Trilinear forms and subconvexity of the triple product L-function

Michael Woodbury
University of Wisconsin

December 17, 2009

What is subconvexity?

Let $L(s, f)$ be an L-function.

- There exist a gamma factor

- There is an integer $N(f)$ called the conductor.
- Setting $\Lambda(s, f)=N(f)^{s / 2} \gamma(s, f) L(f, s)$ there is a functional equation

What is subconvexity?

Let $L(s, f)$ be an L-function.

- $L(s, f)=\sum_{n \geq 1} \frac{a_{n}}{n^{s}}$

$$
=\prod\left(1-\alpha_{1}(p) p^{-s}\right)^{-1} \cdots\left(1-\alpha_{d}(p) p^{-s}\right)^{-1}
$$

- There exist a gamma factor
- There is an integer $N(f)$ called the conductor.
- Setting $\Lambda(s, f)=N(f)^{s / 2} \gamma(s, f) L(f, s)$ there is a functional equation

What is subconvexity?

Let $L(s, f)$ be an L-function.

- $L(s, f)=\sum_{n \geq 1} \frac{a_{n}}{n^{s}}$

$$
=\prod\left(1-\alpha_{1}(p) p^{-s}\right)^{-1} \cdots\left(1-\alpha_{d}(p) p^{-s}\right)^{-1}
$$

- There exist a gamma factor

$$
\gamma(s, f)=\pi^{-d s / 2} \prod_{j=1}^{d}\left\ulcorner\left(\frac{s+t_{i}}{2}\right)\right.
$$

- There is an integer $N(f)$ called the conductor.
- Setting $\Lambda(s, f)=N(f)^{s / 2} \gamma(s, f) L(f, s)$ there is a functional equation

What is subconvexity?

Let $L(s, f)$ be an L-function.

- $L(s, f)=\sum_{n \geq 1} \frac{a_{n}}{n^{s}}$

$$
=\prod\left(1-\alpha_{1}(p) p^{-s}\right)^{-1} \cdots\left(1-\alpha_{d}(p) p^{-s}\right)^{-1}
$$

- There exist a gamma factor

$$
\gamma(s, f)=\pi^{-d s / 2} \prod_{j=1}^{d} \Gamma\left(\frac{s+t_{i}}{2}\right)
$$

- There is an integer $N(f)$ called the conductor.
- Setting $\Lambda(s, f)=N(f)^{s / 2} \gamma(s, f) L(f, s)$ there is a functional equation

What is subconvexity?

Let $L(s, f)$ be an L-function.

- $L(s, f)=\sum_{n \geq 1} \frac{a_{n}}{n^{s}}$

$$
=\prod\left(1-\alpha_{1}(p) p^{-s}\right)^{-1} \cdots\left(1-\alpha_{d}(p) p^{-s}\right)^{-1}
$$

- There exist a gamma factor

$$
\gamma(s, f)=\pi^{-d s / 2} \prod_{j=1}^{d} \Gamma\left(\frac{s+t_{i}}{2}\right)
$$

- There is an integer $N(f)$ called the conductor.
- Setting $\Lambda(s, f)=N(f)^{s / 2} \gamma(s, f) L(f, s)$ there is a functional equation

$$
\Lambda(f, s)=\varepsilon(f) \Lambda(\bar{f}, 1-s) .
$$

What is subconvexity?

General methods allow one to show that if $f \in \mathcal{F}$ then

$$
L(s, f) \ll\left[N_{\infty}(s) N(f)\right]^{\frac{1}{4}+\epsilon} .
$$

where $N_{\infty}(s)$ depends on the values t_{j}.

The Lindelof conjecture predicts that that $\frac{1}{4}$ can be replaced by zero. Subconvexity is any improvement on the convexity bound.

What is subconvexity?

General methods allow one to show that if $f \in \mathcal{F}$ then

$$
L(s, f) \ll\left[N_{\infty}(s) N(f)\right]^{\frac{1}{4}+\epsilon} .
$$

where $N_{\infty}(s)$ depends on the values t_{j}.

The Lindelof conjecture predicts that that $\frac{1}{4}$ can be replaced by zero. Subconvexity is any improvement on the convexity bound.

What is subconvexity?

General methods allow one to show that if $f \in \mathcal{F}$ then

$$
L(s, f) \ll\left[N_{\infty}(s) N(f)\right]^{\frac{1}{4}+\epsilon} .
$$

where $N_{\infty}(s)$ depends on the values t_{j}.

The Lindelof conjecture predicts that that $\frac{1}{4}$ can be replaced by zero. Subconvexity is any improvement on the convexity bound.

What is subconvexity?

General methods allow one to show that if $f \in \mathcal{F}$ then

$$
L(s, f) \ll\left[N_{\infty}(s) N(f)\right]^{\frac{1}{4}+\epsilon} .
$$

where $N_{\infty}(s)$ depends on the values t_{j}.

The Lindelof conjecture predicts that that $\frac{1}{4}$ can be replaced by zero. Subconvexity is any improvement on the convexity bound.

The triple product L-function: Classical formulation

Let $f, g, h \in S_{k}\left(\Gamma_{0}(N)\right)$ be eigenforms.

We are interested in

This is very similar to the Rankin-Selberg L-function.

The triple product L-function: Classical formulation

Let $f, g, h \in S_{k}\left(\Gamma_{0}(N)\right)$ be eigenforms. Then write

$$
f(z)=\sum_{n=1}^{\infty} a_{n}(f) q^{n}
$$

We are interested in

This is very similar to the Rankin-Selberg L-function.

The triple product L-function: Classical formulation

Let $f, g, h \in S_{k}\left(\Gamma_{0}(N)\right)$ be eigenforms. Then write

$$
f(z)=\sum_{n=1}^{\infty} a_{n}(f) q^{n}
$$

We are interested in

$$
L(s, f \times g \times h)=\sum_{n=1}^{\infty} \frac{a_{n}(f) a_{n}(g) a_{n}(h)}{n^{s}} .
$$

This is very similar to the Rankin-Selberg L-function.

The triple product L-function: Classical formulation

Let $f, g, h \in S_{k}\left(\Gamma_{0}(N)\right)$ be eigenforms. Then write

$$
f(z)=\sum_{n=1}^{\infty} a_{n}(f) q^{n}
$$

We are interested in

$$
L(s, f \times g \times h)=\sum_{n=1}^{\infty} \frac{a_{n}(f) a_{n}(g) a_{n}(h)}{n^{s}} .
$$

This is very similar to the Rankin-Selberg L-function.

Representation theoretic point of view

Notation:

- F a number field, v a place of F, F_{v} the completed local field, \mathcal{O}_{v} the ring of integers.
- $\mathbb{A}=\mathbb{A}_{F}=\Pi^{\prime} F_{v}$, the ring of adeles.
- For $i=1,2,3$, let π_{i} be imreducible euspidal automorphic representations of $\mathrm{GL}_{2}(\mathbb{A})$ (with trivial central character.)
- $\Pi=\pi_{1} \otimes \pi_{2} \otimes \pi_{3}$.

Representation theoretic point of view

Notation:

- F a number field, v a place of F, F_{v} the completed local field, \mathcal{O}_{v} the ring of integers.
- $\mathbb{A}=\mathbb{A}_{F}=\Pi^{\prime} F_{v}$, the ring of adeles.
- For $i=1,2,3$, let π_{i} be irreducible cuspidal automorphic representations of $\mathrm{GL}_{2}(\mathbb{A})$ (with trivial central character.)
- $\Pi=\pi_{1} \otimes \pi_{2} \otimes \pi_{3}$.

Representation theoretic point of view

Notation:

- F a number field, v a place of F, F_{v} the completed local field, \mathcal{O}_{v} the ring of integers.
- $\mathbb{A}=\mathbb{A}_{F}=\Pi^{\prime} F_{v}$, the ring of adeles.
- For $i=1,2,3$, let π_{i} be irreducible euspidal automorphic representations of $\mathrm{GL}_{2}(\mathbb{A})$ (with trivial central character.)
- $\Pi=\pi_{1} \otimes \pi_{2} \otimes \pi_{3}$.

Representation theoretic point of view

Notation:

- F a number field, v a place of F, F_{v} the completed local field, \mathcal{O}_{v} the ring of integers.
- $\mathbb{A}=\mathbb{A}_{F}=\Pi^{\prime} F_{v}$, the ring of adeles.
- For $i=1,2,3$, let π_{i} be irreducible cuspidal automorphic representations of $\mathrm{GL}_{2}(\mathbb{A})$ (with trivial central character.)
- $\Pi=\pi_{1} \otimes \pi_{2} \otimes \pi_{3}$.

Representation theoretic point of view

Notation:

- F a number field, v a place of F, F_{v} the completed local field, \mathcal{O}_{v} the ring of integers.
- $\mathbb{A}=\mathbb{A}_{F}=\Pi^{\prime} F_{v}$, the ring of adeles.
- For $i=1,2,3$, let π_{i} be irreducible cuspidal automorphic representations of $\mathrm{GL}_{2}(\mathbb{A})$ (with trivial central character.)
- $\boldsymbol{\Pi}=\pi_{1} \otimes \pi_{2} \otimes \pi_{3}$.

Representation theoretic point of view

Notation:

- F a number field, v a place of F, F_{v} the completed local field, \mathcal{O}_{v} the ring of integers.
- $\mathbb{A}=\mathbb{A}_{F}=\Pi^{\prime} F_{v}$, the ring of adeles.
- For $i=1,2,3$, let π_{i} be irreducible cuspidal automorphic representations of $\mathrm{GL}_{2}(\mathbb{A})$ (with trivial central character.)

Representation theoretic point of view

Notation:

- F a number field, v a place of F, F_{v} the completed local field, \mathcal{O}_{v} the ring of integers.
- $\mathbb{A}=\mathbb{A}_{F}=\Pi^{\prime} F_{v}$, the ring of adeles.
- For $i=1,2,3$, let π_{i} be irreducible cuspidal automorphic representations of $\mathrm{GL}_{2}(\mathbb{A})$ (with trivial central character.)
- $\Pi=\pi_{1} \otimes \pi_{2} \otimes \pi_{3}$.

Subconvexity for the triple product L-function: Eigenvalue aspect

Idea: Fix π_{1} and π_{2} and vary π_{3} is some way. We want to find a subconvexity bound for $L\left(\frac{1}{2}, \Pi\right)$.

Theorem (Bernstein-Reznikov)
Let $F=\mathbb{Q}$. Fix π_{1}, π_{2} corresponding to Maass forms for $\mathrm{SL}_{2}(\mathbb{Z})$ There is a subconvexity bound for $L\left(\frac{1}{2}, \Pi\right)$ for π_{3} corresponding to a level 1 Maass form of varying eigenvalue.

Their proof relies on a formula of Watson that relates the L-value to a certain period integral.

Subconvexity for the triple product L-function: Eigenvalue aspect

Idea: Fix π_{1} and π_{2} and vary π_{3} is some way. We want to find a subconvexity bound for $L\left(\frac{1}{2}, \Pi\right)$.

Theorem (Bernstein-Reznikov)

Let $F=\mathbb{Q}$. Fix π_{1}, π_{2} corresponding to Maass forms for $\mathrm{SL}_{2}(\mathbb{Z})$. There is a subconvexity bound for $L\left(\frac{1}{2}, \Pi\right)$ for π_{3} corresponding to a level 1 Maass form of varying eigenvalue.

Their proof relies on a formula of Watson that relates the L-value to a certain period integral.

Subconvexity for the triple product L-function: Eigenvalue aspect

Idea: Fix π_{1} and π_{2} and vary π_{3} is some way. We want to find a subconvexity bound for $L\left(\frac{1}{2}, \Pi\right)$.

Theorem (Bernstein-Reznikov)

Let $F=\mathbb{Q}$. Fix π_{1}, π_{2} corresponding to Maass forms for $\mathrm{SL}_{2}(\mathbb{Z})$. There is a subconvexity bound for $L\left(\frac{1}{2}, \Pi\right)$ for π_{3} corresponding to a level 1 Maass form of varying eigenvalue.

Their proof relies on a formula of Watson that relates the L-value to a certain period integral.

Subconvexity for the triple product L-function: Level aspect

Relaxed conditions: Allow F to be any number field, π_{1}, π_{2} to have nontrivial conductors and arbitrary ∞ type, and let $\pi_{3, \infty}$ to vary in a "bounded set."

Theorem (Venkatesh)

Suppose that the conductor of π_{3} is a prime \mathfrak{p} relatively prime to the conductors of π_{1}, π_{2}. For any $\varphi_{i} \in \pi_{i}$
for an explicit $C>0 .(N(\mathfrak{p})$ is the norm, $[G]=Z(\mathbb{A}) G(F) \backslash G(\mathbb{A})$ and $\|\cdot\|_{p}$ is the L^{p}-norm.)

Subconvexity for the triple product L-function: Level aspect

Relaxed conditions: Allow F to be any number field, π_{1}, π_{2} to have nontrivial conductors and arbitrary ∞ type, and let $\pi_{3, \infty}$ to vary in a "bounded set."

Theorem (Venkatesh)

Suppose that the conductor of π_{3} is a prime \mathfrak{p} relatively prime to the conductors of π_{1}, π_{2}. For any $\varphi_{i} \in \pi_{i}$,

$$
\left|\int_{[G]} \varphi_{1}(g) \varphi_{2}(g) \varphi_{3}(g) d g\right| \ll\left\|\varphi_{1}\right\|_{4}\left\|\varphi_{2}\right\|_{4}\left\|\varphi_{3}\right\|_{2} N(\mathfrak{p})^{\epsilon-C}
$$

for an explicit $C>0$. $(N(\mathfrak{p})$ is the norm, $[G]=Z(\mathbb{A}) G(F) \backslash G(\mathbb{A})$ and $\|\cdot\|_{p}$ is the L^{p}-norm.)

Subconvexity for the triple product L-function: Level aspect

Conjecture (Venkatesh)

Let π_{i} be as above, φ_{3} be the new vector. Then for $i=1,2$ there are finite collections \mathcal{F}_{i} and $\varphi_{i} \in \mathcal{F}_{i}$ such that

$$
L\left(\frac{1}{2}, \Pi\right) \ll N(\mathfrak{p})^{1+\epsilon}\left|\int_{[G]} \varphi_{1}(g) \varphi_{2}(g) \varphi_{3}(g) d g\right|^{2} .
$$

Combined with Venkatesh's theorem this would give subconvexity.

"Theorem"

The conjecture is true.

Subconvexity for the triple product L-function: Level aspect

Conjecture (Venkatesh)

Let π_{i} be as above, φ_{3} be the new vector. Then for $i=1,2$ there are finite collections \mathcal{F}_{i} and $\varphi_{i} \in \mathcal{F}_{i}$ such that

$$
L\left(\frac{1}{2}, \Pi\right) \ll N(\mathfrak{p})^{1+\epsilon}\left|\int_{[G]} \varphi_{1}(g) \varphi_{2}(g) \varphi_{3}(g) d g\right|^{2}
$$

Combined with Venkatesh's theorem this would give subconvexity.

"Theorem" (W.)

Subconvexity for the triple product L-function: Level aspect

Conjecture (Venkatesh)

Let π_{i} be as above, φ_{3} be the new vector. Then for $i=1,2$ there are finite collections \mathcal{F}_{i} and $\varphi_{i} \in \mathcal{F}_{i}$ such that

$$
L\left(\frac{1}{2}, \Pi\right) \ll N(\mathfrak{p})^{1+\epsilon}\left|\int_{[G]} \varphi_{1}(g) \varphi_{2}(g) \varphi_{3}(g) d g\right|^{2} .
$$

Combined with Venkatesh's theorem this would give subconvexity.

"Theorem" (W.)
 The conjecture is true.

Connection to trilinear forms

$$
\text { Let } \varphi=\varphi_{1} \otimes \varphi_{2} \otimes \varphi_{3} \in \Pi \text {. We want to say something about }
$$

$$
J(\varphi)=\int_{[G]} \varphi(g) d g
$$

This is a trilinear form on Π. Fact:
$\operatorname{dim} \operatorname{Hom}_{B_{A}^{\times}}\left(\Pi^{B}, \mathbb{C}\right) \leq 1$.

This is consequence of a local restriction.

Connection to trilinear forms

Let $\varphi=\varphi_{1} \otimes \varphi_{2} \otimes \varphi_{3} \in \Pi$. We want to say something about

$$
J(\varphi)=\int_{[G]} \varphi(g) d g .
$$

This is a trilinear form on Π.
Fact:
$\operatorname{dim} \operatorname{Hom}_{B_{\Perp}^{\times}}\left(\Pi^{B}, \mathbb{C}\right) \leq 1$.

This is consequence of a local restriction.

Connection to trilinear forms

Let $\varphi=\varphi_{1} \otimes \varphi_{2} \otimes \varphi_{3} \in \Pi$. We want to say something about

$$
J(\varphi)=\int_{[G]} \varphi(g) d g .
$$

This is a trilinear form on Π.
Fact:
$\operatorname{dim} \operatorname{Hom}_{B_{A}^{\times}}\left(\Pi^{B}, \mathbb{C}\right) \leq 1$.

This is consequence of a local restriction.

Connection to trilinear forms

Let $\varphi=\varphi_{1} \otimes \varphi_{2} \otimes \varphi_{3} \in \Pi$. We want to say something about

$$
J(\varphi)=\int_{[G]} \varphi(g) d g .
$$

This is a trilinear form on Π.
Fact:

$$
\operatorname{dim} \operatorname{Hom}_{B_{\mathbb{A}}^{\times}}\left(\Pi^{B}, \mathbb{C}\right) \leq 1
$$

This is consequence of a local restriction.

Connection to trilinear forms

Let $\varphi=\varphi_{1} \otimes \varphi_{2} \otimes \varphi_{3} \in \Pi$. We want to say something about

$$
J(\varphi)=\int_{[G]} \varphi(g) d g .
$$

This is a trilinear form on Π.
Fact:

$$
\operatorname{dim} \operatorname{Hom}_{B_{\mathbb{A}}^{\times}}\left(\Pi^{B}, \mathbb{C}\right) \leq 1
$$

This is consequence of a local restriction.

Local obstruction

Theorem (Prasad,Prasad-Loke)

Let $\pi_{i, v}(i=1,2,3)$ be admissible representations of $\mathrm{GL}_{2}\left(F_{v}\right)$. Let B_{v} be the division quaternion algebra over F_{v} and $\pi_{i, v}^{J L}$ the corresponding Jacquet-Langlands representation of $B_{v} \times$. Then

$$
\operatorname{dim} \operatorname{Hom}_{\mathrm{GL}_{2}\left(F_{v}\right)}\left(\Pi_{v}, \mathbb{C}\right)+\operatorname{dim} \operatorname{Hom}_{B_{v} \times}\left(\Pi_{v}^{J L}, \mathbb{C}\right)=1 .
$$

Which space is nonzero is determined by $\epsilon_{v}\left(\frac{1}{2}, \Pi_{v}\right)$.
If v is finite (infinite) then $\epsilon_{V}\left(\frac{1}{2}, \Pi_{v}\right)$ can be -1 only when $\pi_{i, v}$ is ramified (discrete series) for all $i=1,2,3$.

Local obstruction

Theorem (Prasad,Prasad-Loke)

Let $\pi_{i, v}(i=1,2,3)$ be admissible representations of $\mathrm{GL}_{2}\left(F_{v}\right)$. Let B_{v} be the division quaternion algebra over F_{v} and $\pi_{i, v}^{J L}$ the corresponding Jacquet-Langlands representation of $B_{v} \times$. Then

$$
\operatorname{dim} \operatorname{Hom}_{\mathrm{GL}_{2}\left(F_{v}\right)}\left(\Pi_{v}, \mathbb{C}\right)+\operatorname{dim} \operatorname{Hom}_{B_{v} \times}\left(\Pi_{v}^{J L}, \mathbb{C}\right)=1 .
$$

Which space is nonzero is determined by $\epsilon_{v}\left(\frac{1}{2}, \Pi_{v}\right)$.
If v is finite (infinite) then $\epsilon_{v}\left(\frac{1}{2}, \Pi_{v}\right)$ can be -1 only when $\pi_{i, v}$ is ramified (discrete series) for all $i=1,2,3$.

$L\left(\frac{1}{2}, \Pi\right)$ can't distinguish between quaternions

If $\Pi^{J L} \neq 0$ then $L(s, \Pi)=L\left(s, \Pi^{J L}\right)$.

Theorem (Harris, Kuda)

Let Π be as above. Then $L\left(\frac{1}{2}, \Pi\right) \neq 0$ if and only if the global trilinear form

is nonzero for some choice of B. (By Prasad, when such a B exists it is unique.)

$L\left(\frac{1}{2}, \Pi\right)$ can't distinguish between quaternions

If $\Pi^{J L} \neq 0$ then $L(s, \Pi)=L\left(s, \Pi^{J L}\right)$.

Theorem (Harris, Kudla)

Let Π be as above. Then $L\left(\frac{1}{2}, \Pi\right) \neq 0$ if and only if the global trilinear form

$$
J: \Pi^{B} \rightarrow \mathbb{C} \quad \varphi \mapsto \int_{\left[B^{\times}\right]} \varphi(b) d b
$$

is nonzero for some choice of B. (By Prasad, when such a B exists it is unique.)

The correct theorem

So, we may need to replace G by B^{\times}.
Theorem (W.)
Let π_{1}, π_{2} have fixed conductors $\mathfrak{n}_{1}, \mathfrak{n}_{2}$. Fix \mathfrak{n}. If π_{3} has conductor $\mathfrak{n p}$, there exists a finite collection \mathcal{B} of quaternion algebras and finite collections $\mathcal{F}_{i}^{B} \subset \pi_{i}^{B}$ for $B \in \mathcal{B}$ and $i=1,2$ such that

for some $B \in \mathcal{B}, \varphi_{i} \in \mathcal{F}_{i}^{B}$ and φ_{3} the new vector.

The correct theorem

So, we may need to replace G by B^{\times}.

Theorem (W.)

Let π_{1}, π_{2} have fixed conductors $\mathfrak{n}_{1}, \mathfrak{n}_{2}$. Fix \mathfrak{n}. If π_{3} has conductor $\mathfrak{n p}$, there exists a finite collection \mathcal{B} of quaternion algebras and finite collections $\mathcal{F}_{i}^{B} \subset \pi_{i}^{B}$ for $B \in \mathcal{B}$ and $i=1,2$ such that

$$
L\left(\frac{1}{2}, \Pi\right) \ll N(\mathfrak{p})^{1+\epsilon}\left|\int_{\left[B^{\times}\right]} \varphi_{1}(b) \varphi_{2}(b) \varphi_{3}(b) d b\right|^{2} .
$$

for some $B \in \mathcal{B}, \varphi_{i} \in \mathcal{F}_{i}^{B}$ and φ_{3} the new vector.

Application to subconvexity

Let S_{∞} be the set of real infinite places, and S_{f} be set of places dividing $\operatorname{gcd}\left(\mathfrak{n}_{1}, \mathfrak{n}_{2}, \mathfrak{n}\right)$. Then by Prasad and Loke

In Venkatesh's case, $S_{f}=\emptyset$. So, for his theorem to imply subconvexity, there is a necessary and sufficient restriction on $\pi_{i, \infty}$ (Namely, there is a condition on the weights k_{i} for real place v such that $\pi_{i, v}$ are discrete series of weight k_{i}.)
If his theorem could be generalized to arbitrary quaternion algebras, with my theorem, this would give subconvexity unconditionally and more generally.

Application to subconvexity

Let S_{∞} be the set of real infinite places, and S_{f} be set of places dividing $\operatorname{gcd}\left(\mathfrak{n}_{1}, \mathfrak{n}_{2}, \mathfrak{n}\right)$. Then by Prasad and Loke

$$
\mathcal{B}=\left\{B \mid \Sigma_{B} \subset S_{\infty} \cup S_{f}\right\}
$$

In Venkatesh's case, $S_{f}=\emptyset$. So, for his theorem to imply subconvexity, there is a necessary and sufficient restriction on $\pi_{i, \infty}$ (Namely, there is a condition on the weights k_{i} for real place v such that $\pi_{i, v}$ are discrete series of weight k_{i}.)

If his theorem could be generalized to arbitrary quaternion algebras, with my theorem, this would give subconvexity unconditionally and more generally.

Application to subconvexity

Let S_{∞} be the set of real infinite places, and S_{f} be set of places dividing $\operatorname{gcd}\left(\mathfrak{n}_{1}, \mathfrak{n}_{2}, \mathfrak{n}\right)$. Then by Prasad and Loke

$$
\mathcal{B}=\left\{B \mid \Sigma_{B} \subset S_{\infty} \cup S_{f}\right\}
$$

In Venkatesh's case, $S_{f}=\emptyset$. So, for his theorem to imply subconvexity, there is a necessary and sufficient restriction on $\pi_{i, \infty}$. (Namely, there is a condition on the weights k_{i} for real place v such that $\pi_{i, v}$ are discrete series of weight k_{i}.)

If his theorem could be generalized to arbitrary quaternion algebras, with my theorem, this would give subconvexity unconditionally and more generally.

Application to subconvexity

Let S_{∞} be the set of real infinite places, and S_{f} be set of places dividing $\operatorname{gcd}\left(\mathfrak{n}_{1}, \mathfrak{n}_{2}, \mathfrak{n}\right)$. Then by Prasad and Loke

$$
\mathcal{B}=\left\{B \mid \Sigma_{B} \subset S_{\infty} \cup S_{f}\right\}
$$

In Venkatesh's case, $S_{f}=\emptyset$. So, for his theorem to imply subconvexity, there is a necessary and sufficient restriction on $\pi_{i, \infty}$. (Namely, there is a condition on the weights k_{i} for real place v such that $\pi_{i, v}$ are discrete series of weight k_{i}.)

If his theorem could be generalized to arbitrary quaternion algebras, with my theorem, this would give subconvexity unconditionally and more generally.

Reformulation

It's easier to work with forms on $\Pi^{B} \otimes \tilde{\Pi}^{B}$.

Example of an element:

Reformulation

It's easier to work with forms on $\Pi^{B} \otimes \widetilde{\Pi}^{B}$.

$$
\operatorname{dim} \operatorname{Hom}_{B_{A}^{\times} \times B_{\mathbb{A}}^{\times}}\left(\Pi^{B} \otimes \tilde{\Pi}^{B}, \mathbb{C}\right) \leq 1 .
$$

Example of an element:

Reformulation

It's easier to work with forms on $\Pi^{B} \otimes \tilde{\Pi}^{B}$.

$$
\operatorname{dim} \operatorname{Hom}_{B_{A}^{\times} \times B_{A}^{\times}}\left(\Pi^{B} \otimes \tilde{\Pi}^{B}, \mathbb{C}\right) \leq 1 .
$$

Example of an element:

$$
I(\varphi \otimes \widetilde{\varphi})=\int_{\left[B^{\times}\right]} \int_{\left[B^{\times}\right]} \varphi\left(b_{1}\right) \widetilde{\varphi}\left(b_{2}\right) d b_{1} d b_{2}
$$

Local trilinear forms

Again,

$$
\operatorname{dim} \operatorname{Hom}_{B_{v}^{\times} \times B_{v}^{\times}}\left(\Pi_{v}^{B} \otimes \widetilde{\Pi}_{v}^{B}, \mathbb{C}\right) \leq 1
$$

By definition, there is

for all $b \in B_{v} \times$

$$
\left\langle\Pi_{v}^{B}(b) \varphi_{v}, \widetilde{\Pi}_{v}^{B}(b) \widetilde{\varphi}_{v}\right\rangle=\left\langle\varphi_{v}, \widetilde{\varphi}_{v}\right\rangle
$$

Local trilinear forms

Again,

$$
\operatorname{dim} \operatorname{Hom}_{B_{v}^{\times} \times B_{v}^{\times}}\left(\Pi_{v}^{B} \otimes \widetilde{\Pi}_{v}^{B}, \mathbb{C}\right) \leq 1
$$

By definition, there is

$$
\langle\cdot, \cdot\rangle: \Pi_{v}^{B} \otimes \widetilde{\Pi}_{v}^{B} \rightarrow \mathbb{C}
$$

for all $b \in B_{v} \times$

Local trilinear forms

Again,

$$
\operatorname{dim} \operatorname{Hom}_{B_{v}^{\times} \times B_{v}^{\times}}\left(\Pi_{v}^{B} \otimes \widetilde{\Pi}_{v}^{B}, \mathbb{C}\right) \leq 1
$$

By definition, there is

$$
\begin{gathered}
\langle\cdot, \cdot\rangle: \Pi_{v}^{B} \otimes \widetilde{\Pi}_{v}^{B} \rightarrow \mathbb{C} \\
\left\langle\Pi_{v}^{B}(b) \varphi_{v}, \tilde{\Pi}_{v}^{B}(b) \widetilde{\varphi}_{v}\right\rangle=\left\langle\varphi_{v}, \widetilde{\varphi}_{v}\right\rangle
\end{gathered}
$$

for all $b \in B_{v}^{\times}$.

Local trilinear forms

Again,

$$
\operatorname{dim} \operatorname{Hom}_{B_{v}^{\times} \times B_{v}^{\times}}\left(\Pi_{v}^{B} \otimes \widetilde{\Pi}_{v}^{B}, \mathbb{C}\right) \leq 1
$$

By definition, there is

$$
\begin{gathered}
\langle\cdot, \cdot\rangle: \Pi_{v}^{B} \otimes \tilde{\Pi}_{v}^{B} \rightarrow \mathbb{C} \\
\left\langle\Pi_{v}^{B}(b) \varphi_{v}, \tilde{\Pi}_{v}^{B}(b) \widetilde{\varphi}_{v}\right\rangle=\left\langle\varphi_{v}, \widetilde{\varphi}_{v}\right\rangle
\end{gathered}
$$

for all $b \in B_{v}^{\times}$.

$$
I_{v}^{\prime}\left(\varphi_{v} \otimes \widetilde{\varphi}_{v}\right)=\int_{B_{v}^{\times}}\left\langle\Pi_{v}(b) \varphi_{v}, \widetilde{\varphi}_{v}\right\rangle d b .
$$

Normalization

Proposition (Ichino-Ikeda)

Whenever everything is unramified

$$
I_{v}^{\prime}\left(\varphi_{v} \otimes \widetilde{\varphi}_{v}\right)=\frac{L_{v}\left(\frac{1}{2}, \Pi_{v}\right)}{\zeta_{v}(2) L(1, \Pi, A d)} .
$$

This gives a global form:

Normalization

Proposition (Ichino-Ikeda)

Whenever everything is unramified

$$
I_{v}^{\prime}\left(\varphi_{v} \otimes \widetilde{\varphi}_{v}\right)=\frac{L_{v}\left(\frac{1}{2}, \Pi_{v}\right)}{\zeta_{v}(2) L(1, \Pi, A d)} .
$$

$$
I_{v}=\left(\frac{L_{v}\left(\frac{1}{2}, \Pi_{v}\right)}{\zeta_{v}(2) L(1, \Pi, A d)}\right)^{-1} I_{v}^{\prime} .
$$

This gives a global form:

Normalization

Proposition (Ichino-Ikeda)

Whenever everything is unramified

$$
l_{v}^{\prime}\left(\varphi_{v} \otimes \widetilde{\varphi}_{v}\right)=\frac{L_{v}\left(\frac{1}{2}, \Pi_{v}\right)}{\zeta_{v}(2) L(1, \Pi, A d)} .
$$

$$
I_{v}=\left(\frac{L_{v}\left(\frac{1}{2}, \Pi_{v}\right)}{\zeta_{v}(2) L(1, \Pi, \mathrm{Ad})}\right)^{-1} I_{v}^{\prime} .
$$

This gives a global form:

$$
\varphi \otimes \widetilde{\varphi}=\bigotimes\left(\varphi_{v} \otimes \widetilde{\varphi}_{v}\right) \mapsto \prod^{\prime}\left(\varphi_{v} \otimes \widetilde{\varphi}_{v}\right)
$$

Two global forms must differ by a constant

Theorem (Ichino)

$$
I=\frac{L\left(\frac{1}{2}, \Pi\right)}{2^{3} \zeta_{F}(2) L(1, \Pi, A d)} \prod_{v} I_{v}
$$

My theorem then follows by bounding I_{V} in the ramified cases.

Two global forms must differ by a constant

Theorem (Ichino)

$$
I=\frac{L\left(\frac{1}{2}, \Pi\right)}{2^{3} \zeta_{F}(2) L(1, \Pi, A d)} \prod_{v} I_{v}
$$

My theorem then follows by bounding I_{V} in the ramified cases.

Two global forms must differ by a constant

Theorem (Ichino)

$$
I=\frac{L\left(\frac{1}{2}, \Pi\right)}{2^{3} \zeta_{F}(2) L(1, \Pi, A d)} \prod_{v} I_{v}
$$

My theorem then follows by bounding I_{V} in the ramified cases.

An idea of the proof

- Bound growth of $L(1, \Pi, A d)$.
- Lower bound on I_{v} at infinite places.
- Nonvanishing for $\mathfrak{q} \mid \mathfrak{n}_{1} \mathfrak{n}_{2} \mathfrak{n}$.
- At the prime \mathfrak{p}

An idea of the proof

- Bound growth of $L(1, \Pi, \operatorname{Ad})$.
- Lower bound on I_{v} at infinite places.
- Nonvanishing for $q \mid n_{1} n_{2} n$.
- At the prime \mathfrak{p}

An idea of the proof

- Bound growth of $L(1, \Pi, A d)$.
- Lower bound on I_{v} at infinite places.
- Nonvanishing for $\mathfrak{q} \mid \mathfrak{n}_{1} \mathfrak{n}_{2} \mathfrak{n}$.
- At the prime p

An idea of the proof

- Bound growth of $L(1, \Pi, A d)$.
- Lower bound on I_{v} at infinite places.
- Nonvanishing for $\mathfrak{q} \mid \mathfrak{n}_{1} \mathfrak{n}_{2} \mathfrak{n}$.
- At the prime \mathfrak{p}.

Further directions and applications

- Generalize Venkatesh's work to arbitrary B.
- Local matrix coefficients and trilinear forms in supercuspidal cases and on division quaternion algebra.
- Reprove Prasad's theorem on ϵ-factors 'analytically.'
- Exact formulas.
- Applications to derivative.

Further directions and applications

- Generalize Venkatesh's work to arbitrary B.
- Local matrix coefficients and trilinear forms in supercuspidal cases and on division quaternion algebra.
- Reprove Prasad's theorem on ϵ-factors 'analytically.
- Exact formulas.
- Applications to derivative.

Further directions and applications

- Generalize Venkatesh's work to arbitrary B.
- Local matrix coefficients and trilinear forms in supercuspidal cases and on division quaternion algebra.
- Reprove Prasad's theorem on ϵ-factors 'analytically.'
- Exact formulas.
- Applications to derivative.

Further directions and applications

- Generalize Venkatesh's work to arbitrary B.
- Local matrix coefficients and trilinear forms in supercuspidal cases and on division quaternion algebra.
- Reprove Prasad's theorem on ϵ-factors 'analytically.'
- Exact formulas.
- Applications to derivative.

Further directions and applications

- Generalize Venkatesh's work to arbitrary B.
- Local matrix coefficients and trilinear forms in supercuspidal cases and on division quaternion algebra.
- Reprove Prasad's theorem on ϵ-factors 'analytically.'
- Exact formulas.
- Applications to derivative.

