Total positivity, SS 17

Exercise Sheet 3

to be discussed on 01.06.2017

This sheet contains five regular exercises.

Recall the following notations from the lecture: for i = 1, ..., n - 1, $x_i(t) := I_n + t\mathbf{E}_{i,i+1} \in \mathrm{GL}_n(\mathbb{R})$; $y_i(t) = x_i(t)^T$; and for $1 \le k \le n$, $h_k(t) := I_n + (t-1)\mathbf{E}_{k,k} \in \mathrm{GL}_n(\mathbb{R})$.

Exercise 1. (LDU without computer) Compute (by hand!) the LDU decomposition for the following matrix:

$$\begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}.$$

Exercise 2. (Loewner-Whitney) Consider the following matrix

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{bmatrix}$$

- 1. Prove that A is TP.
- 2. Factorise A into a product of $x_i(t)$, $y_i(t)$ and $h_k(t)$.

Exercise 3. (Exchange relations) Prove the following identities: for $a, b, c \in \mathbb{R}$,

1. if $a + c \neq 0$, then

$$x_i(a)x_{i+1}(b)x_i(c) = x_{i+1}\left(\frac{bc}{a+c}\right)x_i(a+c)x_{i+1}\left(\frac{ab}{a+c}\right),$$
$$y_i(a)y_{i+1}(b)y_i(c) = y_{i+1}\left(\frac{bc}{a+c}\right)y_i(a+c)y_{i+1}\left(\frac{ab}{a+c}\right);$$

2. if $1 + ab \neq 0$, then

$$x_i(a)y_i(b) = y_i\left(\frac{b}{1+ab}\right)h_i(1+ab)h_{i+1}\left(\frac{1}{1+ab}\right)x_i\left(\frac{a}{1+ab}\right).$$

Exercise 4. (Copycat)

- 1. Give a family of upper totally positive matrix $U_n(q) \in \operatorname{GL}_n(\mathbb{R})$ depending on $q \in (0,1)$ such that $\lim_{q\to 0^+} U_n(q) = I_n$. Prove your statement.
- 2. Let $A \in \operatorname{GL}_n(\mathbb{R})$ be an upper triangular invertible matrix. Assume that for any $k = 1, 2, \ldots, n$ and $J \in {\binom{[n]}{k}}$, det $A[1, \ldots, k|J] \ge 0$. Prove that A is upper totally non-negative.

Exercise 5. (Explicit LDU) Assume that $A \in \operatorname{GL}_n(\mathbb{R})$ admits an LDU decomposition A = LDU with $L = (l_{i,j}), D = \operatorname{diag}(d_1, d_2, \dots, d_n)$ and $U = (u_{i,j})$. Then the entries of these matrices are given by: for $1 \le i < j \le n$ and $1 \le k \le n$,

$$l_{j,i} = \frac{\det A[1, \dots, i-1, j | 1, \dots, i-1, i]}{\det A[1, \dots, i | 1, \dots, i]},$$
$$u_{i,j} = \frac{\det A[1, \dots, i-1, i | 1, \dots, i-1, j]}{\det A[1, \dots, i | 1, \dots, i]},$$
$$d_k = \frac{\det A[1, \dots, k | 1, \dots, k]}{\det A[1, \dots, k-1 | 1, \dots, k-1]}.$$