Total positivity, SS 17

Exercise Sheet 1

Exercise 1.(Minor counting) Let $n \in \mathbb{N}, n \geq 1$. Consider the following two sets:

$$
\begin{gathered}
\mathcal{A}=\{(I, J) \mid I \subset[n], \quad J \subset[n], \quad I, J \neq \emptyset, \quad \# I=\# J\}, \\
\mathcal{B}=\left\{\left(i_{1}, \ldots, i_{n}\right) \mid 1 \leq i_{1}<i_{2}<\ldots<i_{n} \leq 2 n, \quad i_{1} \neq n+1\right\} .
\end{gathered}
$$

1. Construct a bijection between \mathcal{A} and \mathcal{B}.
2. Deduce that $\# \mathcal{A}=\binom{2 n}{n}-1$.
3. Deduce the following identity:

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

Exercise 2. (Cauchy-Binet) Let $A=\left[\begin{array}{llll}2 & 0 & 0 & 1 \\ 1 & 3 & 8 & 2 \\ 5 & 1 & 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{lll}2 & 3 & 1 \\ 5 & 1 & 1 \\ 7 & 7 & 2 \\ 4 & 2 & 3\end{array}\right]$. Apply Cauchy-Binet formula to evaluate $\operatorname{det}(A B)$.
Exercise 3. (Apply Cauchy-Binet to get Cauchy)
(1). Let $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right] \in \mathcal{M}_{2,3}(\mathbb{R})$. Use both definition and Cauchy-Binet formula to evaluate $\operatorname{det}\left(A A^{T}\right)$ and derive the following identity:

$$
\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)-\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)^{2}=\sum_{1 \leq i<j \leq 3}\left(a_{i} b_{j}-a_{j} b_{i}\right)^{2} .
$$

(2). Deduce the Cauchy inequality in \mathbb{R}^{3} : for $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3} \in \mathbb{R}$,

$$
\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right) \geq\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)^{2} .
$$

When the equality holds?
(3). Prove the general Cauchy inequality: for $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathbb{R}$,

$$
\left(\sum_{j=1}^{n} a_{j}^{2}\right)\left(\sum_{j=1}^{n} b_{j}^{2}\right) \geq\left(\sum_{j=1}^{n} a_{j} b_{j}\right)^{2} .
$$

Exercise 4. (Laplacian game) Evaluate the determinant of the following matrix by expanding along its second and third rows:

$$
\left[\begin{array}{lllll}
2 & 1 & 1 & 1 & 1 \\
1 & 3 & 1 & 1 & 1 \\
1 & 1 & 4 & 1 & 1 \\
1 & 1 & 1 & 5 & 1 \\
1 & 1 & 1 & 1 & 6
\end{array}\right] .
$$

Exercise 5. (Dodgson condensation) Let $x_{i, j}(1 \leq i, j \leq n)$ be n^{2} variables, $\mathbb{K}=$ $\mathbb{C}\left(x_{1,1}, x_{1,2}, \ldots, x_{n, n}\right)$ be the field of rational functions in variables $x_{i, j}, A$ be an $n \times n$ matrix whose (j, k)-entry is $x_{j, k}$. We define a sequence of matrices $\left(A^{(i)}\right)_{i=0, \ldots, n}, A^{i} \in \mathcal{M}_{n-i+1}(\mathbb{K})$, as follows: we denote the (j, k) entry of $A^{(i)}$ by $a_{j, k}^{(i)}$,
(1). $A^{(0)}$ is an $(n+1) \times(n+1)$ matrix whose entries are all $1: a_{j, k}^{(0)}=1$;
(2). $A^{(1)}=A: a_{j, k}^{(1)}=x_{j, k}$;
(3). We inductively define the matrix $A^{(i+1)} \in \mathcal{M}_{n-i}(\mathbb{K})$ by:

$$
a_{j, k}^{(i+1)}=\frac{\operatorname{det}\left[\begin{array}{cc}
a_{j, k}^{(i)} & a_{j, k+1}^{(i)} \\
a_{j+1, k}^{(i)} & a_{j+1, k+1}^{(i)}
\end{array}\right]}{a_{j+1, k+1}^{(i-1)}}
$$

The goal of this exercise is to prove the following Dodgson condensation theorem, which provides an efficient way to compute determinants for some matrices:

Theorem. (C. Dodgson) The 1×1 matrix $A^{(n)}=(\operatorname{det} A)$.
Step 1. Prove Dodgson condensation theorem for $n=3$.
Step 2. Prove Dodgson condensation by induction on n and Jacobi's formula. (Hint: Assume that $A \in \mathcal{M}_{n+1}(\mathbb{K})$, what is $A^{(n)}$ by induction hypothesis?)

Application. Compute $\operatorname{det} A$ for the following matrix using Dodgson condensation theorem:

$$
A=\left[\begin{array}{ccccc}
2 & -3 & 1 & 2 & 5 \\
4 & 1 & -2 & -3 & 2 \\
5 & -4 & 2 & 2 & -3 \\
3 & -1 & 5 & 2 & 1 \\
-4 & 1 & 5 & -1 & 2
\end{array}\right]
$$

You should know this person, Charles Lutwidge Dodgson (1832-1898), who first stated and proved the Dodgson condensation theorem. He has a pen name Lewis Carroll: yes he is the author of Alice's Adventures in Wonderland!

We finish this exercise by the following poem of Lewis Carroll:
I often wondered when I cursed,
Often feared where I would be -
Wondered where she'd yield her love
When I yield, so will she,
I would her will be pitied!
Cursed be love! She pitied me...
A mathematical way to look at this poem is via matrices (try to find a symmetry):
$\left[\begin{array}{cccccc}\text { I } & \text { often } & \text { wondered } & \text { when } & \text { I } & \text { cursed } \\ \text { Often } & \text { feared } & \text { where } & \text { I } & \text { would } & \text { be } \\ \text { Wondered } & \text { where } & \text { she'd } & \text { yield } & \text { her } & \text { love } \\ \text { When } & \text { I } & \text { yield } & \text { so } & \text { will } & \text { she } \\ \text { I } & \text { would } & \text { her } & \text { will } & \text { be } & \text { pitied! } \\ \text { Cursed } & \text { be } & \text { love! } & \text { She } & \text { pitied } & \text { me... }\end{array}\right]$.

