Trilinear forms and subconvexity of the triple product *L*-function

Michael Woodbury

University of Wisconsin

December 17, 2009

< ∃ >

Subconvexity The triple product *L*-function

What is subconvexity?

Let L(s, f) be an L-function.

•
$$L(s, f) = \sum_{n \ge 1} \frac{a_n}{n^s}$$

= $\prod_p (1 - \alpha_1(p)p^{-s})^{-1} \cdots (1 - \alpha_d(p)p^{-s})^{-1}$
• There exist a gamma factor

$$\gamma(s, f) = \pi^{-ds/2} \prod_{j=1}^{d} \Gamma\left(\frac{s+t_i}{2}\right)$$

- There is an integer N(f) called the conductor.
- Setting $\Lambda(s, f) = N(f)^{s/2}\gamma(s, f)L(f, s)$ there is a functional equation

Subconvexity The triple product *L*-function

What is subconvexity?

Let L(s, f) be an L-function.

•
$$L(s, f) = \sum_{n \ge 1} \frac{a_n}{n^s}$$

= $\prod_p (1 - \alpha_1(p)p^{-s})^{-1} \cdots (1 - \alpha_d(p)p^{-s})^{-1}.$

• There exist a gamma factor

$$\gamma(s, f) = \pi^{-ds/2} \prod_{j=1}^{d} \Gamma\left(\frac{s+t_i}{2}\right)$$

- There is an integer N(f) called the conductor.
- Setting Λ(s, f) = N(f)^{s/2}γ(s, f)L(f, s) there is a functional equation

Subconvexity The triple product *L*-function

What is subconvexity?

Let L(s, f) be an *L*-function.

•
$$L(s, f) = \sum_{n \ge 1} \frac{a_n}{n^s}$$

= $\prod_p (1 - \alpha_1(p)p^{-s})^{-1} \cdots (1 - \alpha_d(p)p^{-s})^{-1}$
• There exist a gamma factor

 $\gamma(s, f) = \pi^{-ds/2} \prod_{j=1}^{d} \Gamma\left(rac{s+t_i}{2}
ight)$

- There is an integer N(f) called the conductor.
- Setting Λ(s, f) = N(f)^{s/2}γ(s, f)L(f, s) there is a functional equation

Subconvexity

What is subconvexity?

Let L(s, f) be an L-function.

•
$$L(s, f) = \sum_{n \ge 1} \frac{a_n}{n^s}$$

= $\prod_p (1 - \alpha_1(p)p^{-s})^{-1} \cdots (1 - \alpha_d(p)p^{-s})^{-1}$.

i nere exist a gamma factor

$$\gamma(s, f) = \pi^{-ds/2} \prod_{j=1}^{d} \Gamma\left(\frac{s+t_i}{2}\right)$$

- There is an integer N(f) called the conductor.
- Setting $\Lambda(s, f) = N(f)^{s/2} \gamma(s, f) L(f, s)$ there is a functional $\Lambda(f,s) = \varepsilon(f)\Lambda(\bar{f},1-\bar{s}) \to \bar{s} \to \bar{s}$

Subconvexity The triple product *L*-function

What is subconvexity?

Let L(s, f) be an *L*-function.

•
$$L(s, f) = \sum_{n \ge 1} \frac{a_n}{n^s}$$

= $\prod_p (1 - \alpha_1(p)p^{-s})^{-1} \cdots (1 - \alpha_d(p)p^{-s})^{-1}$

There exist a gamma factor

$$\gamma(s, f) = \pi^{-ds/2} \prod_{j=1}^{d} \Gamma\left(\frac{s+t_i}{2}\right)$$

- There is an integer N(f) called the conductor.
- Setting $\Lambda(s, f) = N(f)^{s/2}\gamma(s, f)L(f, s)$ there is a functional equation

$$\Lambda(f,s) = \varepsilon(f)\Lambda(\bar{f},1-s).$$

Subconvexity The triple product *L*-function

What is subconvexity?

General methods allow one to show that if $f \in \mathcal{F}$ then

$L(s,f) \ll [N_{\infty}(s)N(f)]^{\frac{1}{4}+\epsilon}.$

where $N_{\infty}(s)$ depends on the values t_j .

The Lindelof conjecture predicts that that $\frac{1}{4}$ can be replaced by zero. Subconvexity is any improvement on the convexity bound.

Subconvexity The triple product *L*-function

What is subconvexity?

General methods allow one to show that if $f \in \mathcal{F}$ then

$$L(s,f) \ll [N_{\infty}(s)N(f)]^{\frac{1}{4}+\epsilon}.$$

where $N_{\infty}(s)$ depends on the values t_j .

The Lindelof conjecture predicts that that $\frac{1}{4}$ can be replaced by zero. Subconvexity is any improvement on the convexity bound.

(4) (2) (4)

Subconvexity The triple product *L*-function

What is subconvexity?

General methods allow one to show that if $f \in \mathcal{F}$ then

$$L(s,f) \ll [N_{\infty}(s)N(f)]^{\frac{1}{4}+\epsilon}.$$

where $N_{\infty}(s)$ depends on the values t_j .

The Lindelof conjecture predicts that that $\frac{1}{4}$ can be replaced by zero. Subconvexity is any improvement on the convexity bound.

4 3 5 4

Subconvexity The triple product *L*-function

What is subconvexity?

General methods allow one to show that if $f \in \mathcal{F}$ then

$$L(s,f) \ll [N_{\infty}(s)N(f)]^{\frac{1}{4}+\epsilon}.$$

where $N_{\infty}(s)$ depends on the values t_j .

The Lindelof conjecture predicts that that $\frac{1}{4}$ can be replaced by zero. Subconvexity is any improvement on the convexity bound.

Subconvexity The triple product *L*-function

The triple product L-function: Classical formulation

Let $f, g, h \in S_k(\Gamma_0(N))$ be eigenforms. Then write

$$f(z)=\sum_{n=1}^{\infty}a_n(f)q^n.$$

We are interested in

$$L(s, f \times g \times h) = \sum_{n=1}^{\infty} \frac{a_n(f)a_n(g)a_n(h)}{n^s}.$$

This is very similar to the Rankin-Selberg L-function.

A 35 (A)

Subconvexity The triple product *L*-function

The triple product L-function: Classical formulation

Let $f, g, h \in S_k(\Gamma_0(N))$ be eigenforms. Then write

$$f(z)=\sum_{n=1}^{\infty}a_n(f)q^n.$$

We are interested in

$$L(s, f \times g \times h) = \sum_{n=1}^{\infty} \frac{a_n(f)a_n(g)a_n(h)}{n^s}.$$

This is very similar to the Rankin-Selberg L-function.

(4) (2) (4)

Subconvexity The triple product *L*-function

The triple product L-function: Classical formulation

Let $f, g, h \in S_k(\Gamma_0(N))$ be eigenforms. Then write

$$f(z)=\sum_{n=1}^{\infty}a_n(f)q^n.$$

We are interested in

$$L(s, f \times g \times h) = \sum_{n=1}^{\infty} \frac{a_n(f)a_n(g)a_n(h)}{n^s}.$$

This is very similar to the Rankin-Selberg *L*-function.

(4) (E. (a) (4)

Subconvexity The triple product *L*-function

The triple product L-function: Classical formulation

Let $f, g, h \in S_k(\Gamma_0(N))$ be eigenforms. Then write

$$f(z)=\sum_{n=1}^{\infty}a_n(f)q^n.$$

We are interested in

$$L(s, f \times g \times h) = \sum_{n=1}^{\infty} \frac{a_n(f)a_n(g)a_n(h)}{n^s}.$$

This is very similar to the Rankin-Selberg L-function.

Statements Trilinear forms

Representation theoretic point of view

Notation:

F a number field, v a place of F, F_v the completed local field,
 O_v the ring of integers.

•
$$\mathbb{A} = \mathbb{A}_F = \prod' F_v$$
, the ring of adeles.

- For i = 1, 2, 3, let π_i be irreducible cuspidal automorphic representations of GL₂(A) (with trivial central character.)
- $\Pi = \pi_1 \otimes \pi_2 \otimes \pi_3$.

Statements Trilinear forms

Representation theoretic point of view

Notation:

• *F* a number field, *v* a place of *F*, F_v the completed local field, \mathcal{O}_v the ring of integers.

•
$$\mathbb{A} = \mathbb{A}_F = \prod' F_v$$
, the ring of adeles.

 For i = 1, 2, 3, let π_i be irreducible cuspidal automorphic representations of GL₂(A) (with trivial central character.)

• $\Pi = \pi_1 \otimes \pi_2 \otimes \pi_3$.

Statements Trilinear forms

Representation theoretic point of view

Notation:

• *F* a number field, *v* a place of *F*, F_v the completed local field, \mathcal{O}_v the ring of integers.

•
$$\mathbb{A} = \mathbb{A}_F = \prod' F_v$$
, the ring of adeles.

- For i = 1, 2, 3, let π_i be irreducible cuspidal automorphic representations of GL₂(A) (with trivial central character.)
- $\Pi = \pi_1 \otimes \pi_2 \otimes \pi_3.$

Statements Trilinear forms

Representation theoretic point of view

Notation:

- *F* a number field, *v* a place of *F*, F_v the completed local field, \mathcal{O}_v the ring of integers.
- $\mathbb{A} = \mathbb{A}_F = \prod' F_v$, the ring of adeles.
- For i = 1, 2, 3, let π_i be irreducible cuspidal automorphic representations of GL₂(A) (with trivial central character.)

• $\Pi = \pi_1 \otimes \pi_2 \otimes \pi_3$.

(4) (E. (a) (4)

Statements Trilinear forms

Representation theoretic point of view

Notation:

• *F* a number field, *v* a place of *F*, F_v the completed local field, \mathcal{O}_v the ring of integers.

•
$$\mathbb{A} = \mathbb{A}_F = \prod' F_v$$
, the ring of adeles.

 For i = 1, 2, 3, let π_i be irreducible cuspidal automorphic representations of GL₂(A) (with trivial central character.)

• $\Pi = \pi_1 \otimes \pi_2 \otimes \pi_3$.

Statements Trilinear forms

Representation theoretic point of view

Notation:

• *F* a number field, *v* a place of *F*, F_v the completed local field, \mathcal{O}_v the ring of integers.

•
$$\mathbb{A} = \mathbb{A}_F = \prod' F_v$$
, the ring of adeles.

 For i = 1, 2, 3, let π_i be irreducible cuspidal automorphic representations of GL₂(A) (with trivial central character.)

• $\Pi = \pi_1 \otimes \pi_2 \otimes \pi_3.$

(4) (E. (a) (4)

Statements Trilinear forms

Representation theoretic point of view

Notation:

• *F* a number field, *v* a place of *F*, F_v the completed local field, \mathcal{O}_v the ring of integers.

•
$$\mathbb{A} = \mathbb{A}_F = \prod' F_v$$
, the ring of adeles.

 For i = 1, 2, 3, let π_i be irreducible cuspidal automorphic representations of GL₂(A) (with trivial central character.)

•
$$\Pi = \pi_1 \otimes \pi_2 \otimes \pi_3.$$

Statements Trilinear forms

Subconvexity for the triple product *L*-function: Eigenvalue aspect

Idea: Fix π_1 and π_2 and vary π_3 is some way. We want to find a subconvexity bound for $L(\frac{1}{2}, \Pi)$.

Theorem (Bernstein-Reznikov)

Let $F = \mathbb{Q}$. Fix π_1, π_2 corresponding to Maass forms for $SL_2(\mathbb{Z})$. There is a subconvexity bound for $L(\frac{1}{2}, \Pi)$ for π_3 corresponding to a level 1 Maass form of varying eigenvalue.

Their proof relies on a formula of Watson that relates the *L*-value to a certain period integral.

A (1) > A (2) > A

Statements Trilinear forms

Subconvexity for the triple product *L*-function: Eigenvalue aspect

Idea: Fix π_1 and π_2 and vary π_3 is some way. We want to find a subconvexity bound for $L(\frac{1}{2}, \Pi)$.

Theorem (Bernstein-Reznikov)

Let $F = \mathbb{Q}$. Fix π_1, π_2 corresponding to Maass forms for $SL_2(\mathbb{Z})$. There is a subconvexity bound for $L(\frac{1}{2}, \Pi)$ for π_3 corresponding to a level 1 Maass form of varying eigenvalue.

Their proof relies on a formula of Watson that relates the *L*-value to a certain period integral.

・ 同 ト ・ ヨ ト ・ ヨ

Statements Trilinear forms

Subconvexity for the triple product *L*-function: Eigenvalue aspect

Idea: Fix π_1 and π_2 and vary π_3 is some way. We want to find a subconvexity bound for $L(\frac{1}{2}, \Pi)$.

Theorem (Bernstein-Reznikov)

Let $F = \mathbb{Q}$. Fix π_1, π_2 corresponding to Maass forms for $SL_2(\mathbb{Z})$. There is a subconvexity bound for $L(\frac{1}{2}, \Pi)$ for π_3 corresponding to a level 1 Maass form of varying eigenvalue.

Their proof relies on a formula of Watson that relates the *L*-value to a certain period integral.

/□ ▶ < 글 ▶ < 글

Subconvexity for the triple product *L*-function: Level aspect

Relaxed conditions: Allow F to be any number field, π_1, π_2 to have nontrivial conductors and arbitrary ∞ type, and let $\pi_{3,\infty}$ to vary in a "bounded set."

Theorem (Venkatesh)

Suppose that the conductor of π_3 is a prime p relatively prime to the conductors of π_1, π_2 . For any $\varphi_i \in \pi_i$,

 $\int_{[G]} \varphi_1(g) \varphi_2(g) \varphi_3(g) dg \ll \|\varphi_1\|_4 \|\varphi_2\|_4 \|\varphi_3\|_2 N(\mathfrak{p})^{\epsilon-C}$

for an explicit C > 0. $(N(\mathfrak{p}) \text{ is the norm, } [G] = Z(\mathbb{A})G(F) \setminus G(\mathbb{A})$ and $\|\cdot\|_{P}$ is the L^{p} -norm.)

Subconvexity for the triple product *L*-function: Level aspect

Relaxed conditions: Allow F to be any number field, π_1, π_2 to have nontrivial conductors and arbitrary ∞ type, and let $\pi_{3,\infty}$ to vary in a "bounded set."

Theorem (Venkatesh)

Suppose that the conductor of π_3 is a prime \mathfrak{p} relatively prime to the conductors of π_1, π_2 . For any $\varphi_i \in \pi_i$,

$$\left|\int_{[G]}\varphi_1(g)\varphi_2(g)\varphi_3(g)dg\right| \ll \|\varphi_1\|_4\|\varphi_2\|_4\|\varphi_3\|_2N(\mathfrak{p})^{\epsilon-C}$$

for an explicit C > 0. $(N(\mathfrak{p}) \text{ is the norm, } [G] = Z(\mathbb{A})G(F) \setminus G(\mathbb{A})$ and $\|\cdot\|_p$ is the L^p -norm.)

< (□) >

Statements Trilinear forms

Subconvexity for the triple product *L*-function: Level aspect

Conjecture (Venkatesh)

Let π_i be as above, φ_3 be the new vector. Then for i = 1, 2 there are finite collections \mathcal{F}_i and $\varphi_i \in \mathcal{F}_i$ such that

$$L(\frac{1}{2},\Pi) \ll N(\mathfrak{p})^{1+\epsilon} \left| \int_{[G]} \varphi_1(g) \varphi_2(g) \varphi_3(g) dg \right|^2$$

Combined with Venkatesh's theorem this would give subconvexity.

"Theorem" (W.)

The conjecture is true.

A (1) > A (2) > A

Statements Trilinear forms

Subconvexity for the triple product *L*-function: Level aspect

Conjecture (Venkatesh)

Let π_i be as above, φ_3 be the new vector. Then for i = 1, 2 there are finite collections \mathcal{F}_i and $\varphi_i \in \mathcal{F}_i$ such that

$$L(\frac{1}{2},\Pi) \ll N(\mathfrak{p})^{1+\epsilon} \left| \int_{[G]} \varphi_1(g) \varphi_2(g) \varphi_3(g) dg \right|^2$$

Combined with Venkatesh's theorem this would give subconvexity.

'Theorem" (W.)

The conjecture is true.

/□ ▶ < 글 ▶ < 글

Statements Trilinear forms

Subconvexity for the triple product *L*-function: Level aspect

Conjecture (Venkatesh)

Let π_i be as above, φ_3 be the new vector. Then for i = 1, 2 there are finite collections \mathcal{F}_i and $\varphi_i \in \mathcal{F}_i$ such that

$$L(\frac{1}{2},\Pi) \ll N(\mathfrak{p})^{1+\epsilon} \left| \int_{[G]} \varphi_1(g) \varphi_2(g) \varphi_3(g) dg \right|^2$$

Combined with Venkatesh's theorem this would give subconvexity.

"Theorem" (W.)

The conjecture is true.

Statements Trilinear forms

Connection to trilinear forms

Let $\varphi = \varphi_1 \otimes \varphi_2 \otimes \varphi_3 \in \Pi$. We want to say something about

$$J(\varphi) = \int_{[G]} \varphi(g) dg.$$

This is a *trilinear form* on Π. Fact:

dim Hom_{$$B^{\times}_{\mathbb{A}}$$} (Π^{B}, \mathbb{C}) ≤ 1 .

This is consequence of a local restriction.

/□ ▶ < 글 ▶ < 글

Statements Trilinear forms

Connection to trilinear forms

Let $\varphi = \varphi_1 \otimes \varphi_2 \otimes \varphi_3 \in \Pi$. We want to say something about

$$J(\varphi) = \int_{[G]} \varphi(g) dg.$$

This is a *trilinear form* on Π. Fact:

dim Hom_{$$B^{\times}_{\mathbb{A}}$$} (Π^{B}, \mathbb{C}) ≤ 1 .

This is consequence of a local restriction.

→ 3 → 4 3

Statements Trilinear forms

Connection to trilinear forms

Let $\varphi = \varphi_1 \otimes \varphi_2 \otimes \varphi_3 \in \Pi$. We want to say something about

$$J(\varphi) = \int_{[G]} \varphi(g) dg.$$

This is a *trilinear form* on Π . Fact:

dim Hom_{$$B^{\times}_{\mathbb{A}}$$} (Π^{B}, \mathbb{C}) ≤ 1 .

This is consequence of a local restriction.

Statements Trilinear forms

Connection to trilinear forms

Let $\varphi = \varphi_1 \otimes \varphi_2 \otimes \varphi_3 \in \Pi$. We want to say something about

$$J(\varphi) = \int_{[G]} \varphi(g) dg.$$

This is a *trilinear form* on Π . Fact:

dim Hom_{$$B^{\times}_{\mathbb{A}}$$} (Π^{B}, \mathbb{C}) ≤ 1 .

This is consequence of a local restriction.

Statements Trilinear forms

Connection to trilinear forms

Let $\varphi = \varphi_1 \otimes \varphi_2 \otimes \varphi_3 \in \Pi$. We want to say something about

$$J(\varphi) = \int_{[G]} \varphi(g) dg.$$

This is a *trilinear form* on Π . Fact:

dim Hom_{$$B^{\times}_{\mathbb{A}}$$} (Π^{B}, \mathbb{C}) ≤ 1 .

This is consequence of a local restriction.

A 3 3 4

Statements Trilinear forms

Local obstruction

Theorem (Prasad,Prasad-Loke)

Let $\pi_{i,\nu}$ (i = 1, 2, 3) be admissible representations of $\operatorname{GL}_2(F_{\nu})$. Let B_{ν} be the division quaternion algebra over F_{ν} and $\pi_{i,\nu}^{JL}$ the corresponding Jacquet-Langlands representation of B_{ν}^{\times} . Then

 $\dim \operatorname{Hom}_{\operatorname{GL}_2(F_{\nu})}(\Pi_{\nu},\mathbb{C}) + \dim \operatorname{Hom}_{B_{\nu}^{\times}}(\Pi_{\nu}^{JL},\mathbb{C}) = 1.$

Which space is nonzero is determined by $\epsilon_v(\frac{1}{2}, \Pi_v)$.

If v is finite (infinite) then $\epsilon_v(\frac{1}{2}, \Pi_v)$ can be -1 only when $\pi_{i,v}$ is ramified (discrete series) for all i = 1, 2, 3.

- 4 同 2 4 日 2 4 日 2 4

Statements Trilinear forms

Local obstruction

Theorem (Prasad,Prasad-Loke)

Let $\pi_{i,\nu}$ (i = 1, 2, 3) be admissible representations of $\operatorname{GL}_2(F_{\nu})$. Let B_{ν} be the division quaternion algebra over F_{ν} and $\pi_{i,\nu}^{JL}$ the corresponding Jacquet-Langlands representation of B_{ν}^{\times} . Then

 $\dim \operatorname{Hom}_{\operatorname{GL}_2(F_{\nu})}(\Pi_{\nu},\mathbb{C}) + \dim \operatorname{Hom}_{B_{\nu}^{\times}}(\Pi_{\nu}^{JL},\mathbb{C}) = 1.$

Which space is nonzero is determined by $\epsilon_v(\frac{1}{2}, \Pi_v)$.

If v is finite (infinite) then $\epsilon_v(\frac{1}{2},\Pi_v)$ can be -1 only when $\pi_{i,v}$ is ramified (discrete series) for all i = 1, 2, 3.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Statements Trilinear forms

$L(\frac{1}{2},\Pi)$ can't distinguish between quaternions

If $\Pi^{JL} \neq 0$ then $L(s, \Pi) = L(s, \Pi^{JL})$.

Theorem (Harris, Kudla)

Let Π be as above. Then $L(\frac{1}{2},\Pi) \neq 0$ if and only if the global trilinear form

$$J:\Pi^B o \mathbb{C} \qquad \varphi \mapsto \int_{[B^{ imes}]} \varphi(b) db$$

is nonzero for some choice of B. (By Prasad, when such a B exists it is unique.)

Statements Trilinear forms

$L(\frac{1}{2},\Pi)$ can't distinguish between quaternions

If
$$\Pi^{JL} \neq 0$$
 then $L(s, \Pi) = L(s, \Pi^{JL})$.

Theorem (Harris, Kudla)

Let Π be as above. Then $L(\frac{1}{2},\Pi) \neq 0$ if and only if the global trilinear form

$$J:\Pi^B o\mathbb{C}\qquad arphi\mapsto\int_{[B^{ imes}]}arphi(b)db$$

is nonzero for some choice of B. (By Prasad, when such a B exists it is unique.)

- 4 同 2 4 日 2 4 日 2

Statements Trilinear forms

The correct theorem

So, we may need to replace G by B^{\times} .

Theorem (W.)

Let π_1, π_2 have fixed conductors $\mathfrak{n}_1, \mathfrak{n}_2$. Fix \mathfrak{n} . If π_3 has conductor $\mathfrak{n}_{\mathfrak{p}}$, there exists a finite collection \mathcal{B} of quaternion algebras and finite collections $\mathcal{F}_i^B \subset \pi_i^B$ for $B \in \mathcal{B}$ and i = 1, 2 such that

$$L(\frac{1}{2},\Pi) \ll N(\mathfrak{p})^{1+\epsilon} \left| \int_{[B^{\times}]} \varphi_1(b) \varphi_2(b) \varphi_3(b) db \right|^2$$

for some $B \in \mathcal{B}$, $\varphi_i \in \mathcal{F}_i^B$ and φ_3 the new vector.

| 4 同 🕨 🖌 🖉 🖻 🖌 🖉

Statements Trilinear forms

The correct theorem

So, we may need to replace G by B^{\times} .

Theorem (W.)

Let π_1, π_2 have fixed conductors $\mathfrak{n}_1, \mathfrak{n}_2$. Fix \mathfrak{n} . If π_3 has conductor \mathfrak{n}_p , there exists a finite collection \mathcal{B} of quaternion algebras and finite collections $\mathcal{F}_i^B \subset \pi_i^B$ for $B \in \mathcal{B}$ and i = 1, 2 such that

$$L(\frac{1}{2},\Pi) \ll N(\mathfrak{p})^{1+\epsilon} \left| \int_{[B^{\times}]} \varphi_1(b) \varphi_2(b) \varphi_3(b) db \right|^2.$$

for some $B \in \mathcal{B}$, $\varphi_i \in \mathcal{F}_i^B$ and φ_3 the new vector.

< ∃ > <

Statements Trilinear forms

Application to subconvexity

Let S_{∞} be the set of real infinite places, and S_f be set of places dividing $gcd(n_1, n_2, n)$. Then by Prasad and Loke

$\mathcal{B} = \{ B \mid \Sigma_B \subset S_\infty \cup S_f \}.$

In Venkatesh's case, $S_f = \emptyset$. So, for his theorem to imply subconvexity, there is a necessary and sufficient restriction on $\pi_{i,\infty}$. (Namely, there is a condition on the weights k_i for real place vsuch that $\pi_{i,v}$ are discrete series of weight k_i .)

If his theorem could be generalized to arbitrary quaternion algebras, with my theorem, this would give subconvexity unconditionally and more generally.

Statements Trilinear forms

Application to subconvexity

Let S_{∞} be the set of real infinite places, and S_f be set of places dividing $gcd(n_1, n_2, n)$. Then by Prasad and Loke

$\mathcal{B} = \{B \mid \Sigma_B \subset S_\infty \cup S_f\}.$

In Venkatesh's case, $S_f = \emptyset$. So, for his theorem to imply subconvexity, there is a necessary and sufficient restriction on $\pi_{i,\infty}$. (Namely, there is a condition on the weights k_i for real place vsuch that $\pi_{i,v}$ are discrete series of weight k_i .)

If his theorem could be generalized to arbitrary quaternion algebras, with my theorem, this would give subconvexity unconditionally and more generally.

Statements Trilinear forms

Application to subconvexity

Let S_{∞} be the set of real infinite places, and S_f be set of places dividing $gcd(n_1, n_2, n)$. Then by Prasad and Loke

$$\mathcal{B} = \{B \mid \Sigma_B \subset S_\infty \cup S_f\}.$$

In Venkatesh's case, $S_f = \emptyset$. So, for his theorem to imply subconvexity, there is a necessary and sufficient restriction on $\pi_{i,\infty}$. (Namely, there is a condition on the weights k_i for real place vsuch that $\pi_{i,v}$ are discrete series of weight k_i .)

If his theorem could be generalized to arbitrary quaternion algebras, with my theorem, this would give subconvexity unconditionally and more generally.

Statements Trilinear forms

Application to subconvexity

Let S_{∞} be the set of real infinite places, and S_f be set of places dividing $gcd(n_1, n_2, n)$. Then by Prasad and Loke

$$\mathcal{B} = \{B \mid \Sigma_B \subset S_\infty \cup S_f\}.$$

In Venkatesh's case, $S_f = \emptyset$. So, for his theorem to imply subconvexity, there is a necessary and sufficient restriction on $\pi_{i,\infty}$. (Namely, there is a condition on the weights k_i for real place vsuch that $\pi_{i,v}$ are discrete series of weight k_i .)

If his theorem could be generalized to arbitrary quaternion algebras, with my theorem, this would give subconvexity unconditionally and more generally.

・ 同 ト ・ ヨ ト ・ ヨ ト

Reformulation

It's easier to work with forms on $\Pi^B \otimes \widetilde{\Pi}^B$.

 $\dim \operatorname{Hom}_{B^{\times}_{\mathbb{A}} \times B^{\times}_{\mathbb{A}}}(\Pi^{B} \otimes \widetilde{\Pi}^{B}, \mathbb{C}) \leq 1.$

Example of an element:

$$I(\varphi \otimes \widetilde{\varphi}) = \int_{[B^{\times}]} \int_{[B^{\times}]} \varphi(b_1) \widetilde{\varphi}(b_2) db_1 db_2$$

伺 ト く ヨ ト く ヨ ト

Reformulation

It's easier to work with forms on $\Pi^B \otimes \widetilde{\Pi}^B$.

$\dim \operatorname{Hom}_{B^{\times}_{\mathbb{A}} \times B^{\times}_{\mathbb{A}}}(\Pi^B \otimes \widetilde{\Pi}^B, \mathbb{C}) \leq 1.$

Example of an element:

$$I(\varphi\otimes\widetilde{\varphi})=\int_{[B^{ imes}]}\int_{[B^{ imes}]}arphi(b_1)\widetilde{arphi}(b_2)db_1db_2$$

伺 ト く ヨ ト く ヨ ト

Reformulation

It's easier to work with forms on $\Pi^B \otimes \widetilde{\Pi}^B$.

$$\dim \operatorname{Hom}_{B^{\times}_{\mathbb{A}} \times B^{\times}_{\mathbb{A}}}(\Pi^{B} \otimes \widetilde{\Pi}^{B}, \mathbb{C}) \leq 1.$$

Example of an element:

$$I(arphi\otimes\widetilde{arphi})=\int_{[B^{ imes}]}\int_{[B^{ imes}]}arphi(b_1)\widetilde{arphi}(b_2)db_1db_2$$

→ Ξ →

э

Local trilinear forms

Again,

$$\dim \operatorname{Hom}_{B_{v}^{\times} \times B_{v}^{\times}}(\Pi_{v}^{B} \otimes \widetilde{\Pi}_{v}^{B}, \mathbb{C}) \leq 1.$$

By definition, there is

 $\langle \cdot, \cdot \rangle : \Pi^B_v \otimes \widetilde{\Pi}^B_v \to \mathbb{C}$

 $\langle \Pi^B_{\nu}(b) \varphi_{\nu}, \widetilde{\Pi}^B_{\nu}(b) \widetilde{\varphi}_{\nu} \rangle = \langle \varphi_{\nu}, \widetilde{\varphi}_{\nu} \rangle$

for all $b \in B_v^{\times}$.

$$l_
u'(arphi_
u\otimes \widetilde{arphi}_
u) = \int_{B_
u'} \langle \Pi_
u(b) arphi_
u, \widetilde{arphi}_
u
angle db.$$

→ < □ > < □</p>

Local trilinear forms

Again,

$$\dim \operatorname{Hom}_{B_{\nu}^{\times} \times B_{\nu}^{\times}}(\Pi_{\nu}^{B} \otimes \widetilde{\Pi}_{\nu}^{B}, \mathbb{C}) \leq 1.$$

By definition, there is

 $\langle \cdot, \cdot \rangle : \Pi^B_v \otimes \widetilde{\Pi}^B_v \to \mathbb{C}$

 $\langle \Pi^B_{\nu}(b)\varphi_{\nu}, \widetilde{\Pi}^B_{\nu}(b)\widetilde{\varphi}_{\nu} \rangle = \langle \varphi_{\nu}, \widetilde{\varphi}_{\nu} \rangle$

for all $b \in B_v^{\times}$.

$$I_{
u}'(arphi_{
u}\otimes \widetilde{arphi}_{
u}) = \int_{B_{
u}^{ imes}} \langle \Pi_{
u}(b)arphi_{
u}, \widetilde{arphi}_{
u}
angle db.$$

→ 3 → 4 3

Local trilinear forms

Again,

$$\dim \operatorname{Hom}_{B_{v}^{\times} \times B_{v}^{\times}}(\Pi_{v}^{B} \otimes \widetilde{\Pi}_{v}^{B}, \mathbb{C}) \leq 1.$$

By definition, there is

$$\langle \cdot, \cdot \rangle : \Pi^B_v \otimes \widetilde{\Pi}^B_v \to \mathbb{C}$$

$$\langle \Pi^B_{\mathbf{v}}(b)\varphi_{\mathbf{v}}, \widetilde{\Pi}^B_{\mathbf{v}}(b)\widetilde{\varphi}_{\mathbf{v}} \rangle = \langle \varphi_{\mathbf{v}}, \widetilde{\varphi}_{\mathbf{v}} \rangle$$

for all $b \in B_v^{\times}$.

$$I_{
u}'(arphi_
u\otimes \widetilde{arphi}_
u) = \int_{B_
u}^ imes \langle \Pi_
u(b)arphi_
u, \widetilde{arphi}_
u
angle db.$$

伺 ト く ヨ ト く ヨ ト

э

Local trilinear forms

Again,

$$\dim \operatorname{Hom}_{B_{v}^{\times} \times B_{v}^{\times}}(\Pi_{v}^{B} \otimes \widetilde{\Pi}_{v}^{B}, \mathbb{C}) \leq 1.$$

By definition, there is

$$\langle \cdot, \cdot \rangle : \Pi^B_v \otimes \widetilde{\Pi}^B_v \to \mathbb{C}$$

$$\langle \Pi^B_{\mathbf{v}}(b) \varphi_{\mathbf{v}}, \widetilde{\Pi}^B_{\mathbf{v}}(b) \widetilde{\varphi}_{\mathbf{v}} \rangle = \langle \varphi_{\mathbf{v}}, \widetilde{\varphi}_{\mathbf{v}} \rangle$$

for all $b \in B_v^{\times}$.

$$I_{\nu}'(\varphi_{\nu}\otimes\widetilde{\varphi}_{\nu})=\int_{B_{\nu}^{ imes}}\langle \Pi_{\nu}(b)\varphi_{
u},\widetilde{\varphi}_{
u}
angle db.$$

• • = • • = •

Normalization

Proposition (Ichino-Ikeda)

Whenever everything is unramified

$$U_{\nu}'(\varphi_{\nu}\otimes\widetilde{\varphi}_{\nu})=rac{L_{\nu}(rac{1}{2},\Pi_{\nu})}{\zeta_{\nu}(2)L(1,\Pi,Ad)}$$

$$I_{\nu} = \left(\frac{L_{\nu}(\frac{1}{2},\Pi_{\nu})}{\zeta_{\nu}(2)L(1,\Pi,\operatorname{Ad})}\right)^{-1}I_{\nu}'.$$

This gives a global form:

$$\varphi \otimes \widetilde{\varphi} = \bigotimes_{v} (\varphi_{v} \otimes \widetilde{\varphi}_{v}) \mapsto \prod_{v} I(\varphi_{v} \otimes \widetilde{\varphi}_{v})$$

・ 一 ・ ・ ・ ・ ・ ・

Normalization

Proposition (Ichino-Ikeda)

Whenever everything is unramified

$$U_{\nu}'(\varphi_{\nu}\otimes\widetilde{\varphi}_{\nu})=rac{L_{\nu}(rac{1}{2},\Pi_{\nu})}{\zeta_{\nu}(2)L(1,\Pi,Ad)}$$

$$I_{\nu} = \left(\frac{L_{\nu}(\frac{1}{2},\Pi_{\nu})}{\zeta_{\nu}(2)L(1,\Pi,\operatorname{Ad})}\right)^{-1}I_{\nu}'.$$

This gives a global form:

$$\varphi \otimes \widetilde{\varphi} = \bigotimes_{\mathcal{Q}} (\varphi_{\mathcal{V}} \otimes \widetilde{\varphi}_{\mathcal{V}}) \mapsto \prod_{\mathcal{Q}} I(\varphi_{\mathcal{V}} \otimes \widetilde{\varphi}_{\mathcal{V}})$$

▲□ ► < □ ► </p>

3 N

Normalization

Proposition (Ichino-Ikeda)

Whenever everything is unramified

$$\zeta'_{\nu}(\varphi_{\nu}\otimes\widetilde{\varphi}_{\nu})=rac{L_{\nu}(rac{1}{2},\Pi_{\nu})}{\zeta_{\nu}(2)L(1,\Pi,Ad)}$$

$$I_{\nu} = \left(\frac{L_{\nu}(\frac{1}{2},\Pi_{\nu})}{\zeta_{\nu}(2)L(1,\Pi,\operatorname{Ad})}\right)^{-1}I_{\nu}'.$$

This gives a global form:

$$\varphi\otimes\widetilde{\varphi}=\bigotimes_{\mathbf{v}}(\varphi_{\mathbf{v}}\otimes\widetilde{\varphi}_{\mathbf{v}})\mapsto\prod_{\mathbf{v}}I(\varphi_{\mathbf{v}}\otimes\widetilde{\varphi}_{\mathbf{v}})$$

→ 3 → < 3</p>

Two global forms must differ by a constant

Theorem (Ichino)

$$I = \frac{L(\frac{1}{2},\Pi)}{2^{3}\zeta_{F}(2)L(1,\Pi,Ad)}\prod_{v}I_{v}$$

My theorem then follows by bounding I_v in the ramified cases.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Two global forms must differ by a constant

Theorem (Ichino)

$$I = \frac{L(\frac{1}{2}, \Pi)}{2^{3}\zeta_{F}(2)L(1, \Pi, Ad)} \prod_{v} I_{v}$$

My theorem then follows by bounding I_v in the ramified cases.

Two global forms must differ by a constant

Theorem (Ichino)

$$I = \frac{L(\frac{1}{2},\Pi)}{2^{3}\zeta_{F}(2)L(1,\Pi,Ad)}\prod_{v}I_{v}$$

My theorem then follows by bounding I_v in the ramified cases.

An idea of the proof

• Bound growth of $L(1, \Pi, Ad)$.

- Lower bound on I_v at infinite places.
- Nonvanishing for $q \mid n_1 n_2 n$.
- At the prime p.

An idea of the proof

- Bound growth of $L(1, \Pi, Ad)$.
- Lower bound on I_v at infinite places.
- Nonvanishing for $q \mid \mathfrak{n}_1 \mathfrak{n}_2 \mathfrak{n}$.
- At the prime p.

An idea of the proof

- Bound growth of $L(1, \Pi, Ad)$.
- Lower bound on I_v at infinite places.
- Nonvanishing for $\mathfrak{q} \mid \mathfrak{n}_1 \mathfrak{n}_2 \mathfrak{n}$.
- At the prime p.

An idea of the proof

- Bound growth of $L(1, \Pi, Ad)$.
- Lower bound on I_v at infinite places.
- Nonvanishing for $q \mid \mathfrak{n}_1 \mathfrak{n}_2 \mathfrak{n}$.
- At the prime p.

< ∃ >

Further directions and applications

• Generalize Venkatesh's work to arbitrary *B*.

- Local matrix coefficients and trilinear forms in supercuspidal cases and on division quaternion algebra.
- Reprove Prasad's theorem on ϵ -factors 'analytically.'
- Exact formulas.
- Applications to derivative.

- Generalize Venkatesh's work to arbitrary *B*.
- Local matrix coefficients and trilinear forms in supercuspidal cases and on division quaternion algebra.
- Reprove Prasad's theorem on ε-factors 'analytically.'
- Exact formulas.
- Applications to derivative.

- Generalize Venkatesh's work to arbitrary *B*.
- Local matrix coefficients and trilinear forms in supercuspidal cases and on division quaternion algebra.
- Reprove Prasad's theorem on ϵ -factors 'analytically.'
- Exact formulas.
- Applications to derivative.

- Generalize Venkatesh's work to arbitrary *B*.
- Local matrix coefficients and trilinear forms in supercuspidal cases and on division quaternion algebra.
- Reprove Prasad's theorem on ϵ -factors 'analytically.'
- Exact formulas.
- Applications to derivative.

- Generalize Venkatesh's work to arbitrary *B*.
- Local matrix coefficients and trilinear forms in supercuspidal cases and on division quaternion algebra.
- Reprove Prasad's theorem on ϵ -factors 'analytically.'
- Exact formulas.
- Applications to derivative.