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1. Introduction

Let G be a simply connected Chevalley group, and P = MN a maximal parabolic subgroup
of G. Let n be the Lie algebra of N . A choice of Chevalley basis defines a Z-structure on n,
The structure of M orbits over Z on irreducible subquotients of n could be highly non-trivial,
and very interesting as Bhargava [B] shows. In the first part of this paper we deal with this
question in the case when G is simply laced and N is abelian. In a sense, this is the most
banal case. Our results can be described as follows. Let Mss be the “semi-simple” part of
M . It is more natural to work with Mss. Starting with the highest root β one can, in a
canonical fashion, define a maximal sequence of orthogonal roots β, β1, . . . , βr−1 in the Lie
algebra n. Let eβ, . . . , eβr−1 be the corresponding Chevalley basis elements in n. Then every
M ss(Z)-orbit in n contains an element

deβ + d1eβ1 + . . .+ dr−1eβr−1

such that d1|d2| . . . |dr−1. Moreover, all dk can be picked to be non-negative except perhaps
dr−1. This result is a generalization of a result of Richardson Röhrle and Steinberg [RRS],
who considered the same question for groups over a field k. Then

n = Ω0 ∪ . . . ∪ Ωr

where Ω0 = {0} and Ωj is the Mss(k)-orbit of eβ +eβ1 + . . .+eβj−1
except, perhaps, Ωr which

could be a union of orbits parameterized by classes of squares in k×. Also, the case when n
is a 27-dimensional representation of E6(Z) was recently obtained by Krutelevich [K] in his
Yale Ph. D. thesis.

Our next result is an application to minimal representations of p-adic groups. Let G be a
simple split group of adjoint type and G. Let P = MN be a maximal parabolic subgroup
with abelian nil radical. Let Ω1 be the the set of rank =1 elements in the opposite nil-radical
N̄ . The minimal representation of G can be realized as a space of functions f on Ω1 (see
[MS]) such that the action of P is given by{

(π(n)f)(y) = f(y)ψ(−〈n, y〉) and
(π(m)f)(y) = χs0(m)∆−1/2(m)f(m−1ym)

where ψ is an additive character of Qp of conductor 0, 〈n, y〉 the natural pairing between
N and N̄ , and χs0(m) an unramified character of M , described in Section 3. The main
disadvantage of this model is that we do not have any explicit formula for the action of
the maximal compact subgroup K = G(Zp). In particular, it is not clear a priori how to
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determine the spherical vector of the minimal representation. We accomplish this as follows.
First of all, under the action of M(Zp) the orbit Ω1 decomposes as a union of orbits each
containing pme−β for some integer m. Thus a spherical vector f , since it is fixed by M(Zp), is
determined by its value on pme−β for all integers m. Furthermore, since f is fixed by N(Zp)
as well, it must vanish on these elements if m < 0. To determine f exactly we shall use the
fact that it is an eigenvector for the Hecke algebra. More precisely, we have Ti ∗ f = ci · f
where Ti is a Hecke operator corresponding to a miniscule coweight ωi. Such a coweight exists
since we assume that G has a maximal parabolic subgroup with abelian nilpotent radical.
The support of the Hecke operator is KωiK. The Cartan decomposition implies that KωiK
can be written as a union KωiK = ∪jpjK for some pj in P . Then

Ti ∗ f =
∑

j

π(pj)f.

Thus the action of Ti can be explicitly calculated since we know how P acts! This gives us a
recursive relation

ci · f(pne−β) = a1f(pn+1e−β) + a0f(pne−β) + a−1f(pn−1e−β)

from which it is not too difficult to determine f completely. In fact, the answer is a geometric
series

f(pne−β) = 1 + pd + . . .+ pnd

where d depends on the pair (G,M). In particular, this formula is a generalization of the well-
known formula for GL2. Indeed, if f is a spherical vector of the representation (parabolically)
induced from two unramified characters χ1 and χ2, then

f(pne−β) = χ1(p)n + χ1(p)n−1χ2(p) + . . .+ χ1(p)χn−1
2 (p) + χ2(p)n,

The question of spherical vector was addressed in several papers. For p-adic groups, but
working with a different model of the minimal representation, a formula for the spherical
vector was found by Kazhdan and Polishchuk in [KP]. For real groups, in a situation similar
to ours, the spherical vector was determined in a beautiful paper of Dvorsky and Sahi [DS].
Their result is a bit more restricted, for they assume that N̄ is conjugated to N , which is not
always the case.

Acknowledgment: We would like to thank Wee Teck Gan for his interest in this work
and asking the right questions, in particular. This work has been supported by NSF grants
DMS-0138604 and DMS-0551846.

2. Maximal parabolic subalgebras

Let g be a simple split Lie algebra over Z and t ⊆ g a maximal split Cartan subalgebra.
Let Φ be the corresponding root system. We assume that Φ is a simply laced root system,
meaning that all roots are of equal length. In particular, the type of Φ is A, D or E. Fix
∆ = {α1, . . . , αl}, a set of simple roots. Every root can be written as a sum α =

∑l
i=0mi(α)αi

for some integers mi(α). To every simple root αi we can attach a subalegebra p = m⊕n such
that {

m = t⊕ (⊕mi(α)=0 gα)
n = ⊕mi(α)>0 gα.
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Note that mss = [m,m] is a semi-simple Lie algebra which corresponds to the Dynkin diagram
of ∆ \ {αi}. Let β be the highest root, and b = ni(β). For every j between 1 and b, define

nj = ⊕mi(α)=j gα.

Then [nj , nk] ⊆ nj+k. In particular, if b = 1 then n is commutative. Here is the list of all
possible pairs (g,m) with n commutative. (The simple root defining m will be henceforth
denoted by τ .)

g An−1 Dn Dn+1 E6 E7

mss Ak−1 ×An−k−1 An−1 Dn D5 E6

dim(n) k(n− k) n(n− 1)/2 2n 16 27

Explanation: in the first case, n is equal to the set of k × (n − k) matrices. In the second
case it is equal to the set of all skew-symmetric n×n matrices, and in the third case n is the
standard representation of so(2n). In the fourth case n is a 16 dimensional spin representation
and, in the fifth and last case, it a 27 dimensional representation of E6.

We would like to determine M ss(Z)-orbits on n. Consider the case when n is the set of
n × m matrices. As is well known, using row-column operations, every matrix A can be
transformed (reduced) into a matrix with integers d1|d2| . . . on the diagonal. The column
operations correspond to multiplying A by certain elementary matrices. For example, if
m = 2, then multiplying A from the right by(

1 1
0 1

)
,

(
0 1
1 0

)
and

(
−1 0

0 1

)
corresponds, respectively, to

(i) Adding the first column of A to the second.
(ii) Permuting the two columns of A.
(iii) Changing signs in the first column of A .
Similarly, row operations correspond to multiplying A by the elementary matrices from

the left. An inconvenience here is the the last two matrices are not in SL2(Z) since they have
determinant −1. In order to remedy this, we shall replace them by the following matrices of
determinant 1: (

1 1
0 1

)
,

(
0 −1
1 0

)
and

(
−1 0

0 −1

)
.

Multiplying A by these three matrices corresponds to so-called strict column operations:
(i) Adding the first column of A to the second.
(ii) Permuting two columns of A, and changing the signs in one.
(iii) Changing the signs in both columns of A .
Since elementary matrices (of determinant one) generate SLn(Z), the strict row column

reduction can be formulated as the following:

Every SLn(Z)×SLm(Z)-orbit in the set of n×m matrices contains a diagonal matrix d1|d2| . . .
where all entries, save perhaps one, are non-negative.

The proof of this result is inductive in nature. The first number d1 is the GCD of all
matrix entries. Using row-column operations we can arrange to have d1 on the left upper
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corner, with 0 in all other positions in the first row and column. In this way we reduce to
(n− 1)× (m− 1).

We claim that this inductive procedure can be done in general. To explain, we need another
parabolic subgroup q = l ⊕ h, so-called Heisenberg parabolic subgroup. Here lss = [l, l]
corresponds to the subset of ∆ given by {αi | 〈β, αi〉 = 0}. The possible cases are

g An+1 Dn+1 E6 E7

lss An−1 A1 ×Dn−1 A5 D6

2.1. Fourier-Jacobi towers. (As described in the work of Weissman [W].) Fix a pair
(G,M). Let g1 be the unique summand of lss which is not contained in m. Put{

m1 = m ∩ g1

n1 = n ∩ g1

Thus, starting from a pair (g,m) we have constructed another pair (g1,m1). note, as a simple
observation, that this process can be continued as long as the pair is not equal to (An, An−1),
which we will call a terminal pair. The length of the tower

(g,m)
(g1,m1)

...

finishing with a terminal pair, is the rank of n. In particular, the rank of n1 is one less then
the rank of n.

Some examples (of rank 3):

(g,m) (E7, E6) (D6, A5) (A5, A2 ×A2)
(g1,m1) (D6, D5) (D4, A3) (A3, A1 ×A1)
(g2,m2) (A1,−) (A1,−) (A1,−)

In the last tower, the corresponding sequence n, n1 and n2 can be identified with 3× 3, 2× 2
and 1× 1 matrices, respectively.

Theorem 2.1. Fix a pair (g,m) such that the rank of n is r. Let β, β1, . . . , βr−1 be the highest
roots for g, g1, . . . , gr−1, respectively. Then every M ss(Z)-orbit in n contains an element

deβ + d1eβ1 + . . .+ dr−1eβr−1

such that d1|d2| . . . |dr−1. Moreover, all dk can be picked to be non-negative except perhaps
dr−1 which can happen only if the terminal pair is (A1,−).

Proof. The proof is the induction on r. If r = 1, then the pair is terminal and we have two
cases. If the pair is (A1,−) then M ss is trivial and orbits are parameterized by integers. If
the pair is (An, An−1) then M ss = SLn(Z), and n = Zn. Here orbits are parameterized by
non-negative integers.

Let ΦM be the roots of m and Σ ⊆ Φ be the set of all roots in n. Then any element of n
can be written as

n =
∑
α∈Σ

tαeα
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for some integers tα. If γ is in ΦM then the adjoint action of the one-parameter group eγ(u)
on eα is given by

eγ(t)(eα) = eα + t[eγ , eα].
Indeed, [eγ [eγ , eα]] = 0 since γ 6= −α, so the exponential series defining the action of eγ(u)
reduces down to the first two terms.

Now assume that r > 1. Let n be in n. If n = 0, then there is nothing to prove. Otherwise,
let Σ1 ⊆ Σ the set of all roots in n1. Then

Σ = {β} ∪ Σβ ∪ Σ1

where Σβ is the set of all roots α in Σ such that 〈α, β〉 = 1. In order to use induction, we
have to show that n contains in its Mss(Z)-orbit an element such that

(i) tβ > 0 and tα = 0 for all α in Σβ.
(ii) tβ divides tα for all α in Σ1.

We deal first with (i). Recall that the Weyl group WM of M acts transitively on the set
of roots in Σ. After conjugating n by an element in WM , if necessary, we can assume that

0 < |tβ| ≤ |tα|
for all α in Σ such that tα 6= 0. If tα 6= 0 for a root α in Σβ, then we can write tα = qtβ + r
where |r| < |tβ |. Notice that γ = α − β is a root. Furthermore, since nτ (α − β) = 0 it is a
root in ΦM . (Recall that τ is the simple root defining m.) It follows that

eγ(q)(tβeβ + . . .+ tαeα + . . .) = tβ + . . .+ reα + . . . .

(This formula is correct if [eγ , eβ] = −eα. If [eγ , eβ] = eα then q has to be replaced by −q.)
In any case, if tα 6= 0 for some α in Σβ then we can decrease the smallest non-zero coordinate
of n. Proceeding in this fashion we can accomplish (i) in finitely many steps.

Next, we deal with (ii). Let α be in Σ1 such that tβ does not divide tα. After conjugating
by an element of WM1 , if necessary, we can assume that α = β1. Let δ be a simple root such
that 〈β, δ〉 = 1. Then α = β1 + δ is a root in Σβ and

eδ(1)(tβeβ + tβ1eβ1 + . . .) = tβ + . . .± tβ1eα + . . . .

Thus we are back in the situation of the proof of (i) and, in the same fashion, we can decrease
the smallest coordinate of n. This process has to stop in finitely many steps. This proves
part (ii) and, therefore, the theorem.

�

Corollary 2.2. [RRS] Let k be any field. If (A1,−) is not the terminal pair, then n =
Ω0 ∪ . . .∪Ωr where Ωi is the M ss(k)-orbit of eβ + . . .+ eβi−1

. If (A1,−) is the terminal pair
then Ωr is a union of M(k)-orbits parameterized by classes of squares in k×. In any case,
elements in Ωi are said to have rank i.

3. Degenerate principal series

In this section we shall assume that G = Gad is of adjoint type. We give an explicit
model of the minimal representation of G. The discussion here is based on [S] and [W]. basic
properties of the Since G is assumed to be of adjoint type, it acts faithfully on the Lie algebra
g and the torus T of G is isomorphic to Λc⊗ k× where Λc is the lattice of integral coweights.
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It is the lattice dual to the root lattice with respect to the usual form 〈·, ·〉. Let λ(t) denote
the element λ⊗ t in T . It acts on eα by the formula

λ(t)eαλ(t)−1 = t〈λ,α〉eα.

Let τ be the simple root defining P , and ρ and ρ̄ the half-sum of all roots in N and N̄ ,
respectively. Let ∆ : M → R+ be the modular character with respect to N̄ , which means
that ∫

N̄
f(mxm−1) dx = ∆(m)

∫
N̄
f(x) dx.

Let ρN and ρN̄ be the half-sum of all roots in n and n̄, respectively. Then the composition
of ∆ with the embedding of T into M is given by

∆
1
2 (λ(p)) = |p|〈λ,ρN̄ 〉.

Furthermore, let χ : M → R+ be a character such that χ2〈τ,ρN 〉 = ∆. Define the principal
series I(s) = IndG

P̄
(χs), the space of all locally constant functions on G such that

f(n̄mg) = χ(m)s∆
1
2 (m)f(g).

There is a non-degenerate G-invariant hermitian pairing (·, ·)s : I(−s)× I(s) → C defined
by

(f−s, fs)s =
∫

P̄\G
f−s(x)f̄s(x) dx =

∫
N
f−s(x)f̄s(x) dx.

Here the last equality follows since P̄N is an open subset of G. Inside I(s) there is a P -
submodule of all functions in I(s) supported in the open subset P̄N . This can be identified
with S(N), the space of locally constant, compactly supported functions on N . The action
of the maximal parabolic P = MN on S(N) is given by{

π(n)f(x) = f(x+ n)
π(m)f(x) = χ(m)s∆(m)1/2f(m−1xm).

Next, we shall analyze the structure of S(N), as a P -module, using the Fourier transform.
To that end, notice that we have a natural pairing 〈·, ·〉 between N and N̄ induced by the
Killing form. Thus N̄ can be identified with the dual of N . The Fourier transform is an
isomorphism of (vector spaces) S(N) and S(N̄) defined by

f̂(y) =
∫

N
f(x)ψ(〈x, y〉)dx.

Using the Fourier transform we shall transfer the action of P from S(N) to S(N̄). Let
f ∈ S(N̄), and m ∈M . Then the Fourier transform of π(m)f is

̂(π(m)f)(y) = χ(m)s∆(m)1/2

∫
N
f(m−1xm)ψ(〈x, y〉) dx.

We introduce a new variable z by z = m−1xm. Then dx = ∆(m)−1dz, and the formula
simplifies to

̂(π(m)f)(y) = χ(m)s∆(m)−1/2f̂(m−1ym).
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This gives a formula for the action of M on S(N̄). Similarly - but much easier - we can derive
the action of N on S(N̄). The two formulas are summarized below:{

(π(n)f)(y) = f(y)ψ(−〈n, y〉) and
(π(m)f)(y) = χs(m)∆−1/2(m)f(m−1ym),

where m ∈M , n ∈ N and f ∈ S(N̄).
Let Ωi be the set of elements of rank i in N̄ . Let Si be the subset of S(N) of all functions

f such that the Fourier transform f̂ vanishes on ∪j<iΩj . Then Si is a P -submodule, and
the quotient Si/Si+1 is isomorphic to S(Ωi) - the space of locally constant and compactly
supported functions on Ωi - with the action given by the previous formulas. Every subquotient
is irreducible by Mackey’s lemma.

Let’s look now at the special case s = s0 when the minimal Vmin representation is the
unique submodule of I(−s0). Notice that the pairing (·, ·)s0 restricted to Vmin × S(N) is left
non-degenerate. Indeed, any f 6= 0 in Vmin will give you a non-trivial function when restricted
to N (since N is dense in P̄\G) and, therefore, a non-trivial distribution of S(N). In fact,
we have a bit more. The pairing is left non-degenerate even when restricted to Vmin × S1.
To see this recall that Vmin is unitarizable. In particular, by a theorem of Howe and Moore,
if an element v in Vmin is fixed by N then v = 0. Since any vector in Vmin perpendicular to
S1 is N -fixed it must be zero. This shows that the pairing, restricted to Vmin × S1, is left
non-degenerate. Since the N -rank of Vmin is one the pairing is trivial on S2 ⊆ S1. (This is
basically a definition of the N -rank). Thus the pairing descends to a non-degenerate pairing
in both variables of Vmin and S1/S2 = S(Ω1), where the action of P on S(Ω1) is given by{

(π(n)f)(y) = f(y)ψ(−〈n, y〉) and
(π(m)f)(y) = χs0(m)∆−1/2(m)f(m−1ym).

Here m ∈ M , n ∈ N and f ∈ S(Ω1). It follows that Vmin, as a P -module, embeds into the
P -smooth dual of S(Ω1). This dual can be described in the following way. While there is no
M -invariant measure on Ω1, there exists a (modular) character δ1 of M and a measure dy on
Ω1 such that ∫

Ω1

f(mym−1) dy = δ1(m)
∫

Ω1

f(y) dy

for every locally constant and compactly supported function f on Ω1. The P -smooth dual of
S(Ω1) is isomorphic to the space of locally constant, but not necessarily compactly supported,
functions on Ω1 with the action of P given by{

(π(n)f)(y) = f(y)ψ(−〈n, y〉) and
(π(m)f)(y) = χ1(m)f(m−1ym),

where the character χ1 is defined by χ1 · (χs0 · ∆−1/2) = δ1. It appears that we have an
annoying issue of figuring out what δ1 is. It turns out that is not necessary. To this end,
note that Vmin is a quotient of I(s0) and the pairing of Vmin and I(s0) descends down to a
pairing between Vmin and Vmin. It follows that S1/S2 is a submodule of Vmin (the second
factor) which shows that χ1 = χs0 ·∆−1/2.

The possible cases for s0 (see [W]) and 〈τ, ρN 〉 are
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g An+1 A2n+1 Dn+1 Dn+1 E6 E7

mss An An ×An An Dn D5 E6

s0 0 n n− 2 1 3 5
〈τ, ρN 〉 n/2 + 1 n+ 1 n n 6 9

4. Eigenvalues of Hecke operators

Consider the root system of type An, Dn or En, and let ωj be the fundamental coweights as
in Bourbaki tables. Let ω̂b be the fundamental weight corresponding to the unique branching
vertex of the Dynkin diagram for Dn and En. This is ω4 for all three exceptional groups.
For the root system of type An there is no branching point, but we define ω̂b to be the
fundamental coweight of the middle vertex if n is odd, or the arithmetic mean of the two
middle vertices if n is even. Let ρ be the half sum of all positive roots. The Satake parameter
of the minimal representation is λmin(p) ∈ Ĝ, the dual group of G, where

λmin = ρ− ω̂b.

If ωi is a miniscule fundamental coweight, then the eigenvalue of the Hecke operator
p−〈ρ,ωi〉Ti on the spherical vector of the minimal representation is

TrV (ωi)(λmin(p)) =
∑
µ∼ωi

p〈λmin,µ〉,

the trace of λmin(p) on the representation V (ωi) of Ĝ with the highest weight ωi. Here the
sum is taken over all weights µ of V (ωi). (Weight spaces of the miniscule representation are
one-dimensional and are Weyl group conjugate to ωi.) We now give explicit formulas in the
following cases:

Case A2n−1, and ωi = ω1, the highest weight of the standard 2n-dimensional representation.
Then the eigenvalue of the Hecke operator p−〈ρ,ω1〉T1 is

pn−1 + pn−2 + . . . p+ 2 + p−1 + . . . p2−n + p1−n.

Case A2n, and ωi = ω1, the highest weight of the standard 2n-dimensional representation.
Then the eigenvalue of the Hecke operator p−〈ρ,ω1〉T1 is

pn−1/2 + pn−3/2 + . . . p1/2 + 1 + p−1/2 + . . . p3/2−n + p1/2−n.

CaseDn+1, and ωi = ω1, the highest weight of the standard 2n+2-dimensional representation.
Then the eigenvalue of the Hecke operator p−〈ρ,ω1〉T1 is

pn−1 + . . . p2 + 2p+ 2 + 2p−1 + p−2 + . . .+ p1−n.

Case E6, and ωi = ω1, the highest weight of the standard 27-dimensional representation of
E6. In the terminology of Bourbaki, the Satake parameter is

λmin = (0, 1, 1, 2, 3,−3,−3, 3).

It will be convenient to realize V (ω1) as an internal module in E7. More precisely, consider
the root system of type E7 as in Bourbaki tables. If we remove the last simple root α7 then
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we get a root system E6. As usual, write every positive root of E7 as α =
∑
mi(α)αi. The

subspace ⊕
m7(α)=1

gα

is the 27-dimensional representations of E6 with the highest weight ω1 i.e. the first funda-
mental weight. Thus to tabulate the weights of this representation, we have to write down all
roots α of E7 such thatm7(α) = 1 which is the same as 〈α, ω7〉 = 1, where ω7 = e6+ 1

2(e8−e7).
These are ±ei + e6, (1 ≤ i ≤ 5) e8 − e7 (total of 11 roots here) and

1
2
(e8 − e7 + e6 +

5∑
i=1

(−1)ν(i)ei)

where
∑
ν(i) is odd. This, second, group has 16 roots.

(Warning: ω7 is the fundamental weight for E7. While simple roots for E6 are also simple
roots for E7 this is not true for fundamental weights. First 6 fundamental weights for E7 are
not the fundamental weights for E6.)

The eigenvalue of the Hecke operator p−〈ρ,ω1〉T1 is

(
∑

m7(α)=1

p〈λmin,α〉) = p6 +p5 +2p4 +2p3 +3p2 +3p+3+3p−1 +3p−2 +2p−3 +2p−4 +p−5 +p−6.

Case E7, and ωi = ω7, the highest weight of the 56-dimensional representation of E7. Here
the Satake parameter is

λmin = (0, 1, 1, 2, 3, 4,−13/2, 13/2).

Again, the representation Vω7 can be written down as an internal module in E8. Let α8

be the root for E8 such that other simple roots belong to E7. Then the 56-dimensional
representation is equal to ⊕

m8(α)=1

gα.

So again we have to tabulate all roots for E8 such that 〈α, ω8〉 = 1. Since ω8 = e7 + e8, these
are ±ei + e7 (1 ≤ i ≤ 6), ±ei + e8 (1 ≤ i ≤ 6) and

1
2
(e8 + e7 +

6∑
i=1

(−1)ν(i)ei)

where
∑
ν(i) is even. There are 32 of this last type. Now it is not to difficult to see that he

eigenvalue of the Hecke operator p−〈ρ,ω7〉T7 for E7 is

(
∑

m8(α)=1

p〈λmin,α〉) =

p
21
2 + p

19
2 + p

17
2 + 2p

15
2 + 2p

13
2 + 3p

11
2 + 3p

9
2 + 3p

7
2 + 4p

5
2 + 4p

3
2 + 4p

1
2

+4p−
1
2 + 4p−

3
2 + 4p−

5
5 + 3p−

7
2 + 3p−

9
2 + 3p−

11
2 + 2p−

13
2 + 2p−

15
2 + p−

17
2 + p−

19
2 + p−

21
2 .
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5. Satake transform

Let U be the maximal nilpotent subgroup corresponding to our choice of simple roots.
Let ωi be a miniscule fundamental coweight. The purpose of this section is to decompose
the double coset Kωi(p)K as a union of single cosets uµ(p)K, where u ∈ U . This will be
accomplished by means of the Satake transform.

The modular character δ is given by δ(λ(p))1/2 = p〈ρ,λ〉. The Satake transform S : HG →
HT is given by

S(f)(t) = δ(t)−1/2

∫
N
f(tu) du

It is known that S(Ti) = p〈ρ,ωi〉V (ωi) where V (ωi) is the fundamental representation of
Ĝ = Gsc with the highest weight ωi. Here we use the identification of HT with C[Λc], the
group algebra of the coweight lattice Λc. Under this identification V (ωi) is a sum of delta
functions for all weights µ of V (ωi). It follows that S(Ti)(µ(p)) = 0 unless µ is a weight of
V (ωi) in which case it is equal to p〈ρ,ωi〉. Proposition 13.1 in [GGS] implies that, for every
weight µ of V (ωi), the number of single cosets of type uµ(p)K contained in Kωi(p)K is equal
to p〈ρ,µ+ωi〉.

Proposition 5.1. Let ωi be a miniscule fundamental coweight, and µ a Weyl group conjugate
of ωi. If uµ(p)K is contained in Kωi(p)K then it is equal to ∏

α>0,〈α,µ〉=1

eα(tα)

µ(p)K

for some (unique) tα ∈ Zp/pZp.

Proof. Notice that eα(tα) commute since the scalar product of µ and any root can be only
-1, 0 or 1. In particular, the product in the proposition is well defined. Furthermore, since
eα(tα) with tα ∈ Zp are contained in K the single cosets (as defined in the statement) are
contained in our double coset. We shall first show uniqueness. If∏

α>0,〈α,µ〉=1

eα(tα)µ(p)K =
∏

α>0,〈α,µ〉=1

eα(t′α)µ(p)K

then ∏
α>0,〈α,µ〉=1

eα((tα − t′α)/p) ∈ K.

This is possible if and only if tα ≡ t′α (mod K), as claimed. Finally, since we know that
the number of single cosets of the form uµ(p)K is equal to p〈ρ,ωi+µ〉, in order to prove the
proposition it remains to verify the following lemma.

Lemma 5.2. Let µ be a Weyl group conjugate of the miniscule coweight ωi. Then the number
of positive roots α such that 〈α, µ〉 = 1 is equal to 〈ρ, ωi + µ〉

Proof. Let w be a Weyl group element such that µ = w(ωi). Let α be a positive root such
that 〈α, µ〉 = 1. Then

1 = 〈α, µ〉 = 〈w−1(α), ωi〉.
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This implies that w−1(α) = β is positive, so we are counting the number of positive roots β
such that w(β) is positive and 〈β, ωi〉 = 1. Since 〈β, ωi〉 = 1 or 0 for every positive root, the
number of positive roots α such that 〈α, µ〉 = 1 is equal to∑

β>0,w(β)>0

〈β, ωi〉.

Since (this is well known)
∑

β>0,w(β)>0 β = ρ+ w−1(ρ) the Lemma follows. �

�

6. Spherical vector

We would like to determine the spherical vector of the minimal representation. Under the
action of M(Zp) the orbit Ω1 decomposes as a union of of orbits each containing pme−τ for
some integer m. Thus a spherical vector f , since it is fixed by M(Zp), is determined by its
value on pme−τ for all integers m. In order to simplify notation, let us write

f(m) = f(pme−τ )

Next, since f is fixed by N(Zp) as well, f(m) = 0 if m < 0. To determine f exactly we shall
use the fact that it is an eigenvector for the Hecke operator Tωi = Char(KωiK) where ωi is
a miniscule fundamental coweight. As we know from the previous section, the double coset
KωiK can be written as a union of single cosets uµ(p)K where µ is a Weyl group conjugate
of ωi and u is in U ∩K. Also, for a fixed µ there are p〈ρ,µ+ωi〉 different single cosets. It follows
that e−τ is a highest weight vector for M ∩ U . Thus, it follows that

(Ti ∗ f)(m) =
∑

µ

p〈ρ,µ+ωi〉χs0(µ)∆−1/2(µ)f(m+ 〈µ, τ〉).

Since 〈µ, τ〉 is equal to −1, 0 or 1, the possible effects are shifting the index m by one only. In
particular, the formula gives a recursion relation as indicated in the introduction. It remains
to calculate this formula in every case. But first we state the final result.

Theorem 6.1. Let Ω1 be the set of rank one elements in N̄ . Recall that the Chevalley basis
gives a natural coordinate system of N̄ . If x ∈ Ω1, let pm be the greatest common divisor of
all coordinates of x. Then f(x) = 0 unless m ≥ 0. If m ≥ 0 then, after normalizing f(1) = 1,

f(x) = 1 + pd + . . .+ pmd

where d is given by the following table:

g An+1 A2n+1 Dn+1 Dn+1 E6 E7

mss An An ×An An Dn D5 E6

d n/2 0 1 n− 2 2 3

Proof. We calculate the recursive relation on a case by case basis using the data from the
following tables. The first table includes the half sum of all the positive roots and the simple
root τ not in M . The second table gives the characterization of χs0(·)∆−1/2(·) in terms of
ρN , the half sum of the roots in M .
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(G,M) ρ τ

(A2n−1, An−1 ×An−1) (n− 1
2 , n−

3
2 , . . . ,

1
2 − n) (0, . . . , 0, 1,−1, 0, . . . , 0)

(Dn+1, Dn) (n, n− 1, . . . , 1, 0) (1,−1, 0, . . . , 0)
(Dn+1, An) (n, n− 1, . . . , 1, 0) (0, . . . , 0, 1, 1)
(E6, D5) (0, 1, 2, 3, 4,−4,−4, 4) 1

2(1,−1,−1,−1,−1,−1,−1, 1)
(E7, E6) (0, 1, 2, 3, 4, 5,−17

2 ,
17
2 ) (0, 0, 0, 0,−1, 1, 0, 0)

ρN χs∆−1/2

(A2n−1, An−1 ×An−1) (n
2 , . . . ,

n
2 ,−

n
2 , . . . ,−

n
2 ) p−

1
n
〈·,ρN 〉

(Dn+1, Dn) (n, 0, . . . , 0) p( 1
n
−1)〈·,ρN 〉

(Dn+1, An) (n
2 , . . . ,

n
2 ) p−

2
n
〈·,ρN 〉

(E6, D5) (0, 0, 0, 0, 0,−4,−4, 4) p−
1
2
〈·,ρN 〉

(E7, E6) (0, 0, 0, 0, 0, 9,−9
2 ,

9
2) p−

4
9
〈·,ρN 〉

We start with the case G = Dn+1 and M = Dn. The Weyl group orbit of the highest
weight ω1 = e1 consists of ±ei for 1 ≤ i ≤ n+ 1. The eigenvalue of T1 is

pn(pn−1 + . . .+ p2 + 2p+ 2 + 2p−1 + p−2 + . . .+ p1−n)

Next, we shall work out T1 ∗ f(m) using the action of single cosets. The total number of
single cosets is

p2n + p2n−1 + . . . pn+1 + 2pn + pn−1 + . . .+ p+ 1.
In order to calculate the coefficients a1 and a−1 in the recursive relation we are interested in
conjugates µ of ω1 such that 〈τ, µ〉 = 1 or −1. They are, followed by the number of cosets of
the type uµ(p)K, and the value χs0(µ)∆−1/2(µ):

µ 〈τ, µ〉 p〈ρ,µ+ω1〉 χs0∆−1/2

e1 1 p2n p1−n

e2 −1 p2n−1 1
−e1 −1 1 pn−1

−e2 1 p 1

In particular, it is not difficult to check that the right hand side of the recursion can be
written as

(pn+1+p)f(m+1)+(p2n−2+ . . .+pn+1+2pn +pn−1+ . . .+p2)f(m)+(p2n−1+pn−1)f(m−1).

This gives plenty of reductions with the left hand side of the recursion, which is the product
of the eigenvalue of T1 and f(m), and the recursion can be rewritten as

(p2n−1 + pn+1 + pn−1 + p)f(m) = (pn+1 + p)f(m+ 1) + (p2n−1 + pn−1)f(m− 1),

which is equivalent to

pn−2[f(m)− f(m− 1)] = [f(m+ 1)− f(m)].

This, of course, implies that f(m) = 1 + pn−2 + . . .+ pm(n−2) or, in words, it is a geometric
series in pn−2.
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We now address the case G = A2n−1 and M = An−1 × An−1. The Weyl group of the
miniscule weight ω1 = e1 consists of the elements ei (1 ≤ i ≤ 2n.) As before, we need the
eigenvalue of T1, which is

p
2n−1

2 (pn−1 + · · ·+ p+ 2 + p−1 + · · ·+ p1−n),

because this (times f(m)) gives the left hand side of the recursion formula. Also,

χs0(ei)∆−1/2(ei) = p−
1
n
〈ei,ρN 〉 =

{
p−

1
2 1 ≤ i ≤ n

p
1
2 n < i ≤ 2n

Notice that only the elements en and en+1 have nonzero dot product with τ (1 and −1
respectively), and p〈ρ,ei+e1〉 = p2n−i. Thus, the right hand side of the equation is

p−
1
2 [(p2n−1 + · · ·+ pn+1)f(m) + pnf(m+ 1)] + p

1
2 [pn−1f(m− 1) + (pn−2 + · · ·+ 1)f(m)].

After combining both sides of the equation and simplifying, this becomes

f(m)− f(m− 1) = f(m+ 1)− f(m).

Hence, f(m) = m.

The next case is G = Dn+1 and M = Dn. As is the case when G = Dn+1 and M = An,
we consider the Weyl group orbit of ω1 = (1, 0, . . . , 0). As noted above, this orbit consists of
all elements ±ei (1 ≤ i ≤ n+ 1.) First, we tabulate those elements µ such that 〈µ, τ〉 6= 0.

µ 〈µ, τ〉 p〈ρ,µ+ω1〉 χs0∆−1/2

en 1 pn+1 p−1

en+1 1 pn p−1

−en −1 pn−1 p
−en+1 −1 pn p

The left hand side of the recursion is identical to the other case with G = Dn+1, but the
right hand side is

f(m+1)(pn + pn−1)+ f(m− 1)(pn+1 + pn)+ f(m)((p2n + · · ·+ pn+2)p−1 +(pn−2 + · · ·+1)p).

After cancellation and simplification the recursion becomes

p[f(m)− f(m− 1)] = [f(m+ 1)− f(m)].

Hence, f(m) = 1 + p+ · · ·+ pm.

Next we consider G = E6 and M = D5. Recall that the eigenvalue for the Hecke operator
T1 is

p8(p6 + p5 + 2p4 + 2p3 + 3p2 + 3p+ 3 + 3p−1 + 3p−2 + 2p−3 + 2p−4 + p−5 + p−6)

= p14 + p13 + 2p12 + 2p11 + 3p10 + 3p9 + 3p8 + 3p7 + 3p6 + 2p5 + 2p4 + p3 + p2.

As we have seen, there are 27 elements in the orbit of ω1. We list below those which
have the property that 〈µ, τ〉 6= 0 along with the number of cosets of type uµ(p)K and
χs0(µ)∆−1/2(µ).
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µ 〈µ, τ〉 p〈ρ,µ+ω1〉 p−
1
2
〈µ,ρN 〉

e6 − e1 −1 p4 p2

e6 + e2 −1 p5 p2

e6 + e3 −1 p6 p2

e6 + e4 −1 p7 p2

e6 + e5 −1 p8 p2

1
2(−e1 + e2 + e3 + e4 + e5 + e6 − e7 + e8) −1 p15 p−1

1
2(−e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8) 1 p5 p−1

1
2(e1 + e2 − e3 − e4 − e5 + e6 − e7 + e8) 1 p6 p−1

1
2(e1 − e2 + e3 − e4 − e5 + e6 − e7 + e8) 1 p7 p−1

1
2(e1 − e2 − e3 + e4 − e5 + e6 − e7 + e8) 1 p8 p−1

1
2(e1 − e2 − e3 − e4 + e5 + e6 − e7 + e8) 1 p9 p−1

e8 − e7 1 p16 p−4

From the table above we can read off the coefficients of f(m+1) and f(m−1) on the right
hand side. These are

f(m− 1)[p6 + p7 + p8 + p9 + p10 + p14]

and

f(m+ 1)[p4 + p5 + p6 + p7 + p8 + p12].

Similarly, we can tabulate the values of p〈ρ,µ+ω1〉 and p−
1
2
〈µ,ρN 〉 when 〈µ, τ〉 = 0. This will

show that the final term on the right hand side of the equation is

f(m)[p2 + p3 + p4 + p5 + p6 + p7 + p8 + 2p9 + 2p10 + 2p11 + p12 + p13].

After subtracting this term from both sides and dividing by p4 + p5 + p6 + p7 + p8 + p12 this
becomes

f(m)[p2 + 1] = f(m− 1)p2 + f(m+ 1).

This is obviously equivalent to

p2[f(m)− f(m− 1)] = [f(m+ 1)− f(m)],

which implies that f(m) = 1 + p2 + · · ·+ p2m.

We now address the final case: G = E7 and M = E6. As we have already computed the
eigenvalue for the Hecke operator p−〈ω7,ρ〉T7 we see that the left hand side of our equation is

f(m)[p24 + p23 + p22 + 2p21 + 2p20 + 3p19 + 3p18 + 3p17 + 4p16 + 4p15 + 4p14

+4p13 + 4p12 + 4p11 + 3p10 + 3p9 + 3p8 + 2p7 + 2p6 + p5 + p4 + p3].

As in the case of G = E6, one must tabulate each of the 56 elements µ in the orbit of ω7

along with number of cosets of type uµ(p)K (which is p〈ρ,µ+ω7〉), and the value χs0(µ)∆−1/2(µ)
(which is p−

4
9
〈µ,ρN 〉). As before, we do this for those elements µ such that 〈µ, τ〉 6= 0.
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µ 〈µ, τ〉 p〈ρ,µ+ω7〉 p−
1
2
〈µ,ρN 〉

e6 − e7 1 p27 p−6

−e5 − e7 1 p18 p−2

1
2(−e1 + e2 + e3 + e4 − e5 + e6 − e7 − e8) 1 p17 p−2

1
2(e1 − e2 + e3 + e4 − e5 + e6 − e7 − e8) 1 p16 p−2

1
2(e1 + e2 − e3 + e4 − e5 + e6 − e7 − e8) 1 p15 p−2

1
2(e1 + e2 + e3 − e4 − e5 + e6 − e7 − e8) 1 p14 p−2

1
2(−e1 − e2 − e3 + e4 − e5 + e6 − e7 − e8) 1 p14 p−2

1
2(−e1 − e2 + e3 − e4 − e5 + e6 − e7 − e8) 1 p13 p−2

1
2(−e1 + e2 − e3 − e4 − e5 + e6 − e7 − e8) 1 p12 p−2

1
2(e1 − e2 − e3 − e4 − e5 + e6 − e7 − e8) 1 p11 p−2

−e5 − e8 1 p p2

e6 − e8 1 p10 p−2

e5 − e7 −1 p26 p−2

−e6 − e7 −1 p17 p2

1
2(−e1 + e2 + e3 + e4 + e5 − e6 − e7 − e8) −1 p16 p2

1
2(e1 − e2 + e3 + e4 + e5 − e6 − e7 − e8) −1 p15 p2

1
2(e1 + e2 − e3 + e4 + e5 − e6 − e7 − e8) −1 p14 p2

1
2(e1 + e2 + e3 − e4 + e5 − e6 − e7 − e8) −1 p13 p2

1
2(−e1 − e2 − e3 + e4 + e5 − e6 − e7 − e8) −1 p12 p2

1
2(−e1 − e2 + e3 − e4 + e5 − e6 − e7 − e8) −1 p11 p2

1
2(−e1 + e2 − e3 − e4 + e5 − e6 − e7 − e8) −1 p11 p2

1
2(e1 − e2 − e3 − e4 + e5 − e6 − e7 − e8) −1 p10 p2

−e6 − e8 −1 1 p6

e5 − e8 −1 p11 p2

So, the right side consists of

f(m+ 1)[p21 + p16 + p15 + p14 + p13 + 2p12 + p11 + p10 + p9 + p8 + p3]

+f(m− 1)[p24 + p19 + p18 + p17 + p16 + 2p15 + p14 + p13 + p12 + p11 + p6]
+f(m)[p23 + p22 + p21 + 2p20 + 2p19 + 2p18 + 2p17 + 2p16 + p15 + 2p14

+2p13 + p12 + 2p11 + 2p10 + 2p9 + 2p8 + 2p7 + p6 + p5 + p4].
We simplify (just as before) and this yields:

p3[f(m)− f(m− 1)] = [f(m+ 1)− f(m)]

which implies that f(m) = 1 + p3 + · · ·+ p3m. The theorem is proved. �
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