Total positivity, SS 17

Exercise Sheet 4

to be discussed on 22.06.2017
This sheet contains five regular exercises.

Exercise 1. (Down to earth factorisation)
Let $A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 3 & 8 & 10 \\ 3 & 12 & 21\end{array}\right]$.

1. Prove that A is totally positive.
2. Determine the positive parameters $t_{1}, \cdots, t_{9}>0$ such that

$$
A=y_{2}\left(t_{1}\right) y_{1}\left(t_{2}\right) y_{2}\left(t_{3}\right) h_{1}\left(t_{4}\right) h_{2}\left(t_{5}\right) h_{3}\left(t_{6}\right) x_{1}\left(t_{7}\right) x_{2}\left(t_{8}\right) x_{1}\left(t_{9}\right) .
$$

Exercise 2. (Factorisation revisited) Let

$$
\sigma=\binom{123456}{546231} \in \mathfrak{S}_{6} .
$$

Write σ into a product of transpositions $s_{1}, s_{2}, s_{3}, s_{4}$ and s_{5}.
Exercise 3. (Play with length function) Let $\ell: \mathfrak{S}_{n} \rightarrow \mathbb{N}$ be the length function. Prove the following statements:

1. for $1 \leq a \neq b \leq n, \ell((a, b))=2|b-a|-1$;
2. for $\sigma \in \mathfrak{S}_{n}, \ell(\sigma)=\ell\left(\sigma^{-1}\right)$;
3. let $\sigma \in \mathfrak{S}_{n}$ and $\sigma=u_{1} \cdots u_{n-1}$ is its decomposition in Corollary 3.11 where $u_{k} \in A_{k}$. Then $\ell(\sigma)=\ell\left(u_{1}\right)+\cdots+\ell\left(u_{n-1}\right)$.

Exercise 4. (Move, move, move)
Show that $s_{1} s_{2} s_{3} s_{2} s_{1}, s_{1} s_{3} s_{2} s_{3} s_{1}$ and $s_{3} s_{1} s_{2} s_{1} s_{3}$ are reduced words for the same permutation $\sigma \in \mathfrak{S}_{4}$. Determine all other reduced decompositions of σ.

Exercise 5. (Length function revisited)
Let $\sigma \in \mathfrak{S}_{n}$ and w_{0} be the longest element (i.e. element of maximal length) in \mathfrak{S}_{n}. Prove that

$$
\ell\left(\sigma^{-1} w_{0}\right)=\binom{n}{2}-\ell(\sigma) .
$$

