{6}.)

The eigenvalue of the Hecke operator $p^{-\left\langle\rho, \omega_{1}\right\rangle} T_{1}$ is
$\left(\sum_{m_{7}(\alpha)=1} p^{\left(\lambda_{\min }, \alpha\right\rangle}\right)=p^{6}+p^{5}+2 p^{4}+2 p^{3}+3 p^{2}+3 p+3+3 p^{-1}+3 p^{-2}+2 p^{-3}+2 p^{-4}+p^{-5}+p^{-6}$.
Case E_{7}, and $\omega_{i}=\omega_{7}$, the highest weight of the 56 -dimensional representation of E_{7}. Here the Satake parameter is

$$
\lambda_{\min }=(0,1,1,2,3,4,-13 / 2,13 / 2)
$$

Again, the representation $V_{\omega_{7}}$ can be written down as an internal module in E_{8}. Let α_{8} be the root for E_{8} such that other simple roots belong to E_{7}. Then the 56 -dimensional representation is equal to

$$
\bigoplus_{m_{8}(\alpha)=1} \mathfrak{g}_{\alpha}
$$

So again we have to tabulate all roots for E_{8} such that $\left\langle\alpha, \omega_{8}\right\rangle=1$. Since $\omega_{8}=e_{7}+e_{8}$, these are $\pm e_{i}+e_{7}(1 \leq i \leq 6), \pm e_{i}+e_{8}(1 \leq i \leq 6)$ and

$$
\frac{1}{2}\left(e_{8}+e_{7}+\sum_{i=1}^{6}(-1)^{\nu(i)} e_{i}\right)
$$

where $\sum \nu(i)$ is even. There are 32 of this last type. Now it is not to difficult to see that he eigenvalue of the Hecke operator $p^{-\left\langle\rho, \omega_{7}\right\rangle} T_{7}$ for E_{7} is

$$
\begin{gathered}
\left(\sum_{m_{8}(\alpha)=1} p^{\left(\lambda_{\min }, \alpha\right\rangle}\right)= \\
p^{\frac{21}{2}}+p^{\frac{19}{2}}+p^{\frac{17}{2}}+2 p^{\frac{15}{2}}+2 p^{\frac{13}{2}}+3 p^{\frac{11}{2}}+3 p^{\frac{9}{2}}+3 p^{\frac{7}{2}}+4 p^{\frac{5}{2}}+4 p^{\frac{3}{2}}+4 p^{\frac{1}{2}} \\
+4 p^{-\frac{1}{2}}+4 p^{-\frac{3}{2}}+4 p^{-\frac{5}{5}}+3 p^{-\frac{7}{2}}+3 p^{-\frac{9}{2}}+3 p^{-\frac{11}{2}}+2 p^{-\frac{13}{2}}+2 p^{-\frac{15}{2}}+p^{-\frac{17}{2}}+p^{-\frac{19}{2}}+p^{-\frac{21}{2}}
\end{gathered}
$$

5. Satake transform

Let U be the maximal nilpotent subgroup corresponding to our choice of simple roots. Let ω_{i} be a miniscule fundamental coweight. The purpose of this section is to decompose the double coset $K \omega_{i}(p) K$ as a union of single cosets $u \mu(p) K$, where $u \in U$. This will be accomplished by means of the Satake transform.

The modular character δ is given by $\delta(\lambda(p))^{1 / 2}=p^{\langle\rho, \lambda\rangle}$. The Satake transform $S: H_{G} \rightarrow$ H_{T} is given by

$$
S(f)(t)=\delta(t)^{-1 / 2} \int_{N} f(t u) d u
$$

It is known that $S\left(T_{i}\right)=p^{\left\langle\rho, \omega_{i}\right\rangle} V\left(\omega_{i}\right)$ where $V\left(\omega_{i}\right)$ is the fundamental representation of $\hat{G}=G_{s c}$ with the highest weight ω_{i}. Here we use the identification of H_{T} with $\mathbb{C}\left[\Lambda_{c}\right]$, the group algebra of the coweight lattice Λ_{c}. Under this identification $V\left(\omega_{i}\right)$ is a sum of delta functions for all weights μ of $V\left(\omega_{i}\right)$. It follows that $S\left(T_{i}\right)(\mu(p))=0$ unless μ is a weight of $V\left(\omega_{i}\right)$ in which case it is equal to $p^{\left\langle\rho, \omega_{i}\right\rangle}$. Proposition 13.1 in [GGS] implies that, for every weight μ of $V\left(\omega_{i}\right)$, the number of single cosets of type $u \mu(p) K$ contained in $K \omega_{i}(p) K$ is equal to $p^{\left\langle\rho, \mu+\omega_{i}\right\rangle}$.

Proposition 5.1. Let ω_{i} be a miniscule fundamental coweight, and μ a Weyl group conjugate of ω_{i}. If $u \mu(p) K$ is contained in $K \omega_{i}(p) K$ then it is equal to

$$
\left(\prod_{\alpha>0,\langle\alpha, \mu\rangle=1} e_{\alpha}\left(t_{\alpha}\right)\right) \mu(p) K
$$

for some (unique) $t_{\alpha} \in \mathbb{Z}_{p} / p \mathbb{Z}_{p}$.
Proof. Notice that $e_{\alpha}\left(t_{\alpha}\right)$ commute since the scalar product of μ and any root can be only $-1,0$ or 1 . In particular, the product in the proposition is well defined. Furthermore, since $e_{\alpha}\left(t_{\alpha}\right)$ with $t_{\alpha} \in \mathbb{Z}_{p}$ are contained in K the single cosets (as defined in the statement) are contained in our double coset. We shall first show uniqueness. If

$$
\prod_{\alpha>0,\langle\alpha, \mu\rangle=1} e_{\alpha}\left(t_{\alpha}\right) \mu(p) K=\prod_{\alpha>0,\langle\alpha, \mu\rangle=1} e_{\alpha}\left(t_{\alpha}^{\prime}\right) \mu(p) K
$$

then

$$
\prod_{\alpha>0,\langle\alpha, \mu\rangle=1} e_{\alpha}\left(\left(t_{\alpha}-t_{\alpha}^{\prime}\right) / p\right) \in K
$$

This is possible if and only if $t_{\alpha} \equiv t_{\alpha}^{\prime}(\bmod K)$, as claimed. Finally, since we know that the number of single cosets of the form $u \mu(p) K$ is equal to $p^{\left\langle\rho, \omega_{i}+\mu\right\rangle}$, in order to prove the proposition it remains to verify the following lemma.

Lemma 5.2. Let μ be a Weyl group conjugate of the miniscule coweight ω_{i}. Then the number of positive roots α such that $\langle\alpha, \mu\rangle=1$ is equal to $\left\langle\rho, \omega_{i}+\mu\right\rangle$

Proof. Let w be a Weyl group element such that $\mu=w\left(\omega_{i}\right)$. Let α be a positive root such that $\langle\alpha, \mu\rangle=1$. Then

$$
1=\langle\alpha, \mu\rangle=\left\langle w^{-1}(\alpha), \omega_{i}\right\rangle .
$$

This implies that $w^{-1}(\alpha)=\beta$ is positive, so we are counting the number of positive roots β such that $w(\beta)$ is positive and $\left\langle\beta, \omega_{i}\right\rangle=1$. Since $\left\langle\beta, \omega_{i}\right\rangle=1$ or 0 for every positive root, the number of positive roots α such that $\langle\alpha, \mu\rangle=1$ is equal to

$$
\sum_{\beta>0, w(\beta)>0}\left\langle\beta, \omega_{i}\right\rangle .
$$

Since (this is well known) $\sum_{\beta>0, w(\beta)>0} \beta=\rho+w^{-1}(\rho)$ the Lemma follows.

6. Spherical vector

We would like to determine the spherical vector of the minimal representation. Under the action of $M\left(\mathbb{Z}_{p}\right)$ the orbit Ω_{1} decomposes as a union of of orbits each containing $p^{m} e_{-\tau}$ for some integer m. Thus a spherical vector f, since it is fixed by $M\left(\mathbb{Z}_{p}\right)$, is determined by its value on $p^{m} e_{-\tau}$ for all integers m. In order to simplify notation, let us write

$$
f(m)=f\left(p^{m} e_{-\tau}\right)
$$

Next, since f is fixed by $N\left(\mathbb{Z}_{p}\right)$ as well, $f(m)=0$ if $m<0$. To determine f exactly we shall use the fact that it is an eigenvector for the Hecke operator $T_{\omega_{i}}=\operatorname{Char}\left(K \omega_{i} K\right)$ where ω_{i} is a miniscule fundamental coweight. As we know from the previous section, the double coset $K \omega_{i} K$ can be written as a union of single cosets $u \mu(p) K$ where μ is a Weyl group conjugate of ω_{i} and u is in $U \cap K$. Also, for a fixed μ there are $p^{\left\langle\rho, \mu+\omega_{i}\right\rangle}$ different single cosets. It follows that $e_{-\tau}$ is a highest weight vector for $M \cap U$. Thus, it follows that

$$
\left(T_{i} * f\right)(m)=\sum_{\mu} p^{\left\langle\rho, \mu+\omega_{i}\right\rangle} \chi^{s_{0}}(\mu) \Delta^{-1 / 2}(\mu) f(m+\langle\mu, \tau\rangle)
$$

Since $\langle\mu, \tau\rangle$ is equal to $-1,0$ or 1 , the possible effects are shifting the index m by one only. In particular, the formula gives a recursion relation as indicated in the introduction. It remains to calculate this formula in every case. But first we state the final result.

Theorem 6.1. Let Ω_{1} be the set of rank one elements in \bar{N}. Recall that the Chevalley basis gives a natural coordinate system of \bar{N}. If $x \in \Omega_{1}$, let p^{m} be the greatest common divisor of all coordinates of x. Then $f(x)=0$ unless $m \geq 0$. If $m \geq 0$ then, after normalizing $f(1)=1$,

$$
f(x)=1+p^{d}+\ldots+p^{m d}
$$

where d is given by the following table:

\mathfrak{g}	A_{n+1}	$A_{2 n+1}$	D_{n+1}	D_{n+1}	E_{6}	E_{7}
$\mathfrak{m}^{\text {ss }}$	A_{n}	$A_{n} \times A_{n}$	A_{n}	D_{n}	D_{5}	E_{6}
d	$n / 2$	0	1	$n-2$	2	3

Proof. We calculate the recursive relation on a case by case basis using the data from the following tables. The first table includes the half sum of all the positive roots and the simple root τ not in M. The second table gives the characterization of $\chi^{s_{0}}(\cdot) \Delta^{-1 / 2}(\cdot)$ in terms of ρ_{N}, the half sum of the roots in M.

(G, M)	ρ	τ
$\left(A_{2 n-1}, A_{n-1} \times A_{n-1}\right)$	$\left(n-\frac{1}{2}, n-\frac{3}{2}, \ldots, \frac{1}{2}-n\right)$	$(0, \ldots, 0,1,-1,0, \ldots, 0)$
$\left(D_{n+1}, D_{n}\right)$	$(n, n-1, \ldots, 1,0)$	$(1,-1,0, \ldots, 0)$
$\left(D_{n+1}, A_{n}\right)$	$(n, n-1, \ldots, 1,0)$	$(0, \ldots, 0,1,1)$
$\left(E_{6}, D_{5}\right)$	$(0,1,2,3,4,-4,-4,4)$	$\frac{1}{2}(1,-1,-1,-1,-1,-1,-1,1)$
$\left(E 7, E_{6}\right)$	$\left(0,1,2,3,4,5,-\frac{17}{2}, \frac{17}{2}\right)$	$(0,0,0,0,-1,1,0,0)$

	ρ_{N}	$\chi^{s} \Delta^{-1 / 2}$
$\left(A_{2 n-1}, A_{n-1} \times A_{n-1}\right)$	$\left(\frac{n}{2}, \ldots, \frac{n}{2},-\frac{n}{2}, \ldots,-\frac{n}{2}\right)$	$p^{-\frac{1}{n}\left\langle\cdot, \rho_{N}\right\rangle}$
$\left(D_{n+1}, D_{n}\right)$	$(n, 0, \ldots, 0)$	$p^{\left(\frac{1}{n}-1\right)\left\langle\cdot, \rho_{N}\right\rangle}$
$\left(D_{n+1}, A_{n}\right)$	$\left(\frac{n}{2}, \ldots, \frac{n}{2}\right)$	$p^{-\frac{2}{n}\left\langle\cdot, \rho_{N}\right\rangle}$
$\left(E_{6}, D_{5}\right)$	$(0,0,0,0,0,-4,-4,4)$	$p^{-\frac{1}{2}\left\langle\cdot, \rho_{N}\right\rangle}$
$\left(E 7, E_{6}\right)$	$\left(0,0,0,0,0,9,-\frac{9}{2}, \frac{9}{2}\right)$	$p^{-\frac{4}{9}\left\langle\cdot, \rho_{N}\right\rangle}$

We start with the case $G=D_{n+1}$ and $M=D_{n}$. The Weyl group orbit of the highest weight $\omega_{1}=e_{1}$ consists of $\pm e_{i}$ for $1 \leq i \leq n+1$. The eigenvalue of T_{1} is

$$
p^{n}\left(p^{n-1}+\ldots+p^{2}+2 p+2+2 p^{-1}+p^{-2}+\ldots+p^{1-n}\right)
$$

Next, we shall work out $T_{1} * f(m)$ using the action of single cosets. The total number of single cosets is

$$
p^{2 n}+p^{2 n-1}+\ldots p^{n+1}+2 p^{n}+p^{n-1}+\ldots+p+1 .
$$

In order to calculate the coefficients a_{1} and a_{-1} in the recursive relation we are interested in conjugates μ of ω_{1} such that $\langle\tau, \mu\rangle=1$ or -1 . They are, followed by the number of cosets of the type $u \mu(p) K$, and the value $\chi^{S_{0}}(\mu) \Delta^{-1 / 2}(\mu)$:

μ	$\langle\tau, \mu\rangle$	$p^{\left\langle\rho, \mu+\omega_{1}\right\rangle}$	$\chi^{s_{0}} \Delta^{-1 / 2}$
e_{1}	1	$p^{2 n}$	p^{1-n}
e_{2}	-1	$p^{2 n-1}$	1
$-e_{1}$	-1	1	p^{n-1}
$-e_{2}$	1	p	1

In particular, it is not difficult to check that the right hand side of the recursion can be written as
$\left(p^{n+1}+p\right) f(m+1)+\left(p^{2 n-2}+\ldots+p^{n+1}+2 p^{n}+p^{n-1}+\ldots+p^{2}\right) f(m)+\left(p^{2 n-1}+p^{n-1}\right) f(m-1)$.
This gives plenty of reductions with the left hand side of the recursion, which is the product of the eigenvalue of T_{1} and $f(m)$, and the recursion can be rewritten as

$$
\left(p^{2 n-1}+p^{n+1}+p^{n-1}+p\right) f(m)=\left(p^{n+1}+p\right) f(m+1)+\left(p^{2 n-1}+p^{n-1}\right) f(m-1)
$$

which is equivalent to

$$
p^{n-2}[f(m)-f(m-1)]=[f(m+1)-f(m)] .
$$

This, of course, implies that $f(m)=1+p^{n-2}+\ldots+p^{m(n-2)}$ or, in words, it is a geometric series in p^{n-2}.

We now address the case $G=A_{2 n-1}$ and $M=A_{n-1} \times A_{n-1}$. The Weyl group of the miniscule weight $\omega_{1}=e_{1}$ consists of the elements $e_{i}(1 \leq i \leq 2 n$.) As before, we need the eigenvalue of T_{1}, which is

$$
p^{\frac{2 n-1}{2}}\left(p^{n-1}+\cdots+p+2+p^{-1}+\cdots+p^{1-n}\right)
$$

because this (times $f(m)$) gives the left hand side of the recursion formula. Also,

$$
\chi^{s_{0}}\left(e_{i}\right) \Delta^{-1 / 2}\left(e_{i}\right)=p^{-\frac{1}{n}\left\langle e_{i}, \rho_{N}\right\rangle}=\left\{\begin{array}{cl}
p^{-\frac{1}{2}} & 1 \leq i \leq n \\
p^{\frac{1}{2}} & n<i \leq 2 n
\end{array}\right.
$$

Notice that only the elements e_{n} and e_{n+1} have nonzero dot product with τ (1 and -1 respectively), and $p^{\left\langle\rho, e_{i}+e_{1}\right\rangle}=p^{2 n-i}$. Thus, the right hand side of the equation is

$$
p^{-\frac{1}{2}}\left[\left(p^{2 n-1}+\cdots+p^{n+1}\right) f(m)+p^{n} f(m+1)\right]+p^{\frac{1}{2}}\left[p^{n-1} f(m-1)+\left(p^{n-2}+\cdots+1\right) f(m)\right] .
$$

After combining both sides of the equation and simplifying, this becomes

$$
f(m)-f(m-1)=f(m+1)-f(m) .
$$

Hence, $f(m)=m$.
The next case is $G=D_{n+1}$ and $M=D_{n}$. As is the case when $G=D_{n+1}$ and $M=A_{n}$, we consider the Weyl group orbit of $\omega_{1}=(1,0, \ldots, 0)$. As noted above, this orbit consists of all elements $\pm e_{i}(1 \leq i \leq n+1$.) First, we tabulate those elements μ such that $\langle\mu, \tau\rangle \neq 0$.

μ	$\langle\mu, \tau\rangle$	$p^{\left\langle\rho, \mu+\omega_{1}\right\rangle}$	$\chi^{s_{0}} \Delta^{-1 / 2}$
e_{n}	1	p^{n+1}	p^{-1}
e_{n+1}	1	p^{n}	p^{-1}
$-e_{n}$	-1	p^{n-1}	p
$-e_{n+1}$	-1	p^{n}	p

The left hand side of the recursion is identical to the other case with $G=D_{n+1}$, but the right hand side is
$f(m+1)\left(p^{n}+p^{n-1}\right)+f(m-1)\left(p^{n+1}+p^{n}\right)+f(m)\left(\left(p^{2 n}+\cdots+p^{n+2}\right) p^{-1}+\left(p^{n-2}+\cdots+1\right) p\right)$.
After cancellation and simplification the recursion becomes

$$
p[f(m)-f(m-1)]=[f(m+1)-f(m)] .
$$

Hence, $f(m)=1+p+\cdots+p^{m}$.
Next we consider $G=E_{6}$ and $M=D_{5}$. Recall that the eigenvalue for the Hecke operator T_{1} is

$$
\begin{aligned}
& p^{8}\left(p^{6}+p^{5}+2 p^{4}+2 p^{3}+3 p^{2}+3 p+3+3 p^{-1}+3 p^{-2}+2 p^{-3}+2 p^{-4}+p^{-5}+p^{-6}\right) \\
& =p^{14}+p^{13}+2 p^{12}+2 p^{11}+3 p^{10}+3 p^{9}+3 p^{8}+3 p^{7}+3 p^{6}+2 p^{5}+2 p^{4}+p^{3}+p^{2}
\end{aligned}
$$

As we have seen, there are 27 elements in the orbit of ω_{1}. We list below those which have the property that $\langle\mu, \tau\rangle \neq 0$ along with the number of cosets of type $u \mu(p) K$ and $\chi^{s_{0}}(\mu) \Delta^{-1 / 2}(\mu)$.

μ	$\langle\mu, \tau\rangle$	$p^{\left\langle\rho, \mu+\omega_{1}\right\rangle}$	$p^{-\frac{1}{2}\left\langle\mu, \rho_{N}\right\rangle}$
$e_{6}-e_{1}$	-1	p^{4}	p^{2}
$e_{6}+e_{2}$	-1	p^{5}	p^{2}
$e_{6}+e_{3}$	-1	p^{6}	p^{2}
$e_{6}+e_{4}$	-1	p^{7}	p^{2}
$e_{6}+e_{5}$	-1	p^{8}	p^{2}
$\frac{1}{2}\left(-e_{1}+e_{2}+e_{3}+e_{4}+e_{5}+e_{6}-e_{7}+e_{8}\right)$	-1	p^{15}	p^{-1}
$\frac{1}{2}\left(-e_{1}-e_{2}-e_{3}-e_{4}-e_{5}-e_{6}-e_{7}+e_{8}\right)$	1	p^{5}	p^{-1}
$\frac{1}{2}\left(e_{1}+e_{2}-e_{3}-e_{4}-e_{5}+e_{6}-e_{7}+e_{8}\right)$	1	p^{6}	p^{-1}
$\frac{1}{2}\left(e_{1}-e_{2}+e_{3}-e_{4}-e_{5}+e_{6}-e_{7}+e_{8}\right)$	1	p^{7}	p^{-1}
$\frac{1}{2}\left(e_{1}-e_{2}-e_{3}+e_{4}-e_{5}+e_{6}-e_{7}+e_{8}\right)$	1	p^{8}	p^{-1}
$\frac{1}{2}\left(e_{1}-e_{2}-e_{3}-e_{4}+e_{5}+e_{6}-e_{7}+e_{8}\right)$	1	p^{9}	p^{-1}
$e_{8}-e_{7}$	1	p^{16}	p^{-4}

From the table above we can read off the coefficients of $f(m+1)$ and $f(m-1)$ on the right hand side. These are

$$
f(m-1)\left[p^{6}+p^{7}+p^{8}+p^{9}+p^{10}+p^{14}\right]
$$

and

$$
f(m+1)\left[p^{4}+p^{5}+p^{6}+p^{7}+p^{8}+p^{12}\right] .
$$

Similarly, we can tabulate the values of $p^{\left\langle\rho, \mu+\omega_{1}\right\rangle}$ and $p^{-\frac{1}{2}\left\langle\mu, \rho_{N}\right\rangle}$ when $\langle\mu, \tau\rangle=0$. This will show that the final term on the right hand side of the equation is

$$
f(m)\left[p^{2}+p^{3}+p^{4}+p^{5}+p^{6}+p^{7}+p^{8}+2 p^{9}+2 p^{10}+2 p^{11}+p^{12}+p^{13}\right] .
$$

After subtracting this term from both sides and dividing by $p^{4}+p^{5}+p^{6}+p^{7}+p^{8}+p^{12}$ this becomes

$$
f(m)\left[p^{2}+1\right]=f(m-1) p^{2}+f(m+1) .
$$

This is obviously equivalent to

$$
p^{2}[f(m)-f(m-1)]=[f(m+1)-f(m)],
$$

which implies that $f(m)=1+p^{2}+\cdots+p^{2 m}$.
We now address the final case: $G=E_{7}$ and $M=E_{6}$. As we have already computed the eigenvalue for the Hecke operator $p^{-\left\langle\omega_{7}, \rho\right\rangle} T_{7}$ we see that the left hand side of our equation is

$$
\begin{aligned}
& f(m)\left[p^{24}+p^{23}+p^{22}+2 p^{21}+2 p^{20}+3 p^{19}+3 p^{18}+3 p^{17}+4 p^{16}+4 p^{15}+4 p^{14}\right. \\
& \left.+4 p^{13}+4 p^{12}+4 p^{11}+3 p^{10}+3 p^{9}+3 p^{8}+2 p^{7}+2 p^{6}+p^{5}+p^{4}+p^{3}\right] .
\end{aligned}
$$

As in the case of $G=E_{6}$, one must tabulate each of the 56 elements μ in the orbit of ω_{7} along with number of cosets of type $u \mu(p) K$ (which is $\left.p^{\left\langle\rho, \mu+\omega_{7}\right\rangle}\right)$, and the value $\chi_{s_{0}}(\mu) \Delta^{-1 / 2}(\mu)$ (which is $p^{-\frac{4}{9}\left\langle\mu, \rho_{N}\right\rangle}$). As before, we do this for those elements μ such that $\langle\mu, \tau\rangle \neq 0$.

μ	$\langle\mu, \tau\rangle$	$p^{\left\langle\rho, \mu+\omega_{7}\right\rangle}$	$p^{-\frac{1}{2}\left\langle\mu, \rho_{N}\right\rangle}$
$e_{6}-e_{7}$	1	p^{27}	p^{-6}
$-e_{5}-e_{7}$	1	p^{18}	p^{-2}
$\frac{1}{2}\left(-e_{1}+e_{2}+e_{3}+e_{4}-e_{5}+e_{6}-e_{7}-e_{8}\right)$	1	p^{17}	p^{-2}
$\frac{1}{2}\left(e_{1}-e_{2}+e_{3}+e_{4}-e_{5}+e_{6}-e_{7}-e_{8}\right)$	1	p^{16}	p^{-2}
$\frac{1}{2}\left(e_{1}+e_{2}-e_{3}+e_{4}-e_{5}+e_{6}-e_{7}-e_{8}\right)$	1	p^{15}	p^{-2}
$\frac{1}{2}\left(e_{1}+e_{2}+e_{3}-e_{4}-e_{5}+e_{6}-e_{7}-e_{8}\right)$	1	p^{14}	p^{-2}
$\frac{1}{2}\left(-e_{1}-e_{2}-e_{3}+e_{4}-e_{5}+e_{6}-e_{7}-e_{8}\right)$	1	p^{14}	p^{-2}
$\frac{1}{2}\left(-e_{1}-e_{2}+e_{3}-e_{4}-e_{5}+e_{6}-e_{7}-e_{8}\right)$	1	p^{13}	p^{-2}
$\frac{1}{2}\left(-e_{1}+e_{2}-e_{3}-e_{4}-e_{5}+e_{6}-e_{7}-e_{8}\right)$	1	p^{12}	p^{-2}
$\frac{1}{2}\left(e_{1}-e_{2}-e_{3}-e_{4}-e_{5}+e_{6}-e_{7}-e_{8}\right)$	1	p^{11}	p^{-2}
$-e_{5}-e_{8}$	1	p	p^{2}
$e_{5}-e_{7}$	1	p^{10}	p^{-2}
$-e_{6}-e_{7}$	-1	p^{26}	p^{-2}
$\frac{1}{2}\left(-e_{1}+e_{2}+e_{3}+e_{4}+e_{5}-e_{6}-e_{7}-e_{8}\right)$	-1	p^{16}	p^{2}
$\frac{1}{2}\left(e_{1}-e_{2}+e_{3}+e_{4}+e_{5}-e_{6}-e_{7}-e_{8}\right)$	-1	p^{15}	p^{2}
$\frac{1}{2}\left(e_{1}+e_{2}-e_{3}+e_{4}+e_{5}-e_{6}-e_{7}-e_{8}\right)$	-1	p^{14}	p^{2}
$\frac{1}{2}\left(e_{1}+e_{2}+e_{3}-e_{4}+e_{5}-e_{6}-e_{7}-e_{8}\right)$	-1	p^{13}	p^{2}
$\frac{1}{2}\left(-e_{1}-e_{2}-e_{3}+e_{4}+e_{5}-e_{6}-e_{7}-e_{8}\right)$	-1	p^{12}	p^{2}
$\frac{1}{2}\left(-e_{1}-e_{2}+e_{3}-e_{4}+e_{5}-e_{6}-e_{7}-e_{8}\right)$	-1	p^{11}	p^{2}
$\frac{1}{2}\left(-e_{1}+e_{2}-e_{3}-e_{4}+e_{5}-e_{6}-e_{7}-e_{8}\right)$	-1	p^{11}	p^{2}
$\frac{1}{2}\left(e_{1}-e_{2}-e_{3}-e_{4}+e_{5}-e_{6}-e_{7}-e_{8}\right)$	-1	p^{10}	p^{2}
$-e_{6}-e_{8}$	-1	1	p^{6}
$e_{5}-e_{8}$	-1	p^{11}	p^{2}
$\frac{1}{2}$			

So, the right side consists of

$$
\begin{aligned}
& f(m+1)\left[p^{21}+p^{16}+p^{15}+p^{14}+p^{13}+2 p^{12}+p^{11}+p^{10}+p^{9}+p^{8}+p^{3}\right] \\
& +f(m-1)\left[p^{24}+p^{19}+p^{18}+p^{17}+p^{16}+2 p^{15}+p^{14}+p^{13}+p^{12}+p^{11}+p^{6}\right] \\
& +f(m)\left[p^{23}+p^{22}+p^{21}+2 p^{20}+2 p^{19}+2 p^{18}+2 p^{17}+2 p^{16}+p^{15}+2 p^{14}\right. \\
& \left.+2 p^{13}+p^{12}+2 p^{11}+2 p^{10}+2 p^{9}+2 p^{8}+2 p^{7}+p^{6}+p^{5}+p^{4}\right] .
\end{aligned}
$$

We simplify (just as before) and this yields:

$$
p^{3}[f(m)-f(m-1)]=[f(m+1)-f(m)]
$$

which implies that $f(m)=1+p^{3}+\cdots+p^{3 m}$. The theorem is proved.

References

[B] M. Bhargava, Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations. Ann. of Math. 159 (2004), 217-250.
[DS] A. Dvorsky and S. Sahi, Hilbert spaces for certain unipotent representations II. Invent. Math. 138 (1999), 203-224.
[GGS] W. T. Gan, B. Gross and G. Savin, Fourier coefficients of modular forms on G_{2}. Duke Math. J. 115 (2002), 105-169.
[KP] D. Kazhdan and A. Polishchuk Minimal representations: spherical vectors and automorphic functionals. Algebraic groups and arithmetic, 127-198, Tata Inst. Fund. Res. Mumbai, 2004.
[K] S. Krutelevich, On a canonical form of 3×3 Hermitian matrix over the ring integral split octonions. J. Algebra, 253 (2002) 276-295.
[MS] K. Magaard and G. Savin, Exceptional Theta correspondences. Compositio Math. 107 (1997), 89-123.
[RRS] R. Richardson, G. Röhrle and R. Steinberg, Parabolic subgroups with abelian unipotent radical. Invent. Math. 110 (1992), 649-671.
[S] G. Savin Dual pair $G_{\mathcal{J}} \times P G L_{2} ; G_{\mathcal{J}}$ is the automorphism group of the Jordan algebra \mathcal{J} Invent. Math. 118 (1994), 141-160.
[W] M. Weissman, The Fourier-Jacobi map and small representations. Representation Theory $\mathbf{7}$ (2003), 275-299.

Department of Mathematics, University of Utah, Salt Lake City, UT 84112

