Total positivity, SS 17

Exercise Sheet 4

to be discussed on 22.06.2017

This sheet contains five regular exercises.

Exercise 1. (Down to earth factorisation)

Let $A = \begin{bmatrix} 1 & 2 & 2 \\ 3 & 8 & 10 \\ 3 & 12 & 21 \end{bmatrix}$.

- 1. Prove that A is totally positive.
- 2. Determine the positive parameters $t_1, \dots, t_9 > 0$ such that

$$A = y_2(t_1)y_1(t_2)y_2(t_3)h_1(t_4)h_2(t_5)h_3(t_6)x_1(t_7)x_2(t_8)x_1(t_9).$$

Exercise 2. (Factorisation revisited) Let

$$\sigma = \begin{pmatrix} 123456\\546231 \end{pmatrix} \in \mathfrak{S}_6.$$

Write σ into a product of transpositions s_1, s_2, s_3, s_4 and s_5 .

Exercise 3. (Play with length function) Let $\ell : \mathfrak{S}_n \to \mathbb{N}$ be the length function. Prove the following statements:

- 1. for $1 \le a \ne b \le n$, $\ell((a, b)) = 2|b a| 1$;
- 2. for $\sigma \in \mathfrak{S}_n$, $\ell(\sigma) = \ell(\sigma^{-1})$;
- 3. let $\sigma \in \mathfrak{S}_n$ and $\sigma = u_1 \cdots u_{n-1}$ is its decomposition in Corollary 3.11 where $u_k \in A_k$. Then $\ell(\sigma) = \ell(u_1) + \cdots + \ell(u_{n-1})$.

Exercise 4. (Move, move, move)

Show that $s_1s_2s_3s_2s_1$, $s_1s_3s_2s_3s_1$ and $s_3s_1s_2s_1s_3$ are reduced words for the same permutation $\sigma \in \mathfrak{S}_4$. Determine all other reduced decompositions of σ .

Exercise 5. (Length function revisited) Let $\sigma \in \mathfrak{S}_n$ and w_0 be the longest element (*i.e.* element of maximal length) in \mathfrak{S}_n . Prove that

$$\ell(\sigma^{-1}w_0) = \binom{n}{2} - \ell(\sigma).$$