NOTES ON QUADRATIC EXTENSIONS OF p-ADIC FIELDS

MIKE WOODBURY

Let F be a p-adic field with uniformizer ϖ, ring of integers \mathcal{O} and residue field k whose order will be denoted $q=p^{f}$. (So $k \simeq \mathbb{F}_{q}$.) Let v be the valuation such that $v(\varpi)=1$, and $|\cdot|$ the normalized absolute value, i.e. $|\varpi|=q^{-1}$.

1. Classification of quadratic extensions of F

We begin with $F=\mathbb{Q}_{p}$. Obviously the classification of quadratic extensions is equivalent to understanding the group $\mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2}$. This is established via the following propositions on the structure of \mathbb{Q}_{p}^{\times}. Let $U=\mathbb{Z}_{p}^{\times}$and $U_{n}=\left\{1+x p^{n} \mid\right.$ $\left.x \in \mathbb{Z}_{p}\right\}$ for $n \geq 1$.
Proposition 1. If $p \neq 2$ the group \mathbb{Q}_{p}^{\times}is isomorphic to $\mathbb{Z} \times \mathbb{Z}_{p} \times \mathbb{Z} /(p-1) \mathbb{Z}$, and \mathbb{Q}_{2}^{\times}is isomorphic to $\mathbb{Z} \times \mathbb{Z}_{2} \times \mathbb{Z} / 2 \mathbb{Z}$.
Proposition 2. Suppose that $p \neq 2$. Write $x \in \mathbb{Q}_{p}^{\times}$as $x=p^{n} u$. Then x is a square if and only if n is even and the image of u in U / U_{1} is a square.

Proposition 3. An element $x=2^{n} u \in \mathbb{Q}_{2}^{\times}$is a square if and only if n is even and $u \equiv 1(\bmod 8)$.

To see how this generalizes to F any extension of \mathbb{Q}_{p} we will outline the proofs of the above propositions. First, note that the decomposition $x=\varpi^{n} u$ for $x \in F^{\times}$ and $u \in \mathcal{O}^{\times}=U$ is unique. Therefore $F^{\times} \simeq \mathbb{Z} \times U$.

In order to understand U, we define

$$
U_{n}=\left\{1+x \varpi^{n} \mid x \in \mathcal{O}\right\} \quad n \geq 1
$$

as above. This gives a filtration

$$
U \supset U_{1} \supset U_{2} \supset \cdots,
$$

and $U=\lim U / U_{n}$. Se we want to understanding U / U_{n} for $n \geq 1$.
We have that $U / U_{1}=k^{\times} \simeq \mathbb{Z} /(q-1) \mathbb{Z}$ and $U_{n} / U_{n+1} \simeq \mathcal{O} / \varpi \mathcal{O}$. The first statement is immediate. The second follows from the map

$$
U_{n} / U_{n+1} \rightarrow \mathcal{O} / \varpi \mathcal{O} \quad 1+x \varpi^{n} \mapsto x
$$

which is easily seen to be an isormophism.
Next we want to understand U_{1}. Let $\alpha \in U_{1} \backslash U_{2}$. We claim that if $q \neq 2$ then $\alpha^{q^{i}} \in U_{i+1} \backslash U_{i+2}$. To see this, write $\alpha=1+k \varpi^{n}$. Now apply the binomial theorem to $\left(1+k \varpi^{n}\right)^{q}$ modulo ϖ^{n+2}. One gets that $\alpha^{q} \equiv 1+k \varpi^{n+1}$ whence the claim follows. (If $q=2$ the above works as long as $n \geq 2$.)

From the above one can deduce the structure of U_{1} :

$$
U_{1} \simeq \mathcal{O} \quad \text { if } q \neq 2
$$

Now Proposition 1 is evident for $p \neq 2$. The fact for \mathbb{Q}_{2} follows after understanding that $U_{1} \simeq\{ \pm 1\} \times \mathbb{Z}_{2}$ in this case.

Proposition 2 is a corollary. Indeed, write $x=p^{n} \cdot v \cdot u$ where v is a root of unity and $u \in U_{1}$. Obviously, x is a square if and only if n is even and v, u are squares. However, u is guaranteed to be a square. To see this, write $u^{\prime}=1+x \varpi$ and $u=1+y \varpi$. Given y, we want to find x so that

$$
1+\left(2 x+x^{2} \varpi\right) \varpi=u^{\prime 2}=u=1+y \varpi .
$$

In other words, we want to find x so that $2 x+x^{2} \varpi=y$. This can be solved modulo ϖ as long as 2 is invertible. Assuming that $2 \nmid q$, this condition is satisfied. Moreover, such a solution lifts to a solution with $x \in \mathcal{O}$. This proves the claim.
Corollary 4. Let u be an element of U with the property that its image in U / U_{1} is not a square. If $2 \nmid q$ then $\{1, u, \varpi, u \varpi\}$ form a complete set of coset representatives for $F^{\times} /\left(F^{\times}\right)^{2}$. In other words, there are 3 quadratic extensions of F two of which are ramified.

2. Injection of E into $M_{2}(F)$

Let $E[\alpha]$ a quadratic extension with ring of integers \mathcal{O}_{E}. Assume that $\alpha \in \mathcal{O}_{E}$ and that α is a uniformizer if E / F is ramified.

Because $\alpha \in \mathcal{O}_{E}$ it satisfies $\alpha^{2}=T \alpha-\Delta$ where $T=\operatorname{tr}_{E / F}(\alpha)$ and $\Delta=N_{E / F}(\alpha)$ are in \mathcal{O}. Thinking of E as a vector space over F with basis $\{1, \alpha\}$ gives the injection

$$
E \hookrightarrow M_{2}(F) \quad 1 \mapsto\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad \alpha \mapsto\left(\begin{array}{cc}
0 & 1 \\
-\Delta & T
\end{array}\right) .
$$

This injection is obtained by thinking of $E=F+\alpha F \simeq F^{2}$. Note that $\bar{\alpha}=\left(\begin{array}{cc}T & -1 \\ \Delta & 0\end{array}\right)$.
Let $K=\mathrm{GL}_{2}(\mathcal{O})$. Then under the above inclusion $K \cap E=\mathcal{O}_{E}$. This is because $\mathcal{O}_{E}=\mathcal{O}+\alpha \mathcal{O}$. Let $K_{0}\left(\varpi^{n}\right)$ be the set of matrices $\left(\begin{array}{c}a \\ c \\ c\end{array}\right) \in K$ such that $v(c) \geq n$. Set

$$
G_{E}=\left\{\begin{array}{cl}
E^{\times} K & \text { if } E / F \text { is unramified } \\
E^{\times} K_{0}(\varpi) & \text { if } E / F \text { is ramified }
\end{array}\right.
$$

Let Z and Z^{\prime} to be the cyclic groups of $\mathrm{GL}_{2}(F)$ generated by (${ }^{\infty}{ }_{\varpi}$) and (${ }_{\varpi}{ }^{1}$) respectively. If E / F is unramified then $E^{\times}=(\pi) \mathcal{O}_{E}^{\times}$, so $G_{E}=Z K$.

On the other hand, if E / F is ramified then because α is prime we must have that $\alpha \bar{\alpha}=\Delta$ is a prime element of F. Moreover, $\alpha^{2}=T \alpha-D \in \varpi \mathcal{O}$, so $T \in \varpi \mathcal{O}$. We conclude that

$$
\left(\begin{array}{cc}
0 & 1 \\
-\Delta & T
\end{array}\right)\left(\begin{array}{cc}
0 & \varpi_{0}^{-1} \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
T & 0 \\
T & -\Delta / \varpi
\end{array}\right) \in K_{0}(\varpi),
$$

and since $E^{\times}=(\alpha) \mathcal{O}_{E}^{\times}$it follows that $G_{E}=Z^{\prime} K_{0}(\varpi)$.

