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Abstract. We study the central value of the triple product L-function L(1/2,Π) where Π = π1 ⊗ π2 ⊗ π3

and each πi is a cuspidal automorphic representation of GL2 over a number field F . This work verifies a

hypothesis of Venkatesh which predicted that the central L-value is bounded by a certain period integral. By
bounding the period, Venkatesh showed that under his hypothesis L(1/2,Π) satisfies a subconvexity bound

in a certain level aspect. A relationship between periods, the L-value in question and local trilinear forms

is provided by the work of Ichino. In this paper, we make Ichino’s formula explicit by calculating these
trilinear forms on various vectors. In the process, we complete the application to subconvexity as well as

give a new proof and generalization of Watson’s formula.

1. Introduction

The theory of L-functions has played a central role in number theory from its origins in Dirichlet’s proof
of the density of primes in arithmetic progressions to the present day. In this paper we consider the so-called
triple product L-function. We have Π = π1 ⊗ π2 ⊗ π3 where each πi is an automorphic representation of
GL2(F ) for a number field F , and we consider the central value L( 1

2 ,Π). (See Section 4.1 for the definition
of L(s,Π).)

Understanding the value L( 1
2 ,Π) began with work of Garrett[10] and was furthered by Gross-Kudla[13],

Kudla-Harris[16],[15] and others. An especially beautiful formula was given by Watson[36] for many choices
of πi. Recently, Ichino [17] gave a very general formula extending these results. Although his result is more
general than Watson’s, it is less explicit. The results of the present paper can be interpreted as making
explicit the formula of Ichino. We do this by computing certain local trilinear forms. As a consequence, we
also obtain a generalization of Watson’s formula.

It is often the case that controlling the growth of the special values over a family of L-functions has number
theoretic applications. For example, if ζ(s) is the Riemann-zeta function then ζ( 1

2 + it) can be interpreted
as L( 1

2 , πt) for πt a family of automorphic representations of GL1 varying in the “t-aspect.” The principle
of convexity gives bounds on these values, but for number theoretic applications, an improvement on this
bound is usually required. For the case of ζ(s), convexity gives

|L(1/2, πt)| = |ζ(1/2 + it)| � |t|1/4 ,

but the expected bound of the Lindelof conjecture (a consequence of the Riemann hypothesis) is that for
any ε > 0,

|L(1/2, πt)| � |t|ε .
The convexity argument works quite generally for L-functions of the type L(s, σ) where σ varies over, for

example, automorphic representations of an algebraic group G. Many papers have been dedicated to proving
subconvexity results for various choices of G and for families varying in so-called “t-aspect”, “eigenvalue
aspect” and/or “conductor aspect.” We refer the reader to [26] where the cases of G = GLn for n = 1, 2 are
treated uniformly in all aspects, and references are given.

Another important application of the results of this paper, and the initial motivation for this work, is
to prove a conjecture of Venkatesh [34, Hyp 11.1] which has appliction toward subconvexity for the triple
product L-function.

Bernstein and Reznikov, in [2], apply Watson’s formula to establish subconvexity in the “eigenvalue
aspect.” They fix two Maass forms and vary the eigenvalue of the third form. Venkatesh [34] dealt with
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subconvexity of the triple product L-function in “level aspect”. Using ergodic theory, he establishes bounds
for the period integral

(1.1) J(ϕ1 ⊗ ϕ2 ⊗ ϕ3) =
∫

PGL2(F )\PGL2(AF )

ϕ1(g)ϕ2(g)ϕ3(g)dg

for varying choices of ϕi ∈ πi. In particular, he proved the following.

Theorem 1.1 (Venkatesh). Let F be a number field and π1, π2 automorphic cuspidal representations of
PGL2(AF ) with (finite) conductors n1, n2 respectively. Let π3 be another such representation with prime
conductor p - n1n2. Let $ be a uniformizer of Fp. For given ϕi ∈ πi (i = 1, 2) fixed by GL2(Op)), we put
ϕ = ϕ1 ⊗ ρ(

(
$−1

1

)
)ϕ2 ⊗ ϕ3 where ϕ3 ∈ π3 and ρ is the right regular action. Then

(1.2) |J(ϕ)| �ε,π1,π2 ‖ϕ1‖L4‖ϕ2‖L4‖ϕ3‖L2N(p)ε−
(1−4α)(1−2α)

4(3−4α)

where ‖f‖Lp is the standard Lp-norm, and α is any bound towards Ramanujan for GL2 over F . (We can
take α = 1/9 by Kim-Shahidi[21].)

Venkatesh conjectured an upper bound for the central L-value in terms of |J(ϕ)|2 which would then give
a subconvexity bound for the central L-value L( 1

2 ,Π). (See Corollary 1.5.) To describe it properly, however,
we need an analogy of the period integral J(ϕ) for a quaternion algebra B over F .

Remark. The subconvexity results for GL1 and GL2 L-functions of the paper [26] of Michel and Venkatesh
are established by first proving subconvexity for L(1/2,Π) where Π = π1 ⊗ π2 ⊗ π3 is a triple product just
like we study here, but such that one or more of the representations πi is associated to an Eisenstein series,
i.e. not cuspidal.

1.1. Statement of results. We begin by setting notations. Let πi,v denote irreducible admissible repre-
sentations of GL2(Fv) for i = 1, 2, 3. Write πBi,v for the corresponding representation of Bv, the division
quaternion algebra over Fv, via Jacquet-Langlands. (This is zero if none exists.) Put Πv = π1,v⊗π2,v⊗π3,v.
Globally, we let Π = π1 ⊗ π2 ⊗ π3 where each πi =

⊗′
πi,v is a cuspidal automorphic representation, and

if B is a quaternion algebra over F , we define ΠB to be the corresponding automorphic representation of
B× ×B× ×B×. For an algebraic group G over F we denote [G] = Z(G(A))G(F )\G(A).

Recall that a quaternion algebra B/F is determined by a set of places Σ = ΣB of even cardinality where
v ∈ Σ if and only if B(Fv) is a division algebra. We call v ∈ Σ ramified.

Given a global (or local) representation Π =
⊗′Πv (or Πv) as above, there exist certain holomorphic

functions εv(s,Π, ψv) depending on a choice of additive character ψv : F → C×. See [32] for details of
their definition and properties. In particular, in the global case, if ψ = ⊗ψv is trivial on F , the function
ε(s,Π) :=

∏
v εv(s,Π, ψ) is independent of ψ, and the L-function satisfies the functional equation

L(1− s,Π) = ε(s,Π)L(s, Π̃).

Moreover, if the central character of Π is trivial (which we will always assume) then Π̃ ' Π and εv( 1
2 ,Π) = ±1

is independent of ψv. Denote the set {v | εv( 1
2 ,Π) = −1} by Σ(Π). This is a finite set.

Notice that J : Π → C as given in (1.2) is a GL2(A)-invariant linear form. Prasad showed that the
existence of a GL2(A)-invariant form on Π is determined by the local epsilon factors. In [29] he proved the
theorem below in almost all cases. Loke[25] completed the remaining cases.

Theorem 1.2 (Prasad,Loke). With the notation as above, the following holds.
(1) dim HomGL2(Fv)(Πv,C) + dim HomBv (ΠBv

v ,C) = 1.
(2) dim HomGL2(Fv)(Πv,C) = 1 if and only if ε( 1

2 ,Πv) = 1.
In particular,

(3) When ε( 1
2 ,Π) = 1 the global quaternion algebra B = BΠ/F whose ramification set is Σ(Π) is the

unique quaternion algebra for which HomB×(A)(ΠB ,C) 6= 0.
(4) When ε( 1

2 ,Π) = −1 one has HomB×(A)(ΠB ,C) = 0 for all quaternion algebras B over F .

We will prove the following in this paper.
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Theorem 1.3. Fix π1, π2 cuspidal automorphic representations of GL2 over a number field F with conductors
n1, n2 respectively. Fix an ideal n. Let π3 be cuspidal automorphic with conductor np for any fixed ideal n
and a prime p - n1n2n. Let $ be a uniformizer of Fp. Let Sf = {q | gcd(n1, n2, n)}, and S∞ the set of
infinite places. Then there is a quaternion algebra B over F such that ΣB ⊂ Sf ∪ S∞ and there is a finite
set of vectors FBi ⊂ πBi for i = 1, 2 such that

(1.3) L( 1
2 , π1 ⊗ π2 ⊗ π3)�ε,F,R N(p)1+ε

∣∣∣∫[B×]
ϕ1(b)ϕ2(b

(
$−1

1

)
)ϕ3(b)db

∣∣∣2
as N(p)→∞ and the Langlands parameters of π3,∞ remain bounded by R, for some ϕi ∈ FBi (i = 1, 2) and
ϕ3 ∈ πB3 a new vector.

If v is a real place then πv is isomorphic to either πkdis a weight k-discrete series representation or a principal
series πsR. If v is complex then πv is isomorphic to a discrete series πs,kC . (See Section 6 for definitions.)
The condition that the Langlands parameters of π3,∞ remain bounded means that the values s, k allowed to
appear in π3,∞ are restricted to a fixed bounded set R.

We also obtain a generalization of Watson’s formula to totally real number fields. In particular, we prove
the following. (See Theorem 5.1 for the more general statement.)

Theorem 1.4 (Watson when F = Q). Suppose that F is a totally real number field and let Π be a cuspidal
automorphic representation as above of squarefree level N. Moreover, we assume that for each v | ∞, πi,v
are discrete series representations such that the largest weight is the sum of the two smaller weights. Let B
be any quaternion algebra such that ΠB 6= 0, so dB =

∏
p∈ΣB

p divides N. Let εv = εv( 1
2 ,Πv), and, for finite

v, let qv be the order of the residue field Ov. Then

(1.4)

∣∣∣∣∣
∫

[B×]

ϕ(b)db

∣∣∣∣∣
2

3∏
i=1

∫
[B×]

|ϕi(b)|2 db
= |∆F |−3/2 ζ(2)

23

L( 1
2 ,Π)

L(1,Π,Ad)

∏
v

Cv

where db is the Tamagawa measure on [B×] (defined in Section 2.2), ϕ = ϕ1⊗ϕ2⊗ϕ3 with ϕi a new vector
of πBi (chosen so that the sum of the weights at each real place is zero), ∆F is the discriminant of F , and

Cv =


1 if v -∞N

1−εv
qv

(1− 1
qv

) if v | dB
1+εv
qv

(1 + 1
qv

) if v | N, v - dB
2 if v | ∞.

The formula as stated in [36] appears slightly different only because it is presented in the language of
classical modular forms. Note that this confirms Prasad’s theorem in this special case.

1.2. Application to subconvexity. From henceforth we will assume without loss of generality that ε( 1
2 ,Π) =

1. Under this assumption, Theorems 1.1 and 1.3 imply the following.

Corollary 1.5. Let Π = π1 ⊗ π2 ⊗ π3 where πi are cuspidal automorphic representations of PGL2 over
F with π1, π2 fixed and π3 has prime conductor p. For all π3 such that Σ(Π) = ∅, one has the following
subconvexity bound.

L( 1
2 ,Π)�π3,∞ N(p)1− 1

12

We describe the limitations of this corollary. We first remark that if v is a nonarchimedean place then
εv( 1

2 ,Πv) = +1 whenever any one of the representations is unramified. In particular, this implies that
εv( 1

2 , πv) = +1 for all but finitely many v. Analogously, if v is archimedean then ε( 1
2 ,Πv) = +1 if any one of

πi,v is not a discrete series. If all three are discrete series of weights k, l and m where k is the largest weight
then ε( 1

2 ,Πv) = −1 if and only if k < l + m. If this is the case, we say that Πv is balanced. Otherwise, we
say Πv is unbalanced.

Because Theorem 1.1 requires that n1n2 be relatively prime to the conductor of π3, which is required to
be a prime p, we see that in this case the quaternion algebra B for which (1.3) is satisfied ramifies exactly at
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real primes v such that π1,v, π2,v and π3,v are discrete series and for which Πv is balanced. In other words,
the only restriction on Π is that at each real place v either

• at least one of the representations is a principal series, or
• if all three representations are discrete series, the weights are unbalanced.

If Theorem 1.1 could be generalized to arbitrary quaternion algebras, our Theorem 1.3, would be enough
to make Corollary 1.5 unconditional.

Theorems 1.3 and 1.4 are obtained via the formula of Ichino and the explicit calculation of certain local
trilinear forms. The nonvanishing of the said forms was already known by the work of Gross-Prasad [14],
but our contribution is the exact evaluation of each. Ichino’s result is discussed in Section 2. The local forms
are constructed first via matrix coefficients. In Section 3 these matrix coefficients are completely determined
for our particular choice of vectors. Then, in Section 4, we evaluate the trilinear forms using the results
on matrix coefficients. Theorem 1.4 and further generalizations are discussed in Section 5, and in the final
section we complete the proof of Theorem 1.3.

2. Global trilinear form

In this section, F is a number field with ring of adeles A = AF , v a place of F and Fv the corresponding
completion. Let G = GL2 with center Z and Π = π1⊗π2⊗π3 where each πi is a unitary cuspidal automorphic
representation of G over F . If ωi is the central character of πi then we require that ω1ω2ω3 be trivial. We let
L(s,Π) denote the triple product L-function, L(s,Π,Ad) =

∏3
i=1 L(s, πi,Ad) with L(s, πi,Ad) the adjoint

L-function attached to πi and ζF (s) the zeta function of the number field F . See Section 4.1 for precise
definitions. We use the subscript v to represent the analogous local L and zeta functions. We may assume
that B is a quaternion algebra defined over F for which ΠB 6= 0.

2.1. Ichino’s formula. The central identity which we will use to relate the period on the right side of
(1.3) to the L-value on the left is due to Ichino[17] and arises when studying the space HomB×(A)(ΠB ,C) of
B×(A)-invariant linear forms where B× is embedded diagonally into B××B××B×. These are the so-called
trilinear forms. Theorem 1.2 tells us that this space is at most 1-dimensional.

It is more convenient to work with bilinear forms:

(2.1) HomB×(A)×B×(A)(ΠB ⊗ Π̃B ,C)

It is elementary to see that Theorem 1.2 carries over to this setting. In particular, since dim HomB×v
(ΠB

v ⊗ Π̃B
v ,C) ≤

1, the space in (2.1) is again at most 1-dimensional. Moreover, letting db be a Haar measure, there is a
choice of invariant form:

(2.2) I(ϕ⊗ ϕ̃) =
∫

[B×]

ϕ1ϕ2ϕ3(b)db
∫

[B×]

ϕ̃1ϕ̃2ϕ̃3(b) db.

Locally, there is also an obvious choice of B×(Fv)-invariant form. Let

(2.3) 〈·, ·〉v : πBi,v ⊗ π̃Bi,v → C

be any B×(Fv)-invariant pairing. Note that this is unique up to nonzero scalar. For ϕv = ϕ1,v⊗ϕ2,v⊗ϕ3,v ∈
ΠB
v and ϕ̃v ∈ Π̃B

v defined similarly, this gives a matrix coefficient

〈ΠB
v (gv)ϕv, ϕ̃v〉v = 〈πB1,v(gv)ϕ1,v, ϕ̃1,v〉v〈πB2,v(gv)ϕ2,v, ϕ̃2,v〉v〈πB3,v(gv)ϕ3,v, ϕ̃3,v〉v

such that

I ′v(ϕv ⊗ ϕ̃v) =
∫
F×v \B×(Fv)

〈ΠB
v (gv)ϕv, ϕ̃v〉vdbv

is B×(Fv)-invariant. We assume that dbv is any measure such that vol(F×v \B×(Ov)) = 1 for almost all v, so
that db = C

∏
dbv for some constant C. (We will choose measures in Section 2.2 so that C = ∆−3/2

F ζF (2)−1.)
Ignoring possible issues with convergence, I and

∏
v I
′
v are both elements of (2.1), and so they must differ

by a constant. This is formalized by Ichino in the following.
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Theorem 2.1 (Ichino). Let I, Iv be as above and

(2.4) Iv(ϕv ⊗ ϕ̃v) = ζFv (2)−2Lv(1,Πv,Ad)
Lv( 1

2 ,Πv)
I ′v(ϕv ⊗ ϕ̃v).

Then Iv(ϕv⊗eϕv)
〈ϕv⊗eϕv〉v = 1 for almost all v, and

(2.5)
I(ϕ⊗ ϕ̃)∏3

j=1

∫
[B×]

ϕj(b)ϕ̃j(b)db
=
C

23
· ζF (2)2 ·

L( 1
2 ,Π)

L(1,Π,Ad)

∏
v

Iv(ϕv ⊗ ϕ̃v)
〈ϕv, ϕ̃v〉v

whenever the denominators are nonzero.

Note that on each side of (2.5) the dependence on the choice of pairings (2.2) and (2.3) is removed by
dividing by (on the left side) by

∏∫
B×

ϕi ⊗ ϕ̃idb or (on the right side) by 〈ϕv, ϕ̃v〉v.
In the case that the central characters are trivial, Π is self dual and Π ' Π̃. Using the composition of the

injection Π ↪→ Π× Π̃ given by ϕ 7→ (ϕ,ϕ) with (2.2) yields a quadratic form, namely

(2.6) I(ϕ) := I(ϕv ⊗ ϕv) =

∣∣∣∣∣
∫

[G]

ϕ1(g)ϕ2(g)ϕ3(g)dg

∣∣∣∣∣
2

,

such that I(ϕ) = |J(ϕ)|2 in the notation of Theorem 1.1. Hence Ichino’s result provides us with the necessary
tools to prove Theorem 1.3. Indeed, we will derive exact formulas for Iv(ϕv) := Iv(ϕ⊗ϕ) from which sufficient
lower bounds will be obtained. (See, for example, Corollary 4.2.)

As described in the introduction, the functional equation implies that L( 1
2 ,Π) must be zero unless

ε( 1
2 ,Π) = 1. Thus Theorem 1.2, together with (2.5), implies one direction of the fact conjectured by

Jacquet and proved by Harris and Kudla in [15] and [16]. We record their result here as it will be used in
Section 6.

Theorem 2.2 (Harris-Kudla). The central value L( 1
2 ,Π) 6= 0 if and only if there exists some B and some

ϕ ∈ ΠB such that
∫

[B×]
ϕ(b)db 6= 0.

By Theorem 1.2, the quaternion algebra B is that for which ΣB = Σ(Π).

2.2. Measures. Let Fv be a p-adic field with Ov and q as above, and let Bv be a quaternion algebra over
Fv. If B×v = GL2(Fv), we choose the (multiplicative) Haar measure dbv (or dgv) to be that for which the
maximal compact subgroup Kv = GL2(Ov) has volume 1. We abuse notation and also denote by dbv (or by
dgv) the measure on PGL2(Fv) consistent with the choice above and the exact sequence

(2.7) 1→ F×v → GL2(Fv)→ PGL2(Fv)→ 1.

This means that the image of Kv in PGL2(Fv) again has volume 1.
If Bv is division then it contains a unique maximal order Rv. We denote by dbv the Haar measure on

B×v for which R×v has measure (q− 1)−1. Again, we write dbv for the measure on PB×v compatible with the
analogous exact sequence to (2.7). We remark that R×v has index 2 in F×v \B×v , and so vol(F×v \B×v ) = 2

q−1 .
In the real case, let dx be the standard measure on R such that the volume of [0, 1] = 1. Define the

subgroups
N∞ = {n(x) = ( 1 x

1 ) | x ∈ R}, A∞ = {a(y) = ( a 1 ) | a ∈ R×},
K∞ = {κθ =

(
cos θ sin θ
− sin θ cos θ

)
| θ ∈ [0, 2π)}

of GL2(R) or PGL2(R). The we define the Haar measure via

(2.8)
1

2π
dydx

|y|2
dθ,

1
4π

(1− y−2)dθ1dydθ2

in the N∞A∞K∞ and K∞A∞K∞ coordinate systems respectively. Note that in K∞A∞K∞ coordinates we
take a(y) only for |y| ≥ 1.

We recall the notion of Tamagawa measure. As described in [27], for a connected linear algebraic group
G defined over a number field F , a measure ω defined over F determines measures ωp such that for almost
all p, the volume of G(Op) = q− dimG#G(p) where G(p) represents the group obtained from G by reducing
modulo p.
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For semisimple groups G, the Tamagawa measure can now be defined on G(F )\G(A) by giving G(F ) the
counting measure as a discrete subgroup of G(A) and defining

dgA = |∆F |− dimG/2
∏
v

ωv

where ∆F is the discriminant of F . In particular, for the case at hand of a quaternion algebra B defined
over F , and G = PB×, it can be checked that ωv = ζ−1

Fv
(2)dbv. Therefore, the measure dbA on A×\B×(A)

which corresponds to the Tamagawa measure db on [B×] is

dbA = C
∏

dbv, C = |∆F |−3/2
ζ−1
F (2).

This constant C is exactly the constant appearing in Theorem 2.1 for our choice of measures.
By way of comparison, we recall that Ichino defines measures d×bv on PB×v by choosing a nontrivial

additive character ψ = ⊗ψv : A/F → C× and letting d×bv be the Haar measure that is self dual with respect
to the Fourier transform. For places v that are unramified over Q and for which ψv is level zero, the measures
d×bv and dbv agree. More precisely, dbA = C ′

∏
d×bv with C ′ = ζF (2)−1.

We remark that the Tamagawa number of PB×, i.e. the volume of [B×] under Tamagawa measure, is 2.

3. Matrix coefficients: nonarchimedean places

We fix the following notation for this section. Let F be a p-adic field with ring of integers OF and
uniformizer $. Let q be the order of the residue field OF /($). Let v = ord$ be the additive valuation, and
define |x| = q−v(x). Let

G = GL2(F ), K = GL2(OF ), Z = {( z z ) ∈ G},

P = NA where N = {( 1 b
1 ) ∈ G}, A = {( a1

a2 ) ∈ G}.
Let σn =

(
$n

1

)
, e = ( 1

1 ), w = ( 1
1 ).

We assume that χ1, χ2 : F× → C× are unramified characters, meaning that χi|O×F = 1 for i = 1, 2. The
character χ1 ⊗ χ2 gives a representation of P . We consider π = π(χ1, χ2) which is the (admissible) unitary
induction from P to G of this representation. Hence π is the right regular action of G on the space of
functions f : G→ C (i.e. [π(g)f ](h) = f(hg)) such that

(3.1) f(
(
a1 b

a2

)
g) = χ1(a1)χ2(a2)

∣∣∣∣a1

a2

∣∣∣∣1/2 f(g)

for all g ∈ G, and there exists a compact open subgroup L ⊂ G which acts trivially on f . We will follow
the common abuse of notation in using π to denote both the space and the action. Note that π need not be
irreducible.

The contragradient π̃ of π is equal to π(χ−1
1 , χ−1

2 ). Let dk be the Haar measure on G for which K has
volume one. Then the pairing

(3.2) 〈·, ·〉 : π × π̃ → C 〈f, f̃〉 =
∫
K

f(k)f̃(k)dk

is bilinear and G-invariant. (See [1], [6] for details.) Using this one defines the matrix coefficient associated
to f, f̃ :

Φf, ef (g) = 〈π(g)f, f̃〉.
Note that in this section we do not necessarily assume that π is unitary.

We will compute explicitly these matrix coefficients for particular choices of f and f̃—namely for those
vectors that are fixed by

K0 := K0($) = {
(
a b
c d

)
∈ K | v(c) ≥ 1}.

This is a two dimensional subspace. To perform this calculation, we derive general formulas in Section 3.1
and then apply these results to the unramified and special representations in Sections 3.2 and 3.3 respectively.

First, we record some standard results regarding the decomposition of G and volumes of certain subsets.
Recall that our measure on G (or on Z\G) is that for which K (or its image) has volume 1.
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Lemma 3.1. Let Ω0 = K and Ωn = KσnK for n ≥ 1. Then Z\G =
⋃
n≥0 Ωn and for n ≥ 1,

(3.3) KσnK = K0σnK0

⋃
K0wσnK0

⋃
K0σnwK0

⋃
K0wσnwK0.

Moreover, all of these unions are disjoint.
Let Xn = {

(
a b
c d

)
∈ K0 | v(c) = n} and Yn = {

(
a b
c d

)
∈ K0 | v(b) = n}. The following table is valid.

X K K0 Xn Yn KσnK K0σnK0

vol(X) 1 (1 + q)−1 1− 1
q

1+ 1
q

q−n
1− 1

q

1+ 1
q

q−n−1 qn(1 + 1
q ) qn−1

1+ 1
q

X K0wσnK0 K0σnwK0 K0wσnwK0

vol(X) qn−2

1+ 1
q

qn

1+ 1
q

qn−1

1+ 1
q

Table 1. Volumes of various subsets of GL2(F ), F a p-adic field

These results can all be obtained by interpreting the action of K on the left or right as row or column
operations respectively. For example, to get the decomposition Z\G = ∪n≥0Ωn, we may assume, by multi-
plying by an element of the center that min{v(a), v(b), v(c), v(d)} = 0. Then we alter

(
a b
c d

)
by adding any

integer multiple of one row or column to the other, and by multiplying any row or column by any element
of O×. From this description it is clear that

(
a b
c d

)
= kσnk

′ for some k, k′ ∈ K and n = v(det
(
a b
c d

)
).

In a similar fashion we obtain the decomposition

KσnK =
⋃

a∈O/pn

(
$n a

1

)
K ∪

⋃
d∈O/pn−1

w
(
$n d$

1

)
K.

Similarly decompositions can be given for K0 double cosets, and from these decompositions the stated
volumes are apparent.

3.1. Matrix coefficient associated to Iwahori fixed vectors. Recall that π = π(χ1, χ2) is the induced
representation defined in (3.1). The Iwasawa decomposition G = NAK implies that a vector f ∈ π is
uniquely determined by its restriction to K. With this in mind we define f0 and f1 to be the vectors whose
restrictions to K are the characteristic function on K0 and K0wK0 respectively. Let f̃0 and f̃1 be the
analogously defined vectors in π̃.

We call the space πK0 of vectors fixed by K0 the space of Iwahori fixed vectors. Note that every such
vector is a linear combination of f0 and f1 because K = K0 ∪ K0wK0 and K0wK0 = (N ∩ K)KwK0.
Moreover, if f ∈ πK0 then f = af0 + bf1 where a = f(e) and b = f(w).

Using the coset decompositions of Lemma 3.1 it is immediate that

(3.4) Φi,j(g) := Φfi, efj (g) =


∫
K0

fi(kg)dk if j = 0

q

∫
K0

fi(wkg)dk if j = 1.

Our goal is to determine Φi,j(g) for all g ∈ G. By the G-invariance of the inner form if f ∈ πK0 and f̃ ∈ π̃K0

and k ∈ K0 then
Φf, ef (kg) = 〈π(kg)f, f̃〉 = 〈π(g)f, π̃−1(k)f̃〉 = Φf, ef (g) and

Φf, ef (gk) = 〈π(g)π(k)f, f̃〉 = Φ(g).

Hence Φi,j(g) depends only on the double coset K0gK0. So by Lemma 3.1 we need to perform the calculation
for each of only four K0-double coset representatives.

Proposition 3.2. The values of Φi,j are given by q−n/2

1+ 1
q

times the values in the following table. (Note that

the values for Φi,j(wσn) hold only when n > 0. Otherwise, the table is valid for all n ≥ 0.)
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g σn wσn σnw wσnw

Φ0,0(g) αn1 · 1
q

αn−1
1 −αn−1

2

α−1
2 −α

−1
1

(1− 1
q ) 0 αn2 · 1

q

Φ1,0(g) 0 αn2 αn1
1
q

αn2−α
n
1

1−α1α
−1
2

(1− 1
q )

Φ0,1(g) αn1−α
n
2

1−α−1
1 α2

(1− 1
q ) αn1 αn2

1
q 0

Φ1,1(g) αn2 0 αn+1
2 −αn+1

1
α2−α1

(1− 1
q ) αn1

Table 2. Values of matrix coefficients of Iwahori fixed vectors I

Proof. We prove the formula in the case that g ∈ K0σnK0. Let αi = χi($).
Let g, g′ ∈ G. We define an equivalence relation such that g ∼ g′ if there exists k ∈ K0 such that g = g′k.

Since the Iwahori fixed vectors are, by definition, invariant by K0, fi(g) depends only on the equivalence
class of g. Realizing that K0 acts on G is by column operations it is easy to see that for

(
a b
c d

)
∈ K0,

(3.5)
(
a b
c d

)
σn =

(
a$n b
c$n d

)
∼
(
$n b′

0 1

)
where b and b′ have the same valuation.1 Applying this to (3.4) (for j = 0) yields

Φ0,0(σn) =
∫
“
a b
c d

”
∈K0

f0(
(
a b
c d

)
σn)dk =

∫
K0

f0

((
$n b
0 1

))
dk = vol(K0)αn1 q

−n =
q−n/2

1 + 1
q

αn1 ·
1
q
,

and

Φ1,0(σn) =
∫
K0

f1(kσn)dk =
∫
K0

f1

((
$n b
0 1

))
dk = 0.

The equivalence class of an element of G of the form w
(
a b
c d

)
σn with

(
a b
c d

)
∈ K0 . Using the relation

( 0 1
1 x ) =

(
−x−1 1

0 x

) (
1 0
x−1 1

)
, it is not hard to show that

(3.6) w
(
a b
c d

)
σn ∼

{
wσnww

(
1 b$−n

0 1

)
∈
(

1
$n
)
wK0 v(b) ≥ n

wσnw
(
−b−1$n 1

b$−n

)
∈
(
$n−m ∗

$m

)
K0 m = v(b) < n.

Hence, (using (3.4) in the case j = 1) we have

Φ0,1(σn) =q
∫
K0

f0(wkσn)dk

=q
n−1∑
m=0

vol(Ym)f0(
(
$n−m

$m

)
)

=
1− 1

q

1 + 1
q

n−1∑
m=0

q−mαn−m1 αm2 q
m−n/2

=
q−n/2

1 + 1
q

(1− 1
q

)αn1
n−1∑
m=0

(α−1
1 α2)m =

q−n/2

1 + 1
q

αn1 − αn2
1− α−1

1 α2

(1− 1
q

),

1In the calculations below we will abuse notion by writing b instead of b′ which differs from b by a unit (and similarly for
c, c′.) Since our character χ is unramified, this is harmless.
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and

Φ1,1(σn) =q
∫
K0

f1(wkσn)dk

=q
∞∑
m=n

vol(Ym)f1(
(

1
$n
)
w)

=
1− 1

q

1 + 1
q

∞∑
m=n

αn2 q
−mqn/2 =

q−n/2

1 + 1
q

αn2 .

These results give the values in the first column of Table 2. The calculations for the other columns are
similar. The only nuances are that the decompositions analogous to (3.5) and (3.6) may depend instead on
v(c) and take a slightly different shape. We leave the details to the reader. �

3.2. Application to unramified representations. Strictly speaking, the calculation of the local trilinear
form could be carried out at this point using the results of Proposition 3.2 with respect to the basis {f0, f1}
of Iwahori fixed vectors. However, it turns out that the calculations are drastically simplified by using a
different basis. In this section we describe this basis and the corresponding matrix coefficients in the case
that χ1χ

−1
2 6= |·|±1. This implies that π = π(χ1, χ2) is irreducible. It is called an unramified principal series.

The vector φ0 = f0 + f1, which we call the normalized new vector, is obviously fixed by K and, in fact,
πK = Cφ0. Note that φ0(e) = 1. Using bilinearity, Φφ0,eφo =

∑
i,j Φi,j . It is easy to see that Φφ0,eφ0

is
K-biinvariant, so using only the first (or any other) column of Table 2 above, we obtain the well-known
formula of Macdonald. (See, for example, [7, Theorem 4.6.6].)

Proposition 3.3. Let π = π(χ1, χ2) be an unramified admissible representation of GL2(F ). If φ0, φ̃0 are
the normalized new vectors of π and π̃ respectively then the function Φφ0,eφ0

is K-biinvariant and

Φφ0,eφ0
(σn) =

q−n/2

1 + 1
q

αn1 1− α−1
1 α2

q

1− α−1
1 α2

+ αn2
1− α1α

−1
2
q

1− α1α
−1
2

 .

for n ≥ 0 and αi = χi($).

Recall that π = π(χ1, χ2). For π′ = π(χ2, χ1), there is exists an intertwining operator

(3.7) M : π → π′.

The map M is given by the formula

(3.8) (Mf)(g) =
∫
F

f(w ( 1 x
1 ) g)dx

whenever the integral converges. It is defined elsewhere by analytic continuation.

Lemma 3.4. Let π = π(χ1, χ2), and π′ = π(χ2, χ1). Let φ0 (respectively φ′0) be the normalized new vector
of π (resp. π′) as above. Let φ1 = f0 − 1

q f1, and let φ′1 be the similarly defined vector in π′i. Then

(3.9) Mφ0 =
1− α1α

−1
2
q

1− α1α
−1
2

φ′0 and Mφ1 = −
1− α−1

1 α2

q

1− α−1
1 α2

φ′1.

Given this result we abuse notation and call φ0, φ1 eigenvectors of the M .

Proof. As was remarked at the beginning of Section 3.1, if f ∈ V then

Mf = af ′0 + bf ′1 where a = Mf(e) and b = Mf(w).

Using the identity ( 0 1
1 x ) =

(
−x−1 1

0 x

) (
1 0
x−1 1

)
one deduces that

(3.10) f0(w ( 1 x
0 1 )) =

{
0 if x ∈ OF
χ−1

1 (−x)χ2(x) |x|−1 if x /∈ OF ,
9



and

(3.11) f0(w ( 1 x
0 1 )w) =

{
1 if x ∈ $OF
0 if x /∈ $OF .

Therefore, by combining (3.8) and (3.10) we have

Mf0(e) =
∫
F

f0(w ( 1 x
0 1 ))

=
∑∫

$nO×F
f0(w ( 1 x

1 ))dx

=
−∞∑
n=−1

vol($nOF )(α−1
1 α2)n

=(1− 1
q

)
∞∑
n=1

(α1α
−1
2 )n = (1− 1

q
)

α1α
−1
2

1− α1α
−1
2

.

Similarly, (3.8) and (3.11) combine to give Mf0(w) = vol($OF ) = 1
q . So2

(3.12) Mf0 = (1− 1
q

)
α1α

−1
2

1− α1α
−1
2

f ′0 +
1
q
f ′1.

A similar calculation for f1 shows that

Mf1 = f ′0 +
1− 1

q

1− α1α
−1
2

f ′1.

Using the linearity of M , the result follows. �

We have now completed all of the computations necessary to prove the following extension of Proposi-
tion 3.3 using the basis {φ0, φ1} of eigenvectors of M .

Proposition 3.5. Let π = π(χ1, χ2) such that χ1χ
−1
2 6= ± |·|. Let φ0, φ1 be the eigenvectors in the sense

of Lemma 3.4, and φ̃0, φ̃1 the analogous vectors in π̃ = π(χ−1
1 , χ−1

2 ). The values of the matrix coefficients
Ψi,j(g) = Φφi,eφj (g) are q−n/2

1+ 1
q

times the values given by Table 3 in which

A =
1− α1α

−1
2
q

1− α1α
−1
2

,
1− α−1

1 α2

q

1− α−1
1 α2

.

Note that A is the eigenvalue of φ0 and −B is the eigenvalue of φ1.

(i, j) Φφi,eφj (σn) Φφi,eφj (wσn) Φφi,eφj (σnw) Φφi,eφj (wσnw)

(0, 1) 1
q (αn1 − αn2 )A −(αn1 − αn2 )A 1

q (αn1 − αn2 )A −(αn1 − αn2 )A
(1, 0) (αn1 − αn2 )B (αn1 − αn2 )B − 1

q (αn1 − αn2 )B − 1
q (αn1 − αn2 )B

(1, 1) 1
q (αn1A+ αn2B) −(αn1A+ αn2B) − 1

q2 (αn1A+ αn2B) 1
q (αn1A+ αn2B)

(0, 0) αn1B + αn2A αn1B + αn2A αn1B + αn2A αn1B + αn2A

Table 3. Values of matrix coefficients of Iwahori fixed vectors II

2In all of these calculations, we see that the integral converges if and only if |α1α
−1
2 | < 1. However, via analytic continuation,

the results are the same for all
˛̨̨
χ1χ

−1
2

˛̨̨
6= 1.
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Proof. In the case of Ψ1,0 = Φφ1,eφ0
, we see that

Ψ1,0(kg) = 〈π(kg)φ1, φ̃0〉 = 〈π(g)φ1, π̃(k−1)φ̃0〉 = 〈π(g)φ1, φ̃0〉 = Ψ1,0(g)

for all k ∈ K. So Φ(σn) = Φ(wσn) and Φ(wσnw) = Φ(σnw). Now we use the bilinearity of matrix coefficients
to write

Φφ1,eφ0
= Φ0,0 + Φ0,1 −

1
q

(Φ1,0 + Φ1,1),

and calculate the value on σn using Table 2:

Ψ1,0(σn) = Φ0,0(σn) + Φ0,1(σn)− 1
q

(Φ1,0(σn) + Φ1,1(σn))

= αn1 ·
1
q

+
αn1 − αn2

1− α−1
1 α2

(1− 1
q

)− 1
q

(0 + αn2 )

= (αn1 − αn2 )

(
1
q

+
1− 1

q

1− α−1
1 α2

)

= (αn1 − αn2 )

 ( 1
q −

α−1
1 α2

q ) + (1− 1
q )

1− α−1
1 α2

 = (αn1 − αn2 )B.

For wσnw:

Ψ1,0(wσnw) = Φ0,0(wσnw) + Φ0,1(wσnw)− 1
q (Φ1,0(wσnw) + Φ1,1(wσnw))

= αn2 · 1
q + 0− 1

q

(
αn2−α

n
1

1−α1α
−1
2

(1− 1
q ) + αn1

)
= − 1

q (αn1 − αn2 )
(

1− 1− 1
q

1−α1α
−1
2

)
= − 1

q (αn1 − αn2 )B.

The computation of Ψ1,1(σn) = Φφ1,eφ1
(σn) is similar:

Ψ1,1(σn) =Φ0,0(σn)− 1
q (Φ0,1(σn) + Φ1,0(σn)) = 1

q2 Φ1,1(σn)

= 1
qα

n
1 − 1

q (1− 1
q ) αn1−α

n
2

1−α−1
1 α2

+ 1
q2α

n
2

= 1
q

(
αn1

(
1−

1− 1
q

1−α−1
1 α2

)
+ αn2

(
1
q +

1− 1
q

1−α−1
1 α2

))
= 1
q (αn1A+ αn2B).

The formulas for Ψ1,1(wσn), Ψ1,1(σnw), Ψ1,1(wσnw) and for Φφ0,eφ1
are derived in the same fashion. The

final row is just a restatement of Proposition 3.3. �

In order to prove Theorems 1.3 and 5.1 we will need to know something about the matrix coefficient
Ψ2,2 = Φφ2,eφ2

where φ2 =
(
$−1

1

)
φ0. (In particular, see Corollary 1.5.) By way of the following lemma

and a messy calculation, one could give a formula for Ψ2,2 similar to those of Proposition 3.5.

Lemma 3.6. Let π = π(χ, χ−1), and α = χ($). Let φ2 =
(
$−1

1

)
φ0 ∈ π where φ0 is as above. Then

φ2 ∈ πK0 . More precisely,

φ2 =
1

1 + 1
q

(
(α+ α−1)q−1/2φ0 + (α−1q1/2 − αq−1/2)φ1

)
Proof. Let k =

(
a b
c d

)
∈ K0. Then

φ2(gk) = φ0(g
(
a b
c d

) (
$−1

1

)
) = φ0(g

(
a$−1 b
c$−1 d

)
)

= φ0(g
(
$−1

1

) (
a b$

c$−1 d

)
) = π(

(
$−1

1

)
)φp,0(g) = φp,2(g)

since
(

a b$
c$−1 d

)
∈ K and φp,0 is fixed by K.

So φ2 = φ2(e)f0 +φ2(w)f1. Writing this in terms of the basis {φ0, φ1} and simplifying leads to the desired
result. �
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3.3. Application to the special representations. We remark that the results of this section are not
new. The matrix coefficient of a Steinberg representation was given by Godement-Jacquet in [12] for GLn,
and by Borel [5] in general3. However, the present proof is included since it follows so neatly from the results
of the previous section.

If χ1χ
−1
2 = |·|±1 then the resulting induced representation is reducible. Indeed, writing

π = π(χ |·|1/2 , χ |·|−1/2) and π̃ = π(χ−1 |·|−1/2
, χ−1 |·|1/2),

this is reflected in the exact sequences

(3.13) 0 −→ σχ −→ π −→ Cχ −→ 0,

(3.14) 0 −→ Cχ−1 −→ π̃ −→ σχ−1 −→ 0

where Cµ is the 1-dimensional space on which G acts by µ(det g) and σµ is a special representation.

g σn wσn σnw wσnw

Φ0,0(g) αnq−n−1

1+ 1
q

αn(q−1−q−n)

1+ 1
q

0 αnq−1

1+ 1
q

Φ1,0(g) 0 αn

1+ 1
q

αnq−n−1

1+ 1
q

αn(1−q−n)

1+ 1
q

Φ0,1(g) αn(q−1−q−n−1)

1+ 1
q

αnq−n

1+ 1
q

αnq−1

1+ 1
q

0

Φ1,1(g) αn

1+ 1
q

0 αn(1−q−n−1)

1+ 1
q

αnq−n

1+ 1
q

Table 4. Values of matrix coefficients for π = π(χ |·|1/2 , χ |·|−1/2)

We write α = χ($). So α1 = αq1/2 and α2 = αq−1/2. Using these values of α1, α2, we rewrite Table 2
including the factor q−n/2

1+ 1
q

as Table 4.

Our standard model of σχ will be as a subset of π as in (3.13). We will see that σ̃χ ' σχ−1 which could be
considered as a subset of π(χ−1 |·|1/2 , χ−1 |·|−1/2). However, for the purposes of computing the inner form

(3.15) 〈·, ·〉 : σχ × σ̃χ → C

it is better to consider σ̃χ as the quotient π̃/Cχ−1 as in (3.14). As a matter of notation, given these models
of σχ and σχ−1 we use letters f, φ to denote elements of π (or σχ), f̃ , φ̃ to denote elements of π̃, and f̄ , φ̄ to
denote elements of σχ−1 . The following is a well-known result.

Lemma 3.7. The pairing on π × π̃ defined in (3.2) descends to a well defined pairing on σχ × σχ−1 . That
is to say, if f ∈ σχ and f̄ ∈ σχ−1 then

〈f, f̄〉 =
∫
K

f(k)f̃(k)dk

for any f̃ ∈ π̃ whose image in σχ−1 is f̄ .

Note that φ̃0 = f̃0 + f̃1 ∈ π̃ is K-invariant so it’s image in σχ−1 must be zero. Therefore, as a corollary
to Lemma 3.7, we have that

(3.16)
∫
K

f(k)dk =
∫
K

fφ̃0(k)dk = 〈f, 0〉 = 0

3What we call the special representation in this paper is a twist of the Steinberg representation of GL2.
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for all f ∈ σχ. In other words, if f ∈ σχ then
∫
K
f(k)dk = 0. In fact, the converse is also true. Namely if

f ∈ π is such that
∫
K
f(k)dk = 0 then f ∈ σχ.

The space σK0
χ is well known to be 1-dimensional. The vector φ = f0− 1

q f1 ∈ π meets the criterion above,
hence is an element of σχ. We call it the normalized new vector. In order to choose a new vector in σχ−1

consistent with the choice of φ, note that by

M : π̃ = π(χ−1 |·|−1/2
, χ−1 |·|1/2)→ π(χ−1 |·|1/2 , χ−1 |·|−1/2) = π′,

σχ−1 is isomorphic to a subspace of π′.
So we define the normalized new vector φ̄ of σχ−1 to be the image of any vector φ̃ for which M(φ̃) =

f ′0 − 1
q f
′
1. By Lemma 3.4, M(f̃0 − 1

q f̃1) = (1 + 1
q )φ̃1. A simple calculation then shows that (1 + 1

q )φ̃1 and f̃0

have the same image in σχ−1 .
We now have all of the necessary ingredients to prove the generalization of Proposition 3.3 to the case of

π a special representation.

Proposition 3.8. Let χ be an unramified character of F and α = χ($). If φ, φ̄ are new vectors of a
special representation σχ and its contragradient σχ−1 respectively, the value of the matrix coefficient Φ =
Φφ1,φ̄1

/Φφ1,φ̄1
(e) is determined by the Table 5 in which n ≥ 1.

g w σn wσn σnw wσnw

Φ(g) −q−1 αnq−n −αnq1−n −αnq−1−n αnq−n

Table 5. Values of matrix coefficient associated to the new vector of a special representation

Proof. We take φ, φ̄ as above. Then φ̄ is the image of f̃0. So, by Lemma 3.7,

Φφ1,φ̄1
(g) = 〈σχ(g)φ, φ̄〉 =

∫
K

(f0 − 1
q f1)(kg)f̃0(k)dk = Φ0,0(g)− 1

qΦ1,0(g).

The result can now be deduced from Table 4. �

Remark. For all of our applications we are interested in determining I(φ⊗eφ)

〈φ,eφ〉 . Since 〈φ, φ̃〉 = Φφ,φ(e), it is
convenient to normalize Φ in this way.

4. Local trilinear forms

In this section we compute the term Iv(ϕv) appearing on the right hand side of (2.5). To this end, we
tabulate the local L and zeta factors that appear in Ichino’s formula in Section 4.1. In Section 4.2 we
calculate the forms I ′v(ϕv) using our results above.

We now assume that all local representations are unitary. In the unramified case this means we only
consider π(χ1, χ2) and that χi($) is either complex with absolute value 1 for i = 1, 2, or else χ1($) =
χ−1

2 ($) = q−λ for some real λ which we can assume to be in the interval (0, 1
2 ). (The latter case are the

so-called complementary series.) In the case of special representations σχ, χ we may assume without loss of
generality that χ2 = 1.

4.1. Local L-factors. Let F be a nonarchimedean local field with uniformizer $, and let q be the order of
the residue field. We let χ, ν, µ : F× → C× be unramified characters (perhaps with subscripts), and denote
γ = χ($), β = ν($) and α = µ($) (with subscripts if χ, ν, µ have subscripts). Then Lv(s, χ) = (1−γq−s)−1,
and the local zeta function is ζFv (s) = Lv(s, 1).

Corresponding to each irreducible admissible representation π of GL2(F ) there is a representation ρ :
WF → GL2(C) of the Weil group. Any representation ρ of the WF gives rise to an L-factor as in [33]. Let
ρi correspond to πi in this manner. Let Π = π1 ⊗ π2 ⊗ π3. We define

L(s,Π) = L(s, ρ1 ⊗ ρ2 ⊗ ρ3) and

L(s,Π,Ad) = L(s,⊕i Ad(ρi)) =
3∏
i=1

L(s,Ad(ρi)) =
3∏
i=1

L(s, πi,Ad)
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where ρ1⊗ρ2⊗ρ3 : WF → GL8(C) is the standard tensor product representation and Ad(ρi) : WF → GL3(C)
is the adjoint representation.

For the triple product, we are especially interested in the following three cases:

Π1 = π(µ1, µ2)⊗ π(ν1, ν2)⊗ σχ, Π2 = π(µ1, µ2)⊗ σν ⊗ σχ, Π3 = σµ ⊗ σν ⊗ σχ.
The triple product L-function in each of these cases is

Lv(s,Π1) =
∏

ε,δ∈{1,2}

Lv(s+ 1
2 , µενδχ) =

∏
ε,δ∈{1,2}

1
1− αεβδγq−s−1/2

,

Lv(s,Π2) =
∏

ε∈{1,2}

Lv(s, µενχ)Lv(s+ 1, µενχ) =
∏

ε∈{1,2}

1
(1− αεβγq−s)(1− αεβγq−s−1)

,

Lv(s,Π3) = Lv(s+ 3
2 , µνχ)Lv(s+ 1

2 , µνχ)2 =
1

(1− αβγq−s−3/2)(1− αβγq−s−1/2)2
.

The adjoint L-functions agree with that given by Gelbart-Jacquet [11]. For the cases at hand,

Lv(s, π(χ1, χ2),Ad) =
Lv(s, 1)

(1− γ1γ
−1
2 q−s)(1− γ−1

1 γ2q−s)
,

Lv(s, σχ,Ad) =Lv(s+ 1, 1) =
1

1− q−s−1
.

If χ1 = χ−1
2 , L(s, π(χ1, χ2) is equal to the symmetric square L-function precisely because, in this case, π has

trivial central character.
For the discrete series representations πkdis of weight k and the principal series representations πtR of

GL2(R) we have the following L-functions. First, let

ζR(s) = π−s/2Γ(s/2), ζC(s) = (2π)−sΓ(s)

where Γ(s) is the standard Γ-function. Then

L(s, πk1dis ⊗ π
k2
dis ⊗ π

k3
dis) = ζC(s+ 1/2)ζC(s+ k1 − 3/2)ζC(s+ k2 − 1/2)ζC(s+ k3 − 1/2),

L(s, πkdis ⊗ πkdis ⊗ πtR) = ζC(s+ t+ k − 1)ζC(s+ t)ζC(s− t+ k − 1)ζC(s− t),

L(s, πt1R ⊗ π
t2
R ⊗ π

t3
R ) =

∏
ε,δ,γ∈{±1}

ζR(s+ εt1 + δt2 + γt3)

L(s, πkdis,Ad) = ζC(s+ k − 1)ζR(s+ 1), L(s, πtR,Ad) = ζR(s+ 2t)ζR(s)ζR(s− 2t).

4.2. Explicit computations: F nonarchimedean. Recall that we want to make Ichino’s formula (2.5)
explicit, i.e. calculate Iv(ϕ) which is a product of L-factors times

I ′v(ϕ) =
∫
Z(F )\G(F )

〈Π(g)ϕ,ϕ〉 =
∫
Z(F )\G(F )

Φ1(g)Φ2(g)Φ3(g)dg.

If all of the local data is unramified, Ichino calculated that the trilinear form I(ϕ) = 1—the normalization of
(2.4) is chosen precisely to give this result. So in all of our computations at least one of the representations
will be special.

We assume from now on that π3 = σχ, and we denote the normalized matrix coefficient associated to a
new vector of σχ by Φ3 as in Proposition 3.8. So our object is to calculate

I ′v(ϕ1 ⊗ ϕ2 ⊗ ϕ3) =
∫
Z(F )\G(F )

Φ1(g)Φ2(g)Φ3(g)dg

where Φi = Φϕi,ϕi for various choices of ϕi.
From Tables 1 and 4 we read off that (for all n ≥ 0)

vol(K0gK0)Φ(g) = ± γn

q(1 + 1
q )

for g ∈ {σn, wσn, σnw,wσnw} with the minus sign in the cases σnw or wσn and the positive sign otherwise.
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All of the matrix coefficients we are considering are K0-biinvariant, so we combine this with Lemma 3.1
to obtain the formula

(4.1)
∫
Z(F )\G(F )

Φ1(g)Φ2(g)Φ(g)dg =
Φ1(e)Φ2(e)− Φ1(w)Φ2(w)

1 + q

+
∞∑
n=1

γn

1 + q

(
Φ1Φ2(σn)− Φ1Φ2(wσn)− Φ1Φ2(σnw) + Φ1Φ2(wσnw)

)
.

In computing the forms, we will use (many times) the following identities. Let

(4.2) A =
1− α2

q

1− α2
and B =

1− α−2

q

1− α−2
.

Then

A+B =
1− α2

q

1− α2
+

1− α−2

q

1− α−2
=
−α−1 + α

q + α− α−1

q

α− α−1
= 1 + 1

q ,(4.3)

Aα+Bα−1 =
1− α2

q

α−1 − α
+

1− α−2

q

α− α−1
=
−1 + α2

q + 1− α−2

q

α− α−1
= 1

q (α+ α−1),(4.4)

Aα−1 +Bα =
α−1 − α

q

1− α2
+
α− α−1

q

1− α−2
=
−α−2 + 1

q + α2 − 1
q

α− α−1
= α+ α−1(4.5)

Aα2 +Bα−2 = (Aα+Bα−1)(α+ α−1)− (A+B) = 1
q (α2 + α−2) + 1

q − 1(4.6)

Aα−2 +Bα2 = (Aα−1 +Bα)(α+ α−1)− (A+B) = α2 + α−2 + 1− 1
q .(4.7)

4.2.1. Only one of the representations is special. In this section we treat the case when two of the represen-
tations are unramified, and only one is special. For the application to subconvexity this is the case of most
interest since it corresponds to the place p in Corollary 1.5. Let π1 = π(µ, µ−1) and π2 = π(ν, ν−1) and
π = σχ. Set α = µ($), β = ν($) and γ = χ($). Finally, let {φi0, φi1} be the basis of eigenvectors of πi as in
Proposition 3.5.

Remark. Note that we have fixed π1 and π2 to have trivial central character. This has the effect of making the
formulas somewhat more manageable. However, it is true that the results below extend to the more general
situation in which only the product of central characters has trivial central character, i.e. π1 = π(χ1, χ2),
π2 = π(ν1, ν2) and χ1χ2ν1ν2 = 1.

We combine the results of the previous sections to prove the following.

Proposition 4.1. Let Φ3 be the normalized matrix coefficient corresponding to a new vector φ3 ∈ σχ as in
Proposition 3.8, and define Ψi

j,k = Φ
φij ,φ

i
k

for i = 1, 2 as in Proposition 3.5. Then

(4.8)
∫
Z\G

Ψ1
0,0Ψ2

j,kΦ3(g)dg = L( 1
2 ,Π

1) · 1
q2 (1− 1

q ) · C

where

C =

{
1 + 1

q2 −
α2+α−2

q if j = k = 1,
0 otherwise.

Proof. To show directly that C = 0 when j and k are not both 1 is not hard using (4.1). However, we give
a more conceptual proof. Suppose that ` : π1 × π2 × σχ → C is any G-invariant linear form. Note that if
φ ∈ σχ then Lemma 3.7 implies

∫
K
π(k)φdk = 0.

We claim that `(φ1
0, φ

2
0, φ) = 0 for all φ ∈ σχ. Since φ1

0 and φ2
0 are K-invariant (and ` is G-invariant),

`(φ1
0, φ

2
0, π(k)φ) = `(π(k)−1φ1

0, π(k)−1φ2
0, φ) = `(φ1

0, φ
2
0, φ)

for all k ∈ K. Integrating over K, we find that

`(φ1
0, φ

2
0, φ) = `(φ1

0, φ
2
0,

∫
K

π(k)φdk) = `(φ1
0, φ

2
0, 0) = 0.
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Since the matrix coefficients are bi linear forms, fixing the vectors in one of the coordinates gives a linear
form in the other. For example, if we fix φ̃1 ⊗ φ̃2 ⊗ φ̃ ∈ Π̃ then

` : π1 × π2 × π → C `(φ1, φ2, φ) =
∫
Z\G

Φφ1,eφ1Φφ2,eφ2Φφ,eφ(g)dg

is a linear form on Π. From this point of view, it is immediate that in each of the cases of Proposition 4.1
that are claimed to be zero, as a form on either Π or Π̃ (or both) the claim applies.

To complete the proof of Proposition 4.1, we need to do the calculation of (4.8). Let Ai,−Bi be the
eigenvalues of the intertwining operator M on πi. By (4.1), the integral (4.8) is equal to 1

q times

1
q

+ (1 + 1
q )−1

∞∑
n=1

 (αβγq )nB1A2 +
(
α−1β−1γ

q

)n
A1B2

+
(
α−1βγ
q

)n
A1A2 +

(
αβ−1γ
q

)n
B1B2



= 1
q + (1 + 1

q )−1

[
B1A2

αβγ
q

1− αβγ
q

+
A1B2

α−1β−1γ
q

1− α−1β−1γ
q

+
A1A2

α−1βγ
q

1− α−1βγ
q

+
B1B2

αβ−1γ
q

1− αβ−1γ
q

]
Simplifying the expression inside the parentheses yields L( 1

2 ,Π) times

γ

q
(A1α

−1 +B1α)(A2β +B2β
−1)− γ4

q4
(A1 +B1)(A2 +B2)

+
γ3

q3
[(A2 +B2)(A1α

−1 +B1α)(β + β−1) + (A1α+B1α
−1)(A2β +B2β

−1)]

− γ2

q2

[
(A1 +B1)(A2 +B2) + (A1 +B1)(A2β

2 +B2β
−2) + (A2 +B2)(A1α

−2 +B1α
2)
]

Applying formulas (4.3)-(4.7), this becomes 1
q (1 + 1

q )L( 1
2 ,Π) times

(4.9) − 1
q (1 + 1

q )(1 + 1
q2 ) + γ(α+ α−1)(β + β−1)( 1

q + 1
q3 )− 1

q (α2 + α−2 + β2+β−2

q )

So, combining the above, we find that (4.8) is equal to 1
q2L( 1

2 ,Π) times

L( 1
2 ,Π)−1 + (4.9).

Since L( 1
2 ,Π)−1 is equal to

(4.10) (1 + 1
q2 )2 − 1

q (1 + 1
q2 )γ(α+ α−1)(β + β−1) + 1

q2 (α2 + α−2 + β2 + β−2),

the value of C in the statement of the proposition follows. �

Corollary 4.2. Let the notation be as in Proposition 4.1, and set φ = φ1
0 ⊗ φ2

2 ⊗ φ3 where φ2
2 =

(
$−1

1

)
φ2

0

as in Lemma 3.6. Then

(4.11)
Iv(φ)
〈φ, φ〉

=
1
q

(1 + 1
q )−1

In particular, Iv(φ)

〈φ,φ〉 �
1
q where the implicit constant can be taken to be independent of Π and q.

Proof. Apply Lemma 3.6 to write

φ2
2 = aφ2

0 + bφ2
1 where a =

βq−1/2 + β−1q−1/2

1 + 1
q

, b =
β−1q1/2 − βq−1/2

1 + 1
q

.

First, assume that β = β−1. By the bilinearity of matrix coefficients,

(4.12) Ψ2,2 = Φaφ0+bφ1,aφ0+bφ1
= |a|2 Ψ1,1 + abΨ0,1 + abΨ1,0 + |b|2 Ψ1,1.
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Recall that Iv = ζFv (2)−2 Lv(1,Π1,Ad)

Lv( 1
2 ,Π

1)
I ′v. Therefore, (4.8) implies that

Iv(φ)

〈φ, φ̃〉
=ζFv (2)−2Lv(1,Π

1,Ad)
Lv( 1

2 ,Π
1)

∫
Z\G

Ψ1
0,0Ψ2

2,2Φ3(g)dg

=ζFv (2)−2Lv(1,Π
1,Ad)

Lv( 1
2 ,Π

1)
|b|2

∫
Z\G

Ψ1
0,0Ψ2

1,1Φ3(g)dg = 1
q2 (1− 1

q )−1.

In the final step we have used that

ζFv (2)−2Lv(1,Π2,Ad) =
1 + 1

q

(1− 1
q )

(1 + 1
q2 −

α2+α−2

q )−1(1 + 1
q2 −

β2+β−2

q )−1.

Although the result is the same if π2 is a complementary series (i.e. β = qλ for some λ ∈ (0, 1
2 )) the

method is slightly different because the inner product is not the same. If φ, φ′ ∈ π2, then

〈φ, φ′〉 =
∫
K

φ(k)(Mφ′)(k)dk.

(Compare with (3.2).) Thus, since φ2 = φ2,

Ψ2,2 =〈π2(·)φ2, φ2〉 =
∫
K

φ2(k·)(Mφ2)(k)dk

=a2A2Ψ0,0 + abA2Ψ1,0 − abB2Ψ0,1 − b2B2Ψ1,1.

The remainder of proof goes through as above, except one replaces |b|2 with −b2B2/A2. (We must divide
by A2 because 〈φ2, φ2〉 = Ψ2,2(e) = A2.) As it turns out, this is exactly the same expression in terms of β
as was |b|2. �

4.2.2. Two of the representations are special. We now consider the case Π2 = π(µ, µ)⊗σν⊗σχ. The following
result will be used in Theorem 5.1.

Proposition 4.3. Let Π2 be as above, and denote by Φ2 and Φ3 the normalized matrix coefficients corre-
sponding to the new vectors φ2 ∈ σν and φ3 ∈ σχ as in Proposition 3.8. Let Ψ1

0,0 = Φ
φ1

0,φ
1
0

be the matrix
coefficient corresponding to φ1

0 ∈ π(µ, µ−1) as in Proposition 3.5. Then

(4.13)
∫
Z\G

Ψ1
i,jΦ

2Φ3(g)dg = 1
q (1− 1

q )L( 1
2 ,Π

2)(1− α2

q )(1− α−2

q ).

Therefore, if we set φ = φ1
0 ⊗ φ2 ⊗ φ3 then Iv(φ)

〈φ,φ〉 = 1
q .

Proof. The evaluation of (4.13) is obtained by a calculation analogous to the proof of (4.8). Since the method
is identical, we leave the details to the reader.

Note that
ζFv (2)−2Lv(1,Π2,Ad) = (1− α2

q )−1(1− α−2

q )−1(1− 1
q )−1.

Thus, given (4.13), the conclusion that Iv(φ)

〈φ,φ〉 = 1
q is immediate. �

4.2.3. All three representations are special. This is the case that corresponds to the primes dividing N in
Theorem 1.4. We remark that in this case and that of Section 4.3, the results are already known by [18].
However, the proofs given here differs from that of [18], and we include it to highlight the analogy with the
calculations of the previous sections.

We denote
ε = ε( 1

2 , σχ ⊗ σµ ⊗ σν) = −(χµν)($) = −αβγ.
Proposition 4.4. Let π1 = σµ and π2 = σν . Denote the matrix coefficient associated to the new vector
φi ∈ πi as in Proposition 3.8 by Φi and set φ = φ1 ⊗ φ2 ⊗ φ3. Then

(4.14)
∫
Z\G

Φ1Φ2Φ3(g)dg = (1 + ε)Lv( 1
2 ,Π

3) 1
q (1− 1

q )(1 + ε
q )2,

and Iv(φ)

〈φ,eφ〉 = 1−ε
q (1 + 1

q ).
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Proof. We use Proposition 3.8 and apply (4.1):

1− 1
q2

1 + q
+

(1− q2)(1− 1
q2 )

1 + q

∞∑
n=1

(
− ε

q2

)n
=

1− 1
q2

1 + q

(
1−

(1− q2)( εq2 )

1 + ε
q2

)
Equation (4.14) is immediate. The value of Iv(φ) now follows by multiplying by the appropriate normalizing
factors as given in Section 4.1. �

Proposition 4.5. Let Π = σµ ⊗ σν ⊗ σχ and ΠB the admissible representation of B associated to Π via
Jacquet-Langlands where B is the unique quaternion division algebra over F . Let ε = −(µνχ)($). If φ ∈ ΠB

and φ̃ ∈ Π̃B then

(4.15)
Iv(φ)
〈φ, φ〉

= (1− ε) 1
q (1− 1

q ).

Proof. The Jacquet-Langlands lift of σχ is the character χB : B× → C× given by χB(β) = χ ◦NB(β) where
NB is the reduced norm. Hence ΠB ' ηB where ηB = µBνBχB , and∫

F×\B×
Φφ,φ(β)dβ =

∫
F×\B×

〈ΠB(β)φ, φ〉dβ

=
∫
F×\B×

ηB(β)〈φ, φ〉dβ

=〈φ, φ〉
{

vol(F×\B×) if ηB is trivial,
0 otherwise.

Recall (see Section 2.2) that vol(F×\B×) = 2
q−1 . To obtain Iv, one multiplies this by the factor ζFv (2)−2 Lv(1,Πv,Ad)

Lv( 1
2 ,Πv)

.
Using the values given in Section 4.1 and simplifying, the result follows. �

Our factor ε is indeed the local factor ε( 1
2 ,Π). So Propositions 4.4 and 4.5 provide an explicit realization of

Prasad’s result. More precisely, the integrated matrix coefficient provides a trilinear form on Π (respectively
ΠB) that is invariant by the diagonal action of G (resp. B×.) It is nonzero on B× if and only if ε = −1. On
G, φ = φ1

1 ⊗ φ2
1 ⊗ φ3

1 is a test vector if and only if ε = +1.

4.3. Explicit computations: F = R. Although the proof given here differs from that of Ichino and Ikeda,
the result is Proposition 7.2 of [18].

Let K = {κθ =
(

cos θ sin θ
− sin θ cos θ

)
| θ ∈ [0, 2π)}, N = {n(x) = ( 1 x

1 ) | x ∈ R} and A = {a(y) = ( y 1 ) | |y| ≥ 1}.
Then PGL2(R) can be given by the coordinates KAK. Recall (2.8) gives the Haar measure in this case.

It is well known (see [23, Prop. 14.1]) that for the weight k discrete series, which we denote by πkdis, the
matrix coefficient corresponding to a new vector φ is given by

(4.16) Φ(g) =
(2
√

det g)k

(a+ d+ i(b− c))k
g =

(
a b
c d

)
,det g > 0

and Φ(g) = 0 if det g < 0. In the KAK coordinates (and y ≥ 1) this is

(4.17) Φ(κθ1a(y)κθ2) = 2ke2πik(θ2−θ1) yk/2

(y + 1)k
.

As a matter of notation, let φ− = π(
(−1

1

)
)φ. In particular, if φ ∈ πkdis has weight m then φ− has weight

−m. Moreover, if φ is a new vector then the matrix coefficient associated to φ− is Φ.

Proposition 4.6. For i = 1, 2, 3, let πi = πkidis be such that k = k1 = k2 + k3, and let φi ∈ πi be a new
vector. Set φ = φ1 ⊗ φ−2 ⊗ φ

−
3 ∈ Π∞ = πk1dis ⊗ π

k2
dis ⊗ π

k3
dis. Then∫

PGL2(R)

Φφ,φ(g)dg =
2π
k − 1

,

and Iv(φ)

〈φ,φ〉 = 2.
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Proof. Using the description above and the KAK coordinates, we have∫
PGL2(R)

Φφ,φ(g)dg =
2k1+k2+k3−2

π

∫ 2π

0

∫ ∞
1

∫ 2π

0

y(k1+k2+k3)/2

(1 + y)k1+k2+k3
(1− y−2)dθ1dydθ2

=22kπ

∫ ∞
1

yk − yk−2

(1 + y)2k
dy

=22kπ

[
− yk−1

(k − 1)(1 + y)2k−2

]∞
1

= 2π/(k − 1).

Since 〈φ, φ〉 = Φ(e) = 1, to get Iv(φ) one multiplies this result by ζR(2)−2 Lv(1,Π∞,Ad)

Lv( 1
2 ,Π∞)

which is easily seen to

be equal to (k − 1)/π. Hence, Iv(φ)

〈φ,φ〉 = 2. �

5. Generalizing Watson’s formula

We now work globally. Let F be a totally real number field, and π1, π2, π3 cuspidal automorphic repre-
sentations of PGL2(F ). It is clear from the description in Section 4.3 that if ϕ = ϕ1 ⊗ ϕ2 ⊗ ϕ3 for some
ϕi =

⊗
v ϕi,v ∈ πi then I(ϕ) = 0 unless at each infinite place the weights ki,v of ϕi sum to zero.

We say that Π = π1 ⊗ π2 ⊗ π3 is almost balanced if at each real place v, the largest weight is the sum of
the two smaller weights.

Theorem 5.1. Let π1, π2, π3 cuspidal automorphic representations of PGL2 over a totally real number field
F such that Π = π1 ⊗ π2 ⊗ π3 is almost balanced. Assume that the conductor Ni of πi is squarefree for each
i = 1, 2, 3. Let N = gcd(N1,N2,N3). For {j, k, l} = {1, 2, 3}, write

Nj = Nnjnjknjl where njk = nkj = gcd(Nj ,Nk)/N.

Let M be the product of all primes dividing N1N2N3. Let B be the global quaternion algebra such that
dim HomB(ΠB ,C) = 1. (So the discriminant of B divides N.)

Define the vector ϕ = ϕ1 ⊗ ϕ2 ⊗ ϕ3 ∈ ΠB as follows. For v | ∞, let kv be the maximum weight, and let
ϕi,v be twists of the normalized new vectors such that their weights add to zero as in Proposition 4.6. At a
finite prime p | nj, let ϕi,p be the normalized new vector for i = j, k, and the twists of the normalized new
vector by

(
$−1

1

)
as in Lemma 3.6 (where it is denoted as φ2.) In all other cases we take ϕi,v to be the

normalized new vector. Let ϕi = ⊗vϕi,v.
Under this choice of ϕ and for db the Tamagawa measure,

(5.1)

∣∣∣∫[B×]
ϕ(b)db

∣∣∣2∏3
i=1

∫
[B×]
|ϕi(b)|2 db

=
ζF (2)

23 |∆F |3/2
L( 1

2 ,Π)
L(1,Π,Ad)

∏
v|∞M

Cv

where, for finite places,

Cp =


2

N(p) (1 + εp

N(p) ) if p | N
1

N(p) (1 + 1
N(p) )−1 if p | nj

1
N(p) if p | njk

and for infinite places, Cv = 2 if all three representations πi,v are discrete series and Cv = 1 otherwise. Here
εp = εp( 1

2 ,Πp).

Remark. It is not strictly necessary to choose the local components of ϕ to be normalized. Indeed, if we
replace ϕv by any nonzero constant multiple, since (5.1) is self-normalizing, the same formula still holds.

Note that Theorem 1.4 follows from Theorem 5.1 in the case that N1 = N2 = N3 = N. Moreover,
assuming that F = Q this is (the adelic version of) Watson’s result [36, Theorem 3]. To verify this, note
that the left hand side of (1.4) (or (5.1)) is essentially the adelic version of the left hand side of Watson’s
formula. Indeed, the only difference is that the volume of the fundamental domain in Watson’s case is

2ζQ(2)
∏
p∈ΣB

(1− p)
∏

p|N,p/∈ΣB

(1 + p)
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whereas here, since we have chosen the Tamagawa measure, the volume is 2. Adjusting the formulas accord-
ingly, the right hand sides agree.

5.1. Setup and proof of Ichino’s theorem. Before giving the proof of Theorem 5.1 we recall the notation
and proof of Theorem 2.1. Let

GSp2n = {g ∈ GL2n | gJ tg = ν(g)J, ν(g) ∈ Gm}

where

J =
(

0 In
−In 0

)
,

and In is the n × n identity matrix. Let V be the quadratic space associated to the quaternion algebra B.
Let ι denote the main involution of B, and define the symmetric bilinear form (x, y) = trB/F (xyι). Let

GO(V ) = {g ∈ GL(V ) | (gx, gy) = ν(g)(x, y), ν(g) ∈ Gm}.

The subgroups Sp2n and O(V ) are those for which ν(g) = 1.
Let ψ = ⊗ψv be a nontrivial additive character of A/F . The Weil representation ω on Sp2n(A)×O(V )(A)

can be extended to the adelic points of

G(Sp2n ×O(V )) = {(g, h) ∈ GSp2n ×GO(V ) | ν(g) = ν(h)}.

5.1.1. Shimizu’s theta lifting. For a certain space of Schwartz functions S(V (A)n) one defines the associated
theta function

θ(g, h, φ) =
∑

x∈V (F )n

ω(g, h)φ(x).

When n = 1, π is an irreducible unitary cuspidal representation of GL2(A), and πB is the representation
of B×(A) given by the Jacquet-Langlands correspondence, this theta function can be employed to give a
realization of the Jacquet-Langlands transfer.

θ : π ⊗ S(V (A))→ πB ⊗ π̃B

given by

θ(h; f, φ) =
∫

SL2(F )\SL2(A)

f(gg′)θ(gg′, h;φ)dg

Here, dg =
∏
dgv is the Tamagawa measure on SL2(A), and h ∈ GO(V )(A) and g′ ∈ GL2(A) satisfies

ν(g′) = ν(h). This map is well-defined, equivariant and surjective. Moreover, there exist corresponding local
maps

θv : πv ⊗ S(V (Fv))→ πBv ⊗ π̃Bv such that θ = ⊗θv.

We remark that θ(f, φ) is an automorphic form on GO(V ), but it can be regarded as an automorphic
form on B×(A)×B×(A) via the map

B× ×B× → GO(V ) (b1, b2) · x = b1xb
−1
2 .

For f = ⊗fv ∈ π, we define the Whittaker function of f with respect to ψ̄ to be

(5.2) Wψ
f (g) =

∫
F\A

f(( 1 x
1 ) g)ψ(x)dx

where dx is the Tamagawa measure on A. Using this we define

(5.3) B̃v(fv, φv) =
∫
N(Fv)\SL2(Fv)

ω(gv, 1)φv(1)Wψv
fv

(gv)dgv.
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5.1.2. Local/global forms on πB ⊗ π̃B. We continue to consider the case n = 1. It is a result of Waldspurger
(see [35]) that if θv(fv, φv) = ϕv ⊗ ϕ̃v, defining

B\v(ϕ⊗ ϕ̃v) = ζv(2)L(1, πv,Ad)−1B̃v(fv, φv)

gives a Bv-invariant pairing on πBv ⊗ π̃Bv . Moreover, for a fixed element of πB ⊗ π̃B , B\v(ϕv ⊗ ϕ̃v) = 1 for all
but finitely many places v.

Waldspurger also proved that

(5.4) B(ϕ⊗ ϕ̃) =
∫

[B×]

ϕ(b)ϕ̃(b)db = 2ζF (2)−1L(1, π,Ad)
∏
v

B\v(ϕv ⊗ ϕ̃v).

5.1.3. Zeta integrals of Garret and Piatetski-Shapiro–Rallis. Now let n = 3. This allows us to simultaneously
consider θ : πi ⊗ S(V (A)) → πBi ⊗ π̃Bi for i = 1, 2, 3. From this point onward, we may assume that
f = f1 ⊗ f2 ⊗ f3 ∈ Π and φv = φ1,v ⊗ φ2,v ⊗ φ3,v ∈ S(V (Fv)3) such that θv(fi,v ⊗ φi,v) = ϕi,v ⊗ ϕ̃i,v.

Let

H = {(g1, g2, g3) ∈ GL2 ×GL2 ×GL2 | ν(g1) = ν(g2) = ν(g3)}.

This can be considered as a subgroup of GSp6. Let dh =
∏
dhv be the Tamagawa measure on A×\H(A).

Writing h = (g1, g2, g3), the Whittaker function of f with respect to ψ̄ can be defined by

Wψ
f (h) = Wψ

f1
(g1)Wψ

f2
(g2)Wψ

f3
(g3)

where Wfi is defined via (5.2). Let N0 ⊂ H be the group

N0 = {(n(x1), n(x2), n(x3)) ∈ H | x1 + x2 + x3 = 0}.

Let P ⊂ GSp6 be the Siegel parabolic. Explicitly,

P =
{(

A ∗
0 νA−1

)∣∣∣∣A ∈ GL3, ν ∈ Gm

}
.

We define a character χv : P (Fv)→ C×,

χv

((
A ∗
0 νA−1

))
= |det(A)|2v |ν|

−3
v .

Now let Iv(s) = IndGSp6(Fv)
P (Fv) (χsv).

For φv ∈ S(V (Fv)3) as above, let

Fφv (g, 0) = |ν(g)|−3
v ω(

(
In 0

0 ν(g)−1In

)
g, 1)φv(0).

This is an element of Iv(0) which can be extended to Fφv (g, s), a standard section of Iv(s). The local zeta
integral of Garret[10] and Piatetski-Shapiro and Rallis[28], is

(5.5) Zv(s,W
ψv
fv
, Fφv ) =

∫
F×v N0(Fv)\H(Fv)

Fφv (ηhv, s)W
ψv
fv

(hv)dhv

where η is a representative of the open orbit of H in P\GSp6.
Harris and Kudla, in [16], give the integral representation of L( 1

2 ,Π)

(5.6)
∫

[B×]

ϕ(b)db
∫

[B×]

ϕ̃(b)db = I(θ(f, φ)) = ζF (2)−2L(
1
2
,Π)

∏
v

ζFv (2)2Lv(1/2,Πv)−1Zv(0,W
ψv
φv
, Fφv )︸ ︷︷ ︸

Z\v(0,Wψv
fv
,Fφv )

.

The sum is taken over all places; indeed, there is a finite set of places S such that for v /∈ S, Z\v(0,W
ψv
fv
, Fφv ) =

1. (This is recorded as Theorem 4.1 in [17].)
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5.1.4. Putting it all together. With this notation established, we can now recall the proof of Theorem 2.1
which consists of three ingredients. The first is the result (5.4) of Waldspurger which implies that

(5.7) B(ϕ⊗ ϕ̃) =
3∏
j=1

∫
[B×]

ϕj(b)ϕ̃j(b)db = 23ζF (2)−3L(1,Π,Ad)
∏
v

B\v(ϕv ⊗ ϕ̃v).

Recall that B\v(ϕv ⊗ ϕ̃v) = 1 for all but finitely many v. (This follows from Proposition 3.1 and Lemma 3.2
of [17].) Note that to ease notation we are writing

B\v(ϕv ⊗ ϕ̃v) =
3∏
i=1

B\v(ϕi,v ⊗ ϕ̃i,v).

The second result is (5.6) which combined with (5.7) implies that

(5.8)
I(ϕ⊗ ϕ̃)
B(ϕ⊗ ϕ̃)

=
ζF (2)

23

L(1/2,Π)
L(1,Π,Ad)

∏
v∈S

Z\v(0,W
ψv
fv
, Fφv )

B\v(ϕv ⊗ ϕ̃)
.

The final ingredient is Proposition 5.1 of [17] which is equivalent to the fact that

(5.9) Z\v(0,W
ψv
fv
, Fφv ) = γvζFv (2)−2Lv(1,Πv,Ad)

Lv(1/2,Πv)

∫
F×v \Bv

B\v(Π(bv)ϕv ⊗ ϕ̃v)d×bv

where γv = 1 if Bv is split and γv = −1 otherwise. Note that the measure d×bv is the that for which
the Fourier transform with respect to ψv is self-dual. On the other hand, the measure dbv used to define
Iv (see (2.4)) is that for which F×v \B×v (Ov) has a given volume, as discussed in Section 2.2. We have
d×bv = cvdbv where cv = 1 for almost all v and

∏
v cv = |∆F |−3/2.

Since B\v : ΠB ⊗ Π̃B → C is a pairing, it must differ from 〈·, ·〉v by a constant. Hence,

(5.10)
Z\v(0,W

ψv
fv
, Fφv )

B\v(ϕv ⊗ ϕ̃v)
= γvcvζFv (2)−2 Lv(1/2,Πv)

Lv(1,Πv,Ad)
I ′v(ϕv ⊗ ϕ̃v)
〈ϕv, ϕ̃v〉v

= γvcv
Iv(ϕv ⊗ ϕ̃v)
〈ϕv, ϕ̃v〉v

where Iv is as in (2.4).
Putting this all together, (5.8) becomes

(5.11)
I(ϕ⊗ ϕ̃)
B(ϕ⊗ ϕ̃)

=
ζF (2)

23

L(1/2,Π)
L(1,Π,Ad)

∏
v

Z\v(0,W
ψv
fv
, Fφv )

B\v(ϕv ⊗ ϕ̃v)
=

ζF (2)
23|∆F |3/2

L(1/2,Π)
L(1,Π,Ad)

∏
v

Iv(ϕ⊗ ϕ̃)
〈ϕv, ϕ̃〉v

.

This is exactly (2.5) for our particular choice of measures.

5.2. Proof of Theorem 5.1.

Proof. By combining (5.11) in the case that ϕ̃ = ϕ with the local calculations of Corollary 4.2, Proposi-
tion 4.3, Proposition 4.4, Proposition 4.5 and Proposition 4.6, all of the local factors are accounted for except
in the case that v | ∞ and one of the factors πi,v is not a discrete series. So it remains to establish the local
factors for v | ∞ in the following cases.
Case 1: All three representations πi,v are principal series.
Case 2: One of the representations is a principal series and the other two are discrete series (of the same

weight k.)
To complete the proof, note that it suffices to compute the left hand side of (5.10). Indeed, we may choose

ψ to be the character that is level zero at all finite places and which satisfies ψv(x) = e2πix at real places.
Then the constant cv = |∆Fv |

−3/2 for all v. In particular, for v | ∞, cv = 1. Since globally γv is irrelevant,
it therefore remains to show, in each of the two remaining cases, that

Z\v(0,W
ψv
fv
, Fφv )

B̃\v(fv ⊗ φv)
= 1

for some choice of fv and φv for which θv(fv, φv) = ϕv ⊗ ϕv.
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In fact, Watson[36] gives choices fv and φv so that θv(fv, φv) is equal to the function defined in the
statement of Theorem 5.1. For this choice, [36, Theorem 2] says that

(5.12) Z\v(0,W
ψv
fv
, Fφv ) =

{
1 v | ∞, Case 1

2−2k−2 v | ∞, Case 2.

Suppose that we are in the split case: θv(fv, φv) = ϕv ⊗ ϕ̃v ∈ πv ⊗ π̃v. Then

B̃v(fi,v ⊗ φi,v) =
∫
F×v

Wϕv (( a 1 ))Weϕv (
(−a

1

)
)d×a

where d×a is Tamagawa measure for F\A. (See [35, Lemme 5].) Hence, by Watson’s choice of (fi,v, φi,v) in
the real case, and [36, Lemma 5],

(5.13) B̃v(fi,v, φi,v) = Lv(1, πi,Ad)ζFv (2)−1

{
1 if πi,v is a principal series

2−k−1 if πi,v is a discrete series of weight k

Combining (5.12) and (5.13) it is immediate that Z\v
B\v

= 1. �

Remark. The result of [36, Theorem 2] in Case 1 was previously computed by Ikeda[19].

6. Proof of Theorem 1.3

We return to the notation of Section 2 in which F is any fixed number field and A = AF its ring of
adeles. Let π1, π2 be cuspidal automorphic representations of GL2 over F with trivial central character and
fixed conductors n1 and n2 respectively. Let π3 be a cuspidal autormorphic representation of GL2 over F
with trivial central character and conductor np where p is prime and does not divide nn1n2. We denote
Π = π1 ⊗ π2 ⊗ π3. Let $ be a normalizer of Fp. Note that the Langlands parameters of π3,∞ are allowed to
vary (within a bounded set.) Moreover, although n is fixed, the local components π3,q for q | n need not be.

At the real places πi,v corresponds to either πkdis, a weight k-discrete series with k ≥ 2 even, or an
irreducible (weight zero) principal series πsR = π(|·|s , |·|−s) defined in the same way as (3.1). At a complex
place πi,v is an irreducible principal series πs,kC .

Each of these is a (g,K)-module where g is the complexified Lie algebra of Gv = GL2(Fv) and K = O(2)
or U(2) depending on whether v is real or complex respectively. The irreducible representations of K are
called weights. In the real case these are integers and, as is well-known they are given by the characters
κθ 7→ einθ. In the complex case, the weights are nonnegative integers k which correspond to representations
of dimension k + 1. In the notation above for πk,sC and πsR, the minimal weight is encoded by the parameter
k. The parameter s is a complex number. The assumption that π∞ be restricted to a bounded set means
that the s and k are bounded for each v | ∞.

We will show that for the quaternion algebra B such that ΣB = Σ(Π) there exists a finite collection of
vectors FB1 ⊂ πB1 and FB2 ⊂ πB2 such that for ϕ3 a new vector,

L( 1
2 ,Π)�ε,F,π3,∞,n N(p)1+ε

∣∣∣∣∣
∫

[B×]

ϕ1(b)ϕ2(b
(
$−1

1

)
)ϕ3(b)db

∣∣∣∣∣
2

for some ϕi ∈ FBi . As a first step, we prove the following.

Proposition 6.1. Let Π = π1 ⊗ π2 ⊗ π3 be as in Theorem 1.3. Let B be the quaternion algebra such that
ΣB = Σ(Π). There exist vectors ϕi ∈ πBi such that for ϕ = ϕ1 ⊗ ϕ2 ⊗ ϕ3,

(6.1) L( 1
2 ,Π)� N(p)1+ε

∏
v|n1n2n∞

(
Iv(ϕv)
〈ϕv, ϕv〉

)−1 ∣∣∣∣∫
[B×]

ϕ(b)db
∣∣∣∣2.

where the implied constant is dependant on ε, Π∞, N(n1n2n) and ϕi,v where i = 1, 2 and v | ∞n1n2n.

Proof. We apply Theorem 2.1. Write πBi = ⊗vπi,v. Clearly, we may assume that L( 1
2 ,Π) 6= 0. Hence

Theorem 2.2 guarantees that we may choose some ϕi = ⊗vϕi,v for i = 1, 2, 3 such that, writing ϕ =
ϕ1 ⊗ ϕ2 ⊗ ϕ3, I(ϕ) 6= 0 and Iv(ϕv) 6= 0 for all v. In particular, we may let ϕi,v be the (normalized) new
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vector for all v - ∞n1n2n. For such places v, Iv(ϕv) = 1. Note that twisting ϕ2 by
(
$−1

1

)
means that

Ip(ϕp) is as in Corollary 4.2, hence Ip(ϕp) ∼ N(p)−1.
To deal with the term

L(1,Π,Ad)∏3
j=1

∫
[B×]
|ϕj(b)|2 db

=
3∏
j=1

L(1, πj ,Ad)∫
[B×]
|ϕj(b)|2 db

in (2.5), we use the bound of Iwaniec[20] which says that if ϕ ∈ πi is the normalized new vector then

(6.2)
L(1, πi,Ad)∫
[G]
|ϕ(g)|2dg

� N(πi)ε

as N(πi)→∞. Here, N(πi) denotes the conductor of πi and the implied constant depends continuously on
the Langlands parameters of πi,∞.

After solving for L( 1
2 ,Π) in (2.5) and applying (6.2), (6.1) follows. Since we are fixing n1, n2 and n, all of

the terms in [N(π1)N(π2)N(π3)]ε except for N(p)ε can be absorbed into the implied constant. �

As a matter of terminology, we call ϕv a test vector if Iv(ϕv) 6= 0. Given test vectors for all v we can
construct the global vector ϕ = ⊗vϕv such that I(ϕ) 6= 0. Therefore, given Proposition 6.1, Theorem 1.3
will follow provided we can show the following.

• Show that for each v | n1n2n∞ there exists a finite sets of vectors such that as π3,∞ and π3,p vary a
test vector can be chosen from the said finite sets.

• Show that the values of the corresponding linear forms is uniformly bounded.

In order to bound the terms Iv(ϕv)/〈ϕv, ϕv〉v, we need to know that if there is some nonzero trilinear
form then integration of the matrix coefficient is such a form.

Lemma 6.2. If ε( 1
2 ,Π) = 1 then the trilinear form

` : ϕ1 ⊗ ϕ2 ⊗ ϕ3 7→
∫
Z\G

Φϕ1,ϕ1(g)Φϕ2,ϕ2(g)Φϕ3,ϕ3(g)dg

is nonzero. Similarly, if ε( 1
2 ,Π) = −1 then integration over the division algebra F×\B× gives a nonzero

trilinear form on ΠB.

Proof. The case that Π is tempered is proved by Sakellaridis-Venkatesh in [30, Proposition 6.4.1]. If Π is
non-tempered, we may assume that one of the representations is a principal series. In this case, let π3 be
the principal series representation. One may also consider the trilinear form

`RS :W(π1)⊗W(π2)⊗ π3 → C

(W1,W2, f3) 7→
∫
K

∫
F×

W1(a(y)k)W2(a(y)k)f3(a(y)k) |y|−1
d×ydk

where W(πi) is the Whittaker model attached to πi.
It is precisely this latter form that is employed by [9] where specific test vectors are given. By [26,

Lemma 3.4.2] ` = |`RS|2 (up to a nonzero constant). �

Now we bound Iv(ϕv)/〈ϕv, ϕv〉v for archimedean primes v.

Lemma 6.3. Let πi,∞ =
∏
v|∞ πi,v be the archimedean parts of automorphic representations πi for i = 1, 2, 3

such that π1 and π2 are fixed, and π3,∞ is bounded. Assuming that L( 1
2 ,Π) 6= 0, let B be the quaternion

algebra such that ΣB = Σ(Π). Then there exists a finite collection of vectors FBi in πBi,∞ for i = 1, 2 such
that if ϕ3,∞ ∈ πB3,∞ is a new vector then∏

v|∞

Iv(ϕ1,v ⊗ ϕ2,v ⊗ ϕ2,v) ≥ δ

for some choice of ϕi,∞ ∈ Fi and some δ > 0.
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Proof. If v is real, for each of the finitely many choices k for which π3,v could be πkdis, Theorem 2.2 guarantees
we may chose vectors ϕ1,v ∈ πB1,v and ϕ2,v ∈ πB2,v such that ϕ = ϕ1,v ⊗ ϕ2,v ⊗ ϕ3,v is a test vector.

Now assume that π3,v = πsR is a principal series. Loke[25, Cor. 2.2] gives a choice of vectors ϕi,v ∈ πi,v
(i = 1, 2) independent of s such that for ϕ3,v equal to the normalized new vector, the unique (g,K)-invariant
linear form, ϕ1,v ⊗ ϕ2,v ⊗ ϕ3,v is a test vector, hence the matrix coefficient is nonzero.

Because the matrix coefficient attached to ϕ3,v is a continuous function with respect to its Langlands
parameter4, under the boundedness condition there must be a lower bound on the values of the matrix
coefficient. More explicitly, given Loke’s choice of ϕ1,v, ϕ2,v we have a nonzero continuous map

λ : Ω→ C× s 7→ Iv(ϕ1,v ⊗ ϕ2,v ⊗ ϕs3,v)
where ϕs3,v ∈ πsR is the normalized new vector and s ∈ Ω ⊂ C. (The map is nonzero by Lemma 6.2) By the
boundedness assumption implies we may assume Ω is compact, hence its image is uniformly bounded away
from zero.

If v is a complex place, Loke[25, Cor. 4.6] again proved that there must be a test vector independent
of s. The continuity argument of above again applies with Ω replaced by Ω × {k1, · · · , km} where ki are
the distinct nonnegative integers corresponding the possible weights. In this case, Loke does not give a test
vector independent of s. However, a test vector for a given value s, by continuity, will also be a test vector
for some open subset Us ⊂ Ω. Since Ω is compact, there exist finitely many values si such that ∪iUsi = Ω.

The finite set FBi,∞ is obtained by taking the union of all of the vectors obtained above. �

In each of Corollary 4.2, Proposition 4.3, Proposition 4.4 and Proposition 4.5 the value of Iv(ϕv)/〈ϕv, ϕv〉v
is constant even if one of the representations is varied. That is to say, suppose v = q is a finite prime such
that q2 - ni for i = 1, 2 and q2 - n. In particular, π3,q = π(µ, µ−1) or σµ for some unramified character µ if v
is finite. Hence there is a choice of ϕv such that Iv(ϕv)/〈ϕv, ϕv〉v is nonzero and independent of µ. Hence,
this completes the proof of Theorem 1.3 in the case that n1, n2, n are squarefree.

Although we believe that this phenomenon–the existence a test vector such that Iv(ϕv) depends only on
the level of π3,v–should hold more generally, it is not a priori evident. However, the following lemma allows
us to conclude that n1, n2, n may be taken arbitrarily.

Lemma 6.4. Fix irreducible admissible representations π1,v, π2,v of GL2(Fv) that are local components of
global automorphic representations. There exist finite collections F1,v ⊂ π1,v and F2,v ⊂ π2,v and a constant
δ > 0 such that if π3,v is any other such representation of fixed level such that Πv = π1,v⊗π2,v⊗π3,v admits
a GL2(Fv)-invariant linear form,

Iv(ϕ1,v ⊗ ϕ2,v ⊗ ϕ3,v) ≥ δ
for ϕ3,v the new vector and some ϕi,v ∈ Fi,v.

Proof. Note that since πi,v is the local component of an automorphic representation it is unitary. Moreover,
as demonstrated in [31], c(π(χ, χ′)) = c(χ) + c(χ′). Therefore, that principal series representations of fixed
level and are parametrized by characters χ, χ′ : F×v → C of bounded conductor or which there are only
finitely many.

Let $ be a uniformizer, qv the order of the residue field, and let

U (i) =
{
{1 + u$i | u ∈ O×} if i ≥ 1

O× if i = 0.

As is well known, for χ to be a character of level n means that

χ(u$k) = |$|ks χ̄(u)

where χ̄ is a character of the finite group O×/U (n). If π(χ, χ−1) comes from an automorphic representations,
we may assume s = sχ is a complex number with Re(s) ∈ [0, λ] where λ is any bound towards Ramanujan.
Note we may also assume that Im(s) is bounded. In other words, s is restricted to a compact set.

Let π3,v ' π(χ0, χ
−1
0 ) be such that Iv 6= 0, and denote the new vector by ϕ3,v. Given ϕ1,v, ϕ2,v such

that ϕ1,v ⊗ ϕ2,v ⊗ ϕ3,v is a test vector, as in the proof of Lemma 6.3, ϕ1,v ⊗ ϕ2,v ⊗ ϕs3,v is also a test vector
for π3,v ' π(µ, µ−1) where µ̄ = χ̄ and sµ is in some open set containing sχ. Since the set of possible sχ is

4The local L-factors are also continuous since they are products of gamma functions.
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compact, and the number of characters χ̄ is finite, we find that a finite collection of choices ϕ1,v, ϕ2,v suffice
to give a set of test vectors for π3,v any principal series representation.

A completely analogous argument gives a finite set of choices for ϕ1,v, ϕ2,v in the case that π3,v ' σχ. In
this case, however, the argument is simplified by the fact that χ must be unitary, i.e. Re(sχ) = 0.

Finally, if π3,v is supercuspidal then its Kirillov model associated to a nontrivial additive character ψ
is completely determined by the level of π3,v and the epsilon factor ε( 1

2 , π3,v, ψ). (See, for example, [8,
37.3 Theorem].) Again, the associated parametrizing set of such representations in compact, so the same
argument as above applies.

The existence of the constant δ is established in exactly the same fashion as in Lemma 6.3. Namely,
values assumed by Iv on the given set of test vectors is the image of a compact set (corresponding to the
finite number of characters of O×/U (n) and the admissible values of sχ.) �

This completes the proof of Theorem 1.3.

Remark. In [9] explicit test vectors are given for all cases except that where all three representations πi,v
are supercuspidals. This can be used to make the choices of F1,v,F2,v in Lemma 6.4 explicit. However, note
that the argument above is still needed to ensure the existence of δ.
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