Total positivity, SS 17

Exercise Sheet 3

to be discussed on 01.06.2017
This sheet contains five regular exercises.

Recall the following notations from the lecture: for $i=1, \ldots, n-1, x_{i}(t):=I_{n}+t \mathbf{E}_{i, i+1} \in$ $\mathrm{GL}_{n}(\mathbb{R}) ; y_{i}(t)=x_{i}(t)^{T} ;$ and for $1 \leq k \leq n, h_{k}(t):=I_{n}+(t-1) \mathbf{E}_{k, k} \in \mathrm{GL}_{n}(\mathbb{R})$.

Exercise 1. (LDU without computer) Compute (by hand!) the LDU decomposition for the following matrix:

$$
\left[\begin{array}{llll}
2 & 1 & 1 & 0 \\
4 & 3 & 3 & 1 \\
8 & 7 & 9 & 5 \\
6 & 7 & 9 & 8
\end{array}\right] .
$$

Exercise 2. (Loewner-Whitney) Consider the following matrix

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 3 & 6 & 10 \\
1 & 4 & 10 & 20
\end{array}\right]
$$

1. Prove that A is TP.
2. Factorise A into a product of $x_{i}(t), y_{i}(t)$ and $h_{k}(t)$.

Exercise 3. (Exchange relations) Prove the following identities: for $a, b, c \in \mathbb{R}$,

1. if $a+c \neq 0$, then

$$
\begin{aligned}
x_{i}(a) x_{i+1}(b) x_{i}(c) & =x_{i+1}\left(\frac{b c}{a+c}\right) x_{i}(a+c) x_{i+1}\left(\frac{a b}{a+c}\right) \\
y_{i}(a) y_{i+1}(b) y_{i}(c) & =y_{i+1}\left(\frac{b c}{a+c}\right) y_{i}(a+c) y_{i+1}\left(\frac{a b}{a+c}\right)
\end{aligned}
$$

2. if $1+a b \neq 0$, then

$$
x_{i}(a) y_{i}(b)=y_{i}\left(\frac{b}{1+a b}\right) h_{i}(1+a b) h_{i+1}\left(\frac{1}{1+a b}\right) x_{i}\left(\frac{a}{1+a b}\right)
$$

Exercise 4. (Copycat)

1. Give a family of upper totally positive matrix $U_{n}(q) \in \mathrm{GL}_{n}(\mathbb{R})$ depending on $q \in(0,1)$ such that $\lim _{q \rightarrow 0^{+}} U_{n}(q)=I_{n}$. Prove your statement.
2. Let $A \in \mathrm{GL}_{n}(\mathbb{R})$ be an upper triangular invertible matrix. Assume that for any $k=$ $1,2, \ldots, n$ and $J \in\binom{[n]}{k}$, $\operatorname{det} A[1, \ldots, k \mid J] \geq 0$. Prove that A is upper totally non-negative.

Exercise 5. (Explicit LDU) Assume that $A \in \mathrm{GL}_{n}(\mathbb{R})$ admits an LDU decomposition $A=L D U$ with $L=\left(l_{i, j}\right), D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ and $U=\left(u_{i, j}\right)$. Then the entries of these matrices are given by: for $1 \leq i<j \leq n$ and $1 \leq k \leq n$,

$$
\begin{aligned}
l_{j, i} & =\frac{\operatorname{det} A[1, \ldots, i-1, j \mid 1, \ldots, i-1, i]}{\operatorname{det} A[1, \ldots, i \mid 1, \ldots, i]}, \\
u_{i, j} & =\frac{\operatorname{det} A[1, \ldots, i-1, i \mid 1, \ldots, i-1, j]}{\operatorname{det} A[1, \ldots, i \mid 1, \ldots, i]}, \\
d_{k} & =\frac{\operatorname{det} A[1, \ldots, k \mid 1, \ldots, k]}{\operatorname{det} A[1, \ldots, k-1 \mid 1, \ldots, k-1]} .
\end{aligned}
$$

