NOTES ON QUADRATIC EXTENSIONS OF p-ADIC FIELDS

MIKE WOODBURY

Let F be a p-adic field with uniformizer ϖ , ring of integers \mathcal{O} and residue field k whose order will be denoted $q = p^f$. (So $k \simeq \mathbb{F}_q$.) Let v be the valuation such that $v(\varpi) = 1$, and $|\cdot|$ the normalized absolute value, i.e. $|\varpi| = q^{-1}$.

1. Classification of quadratic extensions of ${\cal F}$

We begin with $F = \mathbb{Q}_p$. Obviously the classification of quadratic extensions is equivalent to understanding the group $\mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^2$. This is established via the following propositions on the structure of \mathbb{Q}_p^{\times} . Let $U = \mathbb{Z}_p^{\times}$ and $U_n = \{1 + xp^n \mid x \in \mathbb{Z}_p\}$ for $n \geq 1$.

Proposition 1. If $p \neq 2$ the group \mathbb{Q}_p^{\times} is isomorphic to $\mathbb{Z} \times \mathbb{Z}_p \times \mathbb{Z}/(p-1)\mathbb{Z}$, and \mathbb{Q}_2^{\times} is isomorphic to $\mathbb{Z} \times \mathbb{Z}_2 \times \mathbb{Z}/2\mathbb{Z}$.

Proposition 2. Suppose that $p \neq 2$. Write $x \in \mathbb{Q}_p^{\times}$ as $x = p^n u$. Then x is a square if and only if n is even and the image of u in U/U_1 is a square.

Proposition 3. An element $x = 2^n u \in \mathbb{Q}_2^{\times}$ is a square if and only if n is even and $u \equiv 1 \pmod{8}$.

To see how this generalizes to F any extension of \mathbb{Q}_p we will outline the proofs of the above propositions. First, note that the decomposition $x = \varpi^n u$ for $x \in F^{\times}$ and $u \in \mathcal{O}^{\times} = U$ is unique. Therefore $F^{\times} \simeq \mathbb{Z} \times U$.

In order to understand U, we define

$$U_n = \{1 + x\varpi^n \mid x \in \mathcal{O}\} \qquad n \ge 1$$

as above. This gives a filtration

$$U \supset U_1 \supset U_2 \supset \cdots,$$

and $U = \lim_{\leftarrow} U/U_n$. Se we want to understanding U/U_n for $n \ge 1$.

We have that $U/U_1 = k^{\times} \simeq \mathbb{Z}/(q-1)\mathbb{Z}$ and $U_n/U_{n+1} \simeq \mathcal{O}/\varpi \mathcal{O}$. The first statement is immediate. The second follows from the map

$$U_n/U_{n+1} \to \mathcal{O}/\varpi\mathcal{O} \quad 1 + x\varpi^n \mapsto x$$

which is easily seen to be an isormophism.

Next we want to understand U_1 . Let $\alpha \in U_1 \setminus U_2$. We claim that if $q \neq 2$ then $\alpha^{q^i} \in U_{i+1} \setminus U_{i+2}$. To see this, write $\alpha = 1 + k \varpi^n$. Now apply the binomial theorem to $(1 + k \varpi^n)^q$ modulo ϖ^{n+2} . One gets that $\alpha^q \equiv 1 + k \varpi^{n+1}$ whence the claim follows. (If q = 2 the above works as long as $n \geq 2$.)

From the above one can deduce the structure of U_1 :

$$U_1 \simeq \mathcal{O} \quad \text{if } q \neq 2$$

Now Proposition 1 is evident for $p \neq 2$. The fact for \mathbb{Q}_2 follows after understanding that $U_1 \simeq \{\pm 1\} \times \mathbb{Z}_2$ in this case.

MIKE WOODBURY

Proposition 2 is a corollary. Indeed, write $x = p^n \cdot v \cdot u$ where v is a root of unity and $u \in U_1$. Obviously, x is a square if and only if n is even and v, u are squares. However, u is guaranteed to be a square. To see this, write $u' = 1 + x\omega$ and $u = 1 + y \varpi$. Given y, we want to find x so that

$$1 + (2x + x^2 \varpi) \varpi = u'^2 = u = 1 + y \varpi$$

In other words, we want to find x so that $2x + x^2 \overline{\omega} = y$. This can be solved modulo ϖ as long as 2 is invertible. Assuming that $2 \nmid q$, this condition is satisfied. Moreover, such a solution lifts to a solution with $x \in \mathcal{O}$. This proves the claim.

Corollary 4. Let u be an element of U with the property that its image in U/U_1 is not a square. If $2 \nmid q$ then $\{1, u, \varpi, u\varpi\}$ form a complete set of coset representatives for $F^{\times}/(F^{\times})^2$. In other words, there are 3 quadratic extensions of F two of which are ramified.

2. Injection of E into $M_2(F)$

Let $E[\alpha]$ a quadratic extension with ring of integers \mathcal{O}_E . Assume that $\alpha \in \mathcal{O}_E$

and that α is a uniformizer if E/F is ramified. Because $\alpha \in \mathcal{O}_E$ it satisfies $\alpha^2 = T\alpha - \Delta$ where $T = \operatorname{tr}_{E/F}(\alpha)$ and $\Delta = N_{E/F}(\alpha)$ are in \mathcal{O} . Thinking of E as a vector space over F with basis $\{1, \alpha\}$ gives the injection

$$E \hookrightarrow M_2(F) \qquad 1 \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \alpha \mapsto \begin{pmatrix} 0 & 1 \\ -\Delta & T \end{pmatrix}.$$

This injection is obtained by thinking of $E = F + \alpha F \simeq F^2$. Note that $\overline{\alpha} = \begin{pmatrix} T & -1 \\ \Delta & 0 \end{pmatrix}$. Let $K = \operatorname{GL}_2(\mathcal{O})$. Then under the above inclusion $K \cap E = \mathcal{O}_E$. This is because $\mathcal{O}_E = \mathcal{O} + \alpha \mathcal{O}$. Let $K_0(\varpi^n)$ be the set of matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in K$ such that $v(c) \ge n$. Set

$$G_E = \begin{cases} E^{\times}K & \text{if } E/F \text{ is unramified} \\ E^{\times}K_0(\varpi) & \text{if } E/F \text{ is ramified} \end{cases}$$

Let Z and Z' to be the cyclic groups of $\operatorname{GL}_2(F)$ generated by $({}^{\varpi}{}_{\varpi})$ and $({}_{\varpi}{}^1)$ respectively. If E/F is unramified then $E^{\times} = (\pi)\mathcal{O}_E^{\times}$, so $G_E = ZK$.

On the other hand, if E/F is ramified then because α is prime we must have that $\alpha \overline{\alpha} = \Delta$ is a prime element of F. Moreover, $\alpha^2 = T\alpha - D \in \overline{\omega}\mathcal{O}$, so $T \in \overline{\omega}\mathcal{O}$. We conclude that

$$\begin{pmatrix} 0 & 1 \\ -\Delta & T \end{pmatrix} \begin{pmatrix} 0 & \varpi^{-1} \\ 1 & \varpi^{-1} \end{pmatrix} = \begin{pmatrix} T & 0 \\ T & -\Delta/\varpi \end{pmatrix} \in K_0(\varpi),$$

and since $E^{\times} = (\alpha) \mathcal{O}_E^{\times}$ it follows that $G_E = Z' K_0(\varpi)$.

E-mail address: woodbury@math.wisc.edu

DEPARTMENT OF MATHEMATICS, UW-MADISON, MADISON, WISCONSIN.