
NOTES ON QUADRATIC EXTENSIONS OF p-ADIC FIELDS

MIKE WOODBURY

Let F be a p-adic field with uniformizer $, ring of integers O and residue field
k whose order will be denoted q = pf . (So k ' Fq.) Let v be the valuation such
that v($) = 1, and |·| the normalized absolute value, i.e. |$| = q−1.

1. Classification of quadratic extensions of F

We begin with F = Qp. Obviously the classification of quadratic extensions
is equivalent to understanding the group Q×

p /(Q×
p )2. This is established via the

following propositions on the structure of Q×
p . Let U = Z×

p and Un = {1 + xpn |
x ∈ Zp} for n ≥ 1.

Proposition 1. If p 6= 2 the group Q×
p is isomorphic to Z×Zp ×Z/(p− 1)Z, and

Q×
2 is isomorphic to Z × Z2 × Z/2Z.

Proposition 2. Suppose that p 6= 2. Write x ∈ Q×
p as x = pnu. Then x is a

square if and only if n is even and the image of u in U/U1 is a square.

Proposition 3. An element x = 2nu ∈ Q×
2 is a square if and only if n is even and

u ≡ 1 (mod 8).

To see how this generalizes to F any extension of Qp we will outline the proofs
of the above propositions. First, note that the decomposition x = $nu for x ∈ F×

and u ∈ O× = U is unique. Therefore F× ' Z × U .
In order to understand U , we define

Un = {1 + x$n | x ∈ O} n ≥ 1

as above. This gives a filtration

U ⊃ U1 ⊃ U2 ⊃ · · · ,

and U = lim←−U/Un. Se we want to understanding U/Un for n ≥ 1.
We have that U/U1 = k× ' Z/(q − 1)Z and Un/Un+1 ' O/$O. The first

statement is immediate. The second follows from the map

Un/Un+1 → O/$O 1 + x$n 7→ x

which is easily seen to be an isormophism.
Next we want to understand U1. Let α ∈ U1 \ U2. We claim that if q 6= 2 then

αqi ∈ Ui+1\Ui+2. To see this, write α = 1+k$n. Now apply the binomial theorem
to (1 + k$n)q modulo $n+2. One gets that αq ≡ 1 + k$n+1 whence the claim
follows. (If q = 2 the above works as long as n ≥ 2.)

From the above one can deduce the structure of U1:

U1 ' O if q 6= 2.

Now Proposition 1 is evident for p 6= 2. The fact for Q2 follows after understanding
that U1 ' {±1} × Z2 in this case.
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Proposition 2 is a corollary. Indeed, write x = pn · v · u where v is a root of
unity and u ∈ U1. Obviously, x is a square if and only if n is even and v, u are
squares. However, u is guaranteed to be a square. To see this, write u′ = 1 + x$
and u = 1 + y$. Given y, we want to find x so that

1 + (2x + x2$)$ = u′2 = u = 1 + y$.

In other words, we want to find x so that 2x + x2$ = y. This can be solved
modulo $ as long as 2 is invertible. Assuming that 2 - q, this condition is satisfied.
Moreover, such a solution lifts to a solution with x ∈ O. This proves the claim.

Corollary 4. Let u be an element of U with the property that its image in U/U1 is
not a square. If 2 - q then {1, u,$, u$} form a complete set of coset representatives
for F×/(F×)2. In other words, there are 3 quadratic extensions of F two of which
are ramified.

2. Injection of E into M2(F )

Let E[α] a quadratic extension with ring of integers OE . Assume that α ∈ OE

and that α is a uniformizer if E/F is ramified.
Because α ∈ OE it satisfies α2 = Tα−∆ where T = trE/F (α) and ∆ = NE/F (α)

are in O. Thinking of E as a vector space over F with basis {1, α} gives the injection

E ↪→ M2(F ) 1 7→ ( 1 0
0 1 ) , α 7→

(
0 1

−∆ T

)
.

This injection is obtained by thinking of E = F +αF ' F 2. Note that α =
(

T −1
∆ 0

)
.

Let K = GL2(O). Then under the above inclusion K∩E = OE . This is because
OE = O + αO. Let K0($n) be the set of matrices

(
a b
c d

)
∈ K such that v(c) ≥ n.

Set

GE =
{

E×K if E/F is unramified
E×K0($) if E/F is ramified

Let Z and Z ′ to be the cyclic groups of GL2(F ) generated by ( $
$ ) and ( 1

$ )
respectively. If E/F is unramified then E× = (π)O×

E , so GE = ZK.
On the other hand, if E/F is ramified then because α is prime we must have

that αα = ∆ is a prime element of F . Moreover, α2 = Tα−D ∈ $O, so T ∈ $O.
We conclude that (

0 1
−∆ T

) (
0 $−1

1 0

)
=

(
T 0
T −∆/$

)
∈ K0($),

and since E× = (α)O×
E it follows that GE = Z ′K0($).
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