Exercise 1.(Minor counting) Let $n \in \mathbb{N}$, $n \ge 1$. Consider the following two sets:

$$\mathcal{A} = \{ (I, J) \mid I \subset [n], \quad J \subset [n], \quad I, J \neq \emptyset, \quad \#I = \#J \},$$
$$\mathcal{B} = \{ (i_1, \dots, i_n) \mid 1 \le i_1 < i_2 < \dots < i_n \le 2n, \quad i_1 \ne n+1 \}.$$

- 1. Construct a bijection between \mathcal{A} and \mathcal{B} .
- 2. Deduce that $#\mathcal{A} = \binom{2n}{n} 1.$
- 3. Deduce the following identity:

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}.$$

Exercise 2. (Cauchy-Binet) Let $A = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 1 & 3 & 8 & 2 \\ 5 & 1 & 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 3 & 1 \\ 5 & 1 & 1 \\ 7 & 7 & 2 \\ 4 & 2 & 3 \end{bmatrix}$. Apply Cauchy-Binet

formula to evaluate $\det(AB)$.

Exercise 3. (Apply Cauchy-Binet to get Cauchy)

(1). Let $A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \in \mathcal{M}_{2,3}(\mathbb{R})$. Use both definition and Cauchy-Binet formula to evaluate det (AA^T) and derive the following identity:

$$(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) - (a_1b_1 + a_2b_2 + a_3b_3)^2 = \sum_{1 \le i < j \le 3} (a_ib_j - a_jb_i)^2.$$

(2). Deduce the Cauchy inequality in \mathbb{R}^3 : for $a_1, a_2, a_3, b_1, b_2, b_3 \in \mathbb{R}$,

$$(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) \ge (a_1b_1 + a_2b_2 + a_3b_3)^2.$$

When the equality holds?

(3). Prove the general Cauchy inequality: for $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}$,

$$\left(\sum_{j=1}^n a_j^2\right) \left(\sum_{j=1}^n b_j^2\right) \ge \left(\sum_{j=1}^n a_j b_j\right)^2.$$

Exercise 4. (Laplacian game) Evaluate the determinant of the following matrix by expanding along its second and third rows:

$$\begin{bmatrix} 2 & 1 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 & 1 \\ 1 & 1 & 4 & 1 & 1 \\ 1 & 1 & 1 & 5 & 1 \\ 1 & 1 & 1 & 1 & 6 \end{bmatrix}$$

Exercise 5. (Dodgson condensation) Let $x_{i,j}$ $(1 \leq i, j \leq n)$ be n^2 variables, $\mathbb{K} = \mathbb{C}(x_{1,1}, x_{1,2}, \ldots, x_{n,n})$ be the field of rational functions in variables $x_{i,j}$, A be an $n \times n$ matrix whose (j, k)-entry is $x_{j,k}$. We define a sequence of matrices $(A^{(i)})_{i=0,\ldots,n}$, $A^i \in \mathcal{M}_{n-i+1}(\mathbb{K})$, as follows: we denote the (j, k) entry of $A^{(i)}$ by $a_{j,k}^{(i)}$,

(1). $A^{(0)}$ is an $(n+1) \times (n+1)$ matrix whose entries are all 1: $a_{j,k}^{(0)} = 1$;

(2).
$$A^{(1)} = A$$
: $a_{j,k}^{(1)} = x_{j,k}$;

(3). We inductively define the matrix $A^{(i+1)} \in \mathcal{M}_{n-i}(\mathbb{K})$ by:

$$a_{j,k}^{(i+1)} = \frac{\det \begin{bmatrix} a_{j,k}^{(i)} & a_{j,k+1}^{(i)} \\ a_{j+1,k}^{(i)} & a_{j+1,k+1}^{(i)} \end{bmatrix}}{a_{j+1,k+1}^{(i-1)}}.$$

The goal of this exercise is to prove the following Dodgson condensation theorem, which provides an efficient way to compute determinants for some matrices:

Theorem. (C. Dodgson) The 1×1 matrix $A^{(n)} = (\det A)$.

- Step 1. Prove Dodgson condensation theorem for n = 3.
- Step 2. Prove Dodgson condensation by induction on n and Jacobi's formula. (Hint: Assume that $A \in \mathcal{M}_{n+1}(\mathbb{K})$, what is $A^{(n)}$ by induction hypothesis?)
- Application. Compute $\det A$ for the following matrix using Dodgson condensation theorem:

$$A = \begin{bmatrix} 2 & -3 & 1 & 2 & 5 \\ 4 & 1 & -2 & -3 & 2 \\ 5 & -4 & 2 & 2 & -3 \\ 3 & -1 & 5 & 2 & 1 \\ -4 & 1 & 5 & -1 & 2 \end{bmatrix}.$$

You should know this person, Charles Lutwidge Dodgson (1832-1898), who first stated and proved the Dodgson condensation theorem. He has a pen name Lewis Carroll: yes he is the author of Alice's Adventures in Wonderland!

We finish this exercise by the following poem of Lewis Carroll:

I often wondered when I cursed, Often feared where I would be – Wondered where she'd yield her love When I yield, so will she, I would her will be pitied! Cursed be love! She pitied me...

A mathematical way to look at this poem is via matrices (try to find a symmetry):

ΓI	often	wondered	when	Ι	cursed	
Often	feared	where	Ι	would	be	
Wondered	where	she'd	yield	her	love	
When	Ι	yield	so	will	she	
Ι	would	her	will	be	pitied!	
Cursed	be	love!	She	pitied	me	