Total positivity, SS 17

Exercise Sheet 6

to be discussed on 20.07.2017
This sheet contains three regular exercises.

Exercise 1. (Half chicken)

Consider the following network (N, w) where all edges have weight 1 : the boundary vertices, which connects to $1, \cdots, n$, are not drawn; the horizontal edges are oriented to the right, and the slanted edges are oriented from upper-left to down-right.

1. Is the network (N, w) totally connected? Why?
2. Find the boundary measurement matrix $X(N, w)$.
3. Is the matrix $X(N, w)$ triangular totally positive? Is the matrix $X(N, w)$ totally nonnegative? Give your argument.

Exercise 2. (Entire chicken)
For $n \geq 3$, prove that

1. the directed graph $\Gamma_{0, n}$ is totally connected;
2. the directed graph $\Gamma_{0, n}$ satisfies property (I).

Exercise 3. (Grid lattices and symmetric functions)
Let $\lambda=\left(\lambda_{1}, \cdots, \lambda_{r}\right)$ be a partition with $\lambda_{r}>0$ and $n \geq r$. We consider the following network $\left(\mathcal{L}_{\lambda}, w\right)$ defined in \mathbb{R}^{2} as follows:

- The vertices are points (i, j) such that $i, j \in \mathbb{N}, 1 \leq i \leq n$ and $0 \leq j \leq n+\lambda_{1}-1$, as well as $(0, n-k),\left(n+1, n+\lambda_{k}-k\right)$ for $k=1, \cdots, n$.
- The edges are defined as follows: for a vertex (i, j) with $1 \leq i \leq n$ and $0 \leq j \leq n+\lambda_{1}-1$, if $(i+1, j),(i, j+1),(i+1, j+1)$ are vertices, then the directed edges (the arrows go from source to target) are:

$$
e_{i, j}^{i+1, j}:(i, j) \rightarrow(i+1, j), \quad e_{i+1, j}^{i+1, j+1}:(i+1, j) \rightarrow(i+1, j+1),
$$

$$
e_{i, j}^{i, j+1}:(i, j) \rightarrow(i, j+1), \quad e_{i, j+1}^{i+1, j+1}:(i, j+1) \rightarrow(i+1, j+1)
$$

Then we add the following directed edges:

$$
\begin{aligned}
& -e_{0,0}^{1,0}, e_{0,1}^{1,1} \cdots, e_{0, n-1}^{1, n-1} \\
& -e_{n, n+\lambda_{j}-j}^{n+1, n+\lambda_{j}-j} \text { for } j=1,2, \cdots, n
\end{aligned}
$$

- The source set $A=\left\{A_{1}, \cdots, A_{n}\right\}$ where $A_{i}=(0, n-i)$, the sink set $B=\left\{B_{1}, \cdots, B_{n}\right\}$ where $B_{j}=\left(n+1, n+\lambda_{j}-j\right)$ (recall that if $j>r$ then $\lambda_{j}=0$).
- The weight function w on edges taking values in $\mathbb{Z}\left[x_{1}, \cdots, x_{n}\right]$ is defined as follows:

$$
w\left(e_{i, j}^{i, j+1}\right)=x_{i}, \quad w\left(e_{i+1, j}^{i+1, j+1}\right)=x_{i+1}
$$

and all other edges have weight 1.
Let $X\left(\mathcal{L}_{\lambda}, w\right)$ be the associated boundary measurement matrix.

1. Prove that the (i, j)-entry of $X\left(\mathcal{L}_{\lambda}, w\right)$ is the complete symmetric function $h_{\lambda_{j}-j+i}\left(x_{1}, \cdots, x_{n}\right)$.
2. Prove that $\operatorname{det} X\left(\mathcal{L}_{\lambda}, w\right)=s_{\lambda}\left(x_{1}, \cdots, x_{n}\right)$ is the Schur function.
