General Linear Groups, WS 18/19 Exercise Sheet 1

Exercise 1. For two sets X and Y, denote by $\mathcal{F}(X, Y)$ the set of functions between X and Y.

1. If X and Y are G-sets, show that $\mathcal{F}(X, Y)$ is a G-set via: for $f \in \mathcal{F}(X, Y), g \in G$ and $x \in X$,

$$
(g \cdot f)(x):=g \cdot f\left(g^{-1} \cdot x\right)
$$

2. Let X, Y be two G-sets. Prove that $\mathcal{F}_{G}(X, Y)=\mathcal{F}(X, Y)^{G}$.

Exercise 2. Let G be a group, $H \subseteq G$ be a subgroup and G / H be the coset space.

1. Prove that $\rho: G \rightarrow \operatorname{Bij}(G / H)$, for $g, a \in G, \rho(g)(a H):=g a H$, defines a G-action on G / H.
2. Is this action transitive?
3. Is this action free? If not, determine the stabilizer $\operatorname{Stab}_{G}(g H)$; if yes, prove it.
4. Prove that this action if faithful if and only if

$$
\bigcap_{g \in G} g H g^{-1}=\left\{e_{G}\right\}
$$

Exercise 3. For $n \geq 2$ and $1 \leq d \leq n-1$, let $\operatorname{Gr}_{d}\left(\mathbb{C}^{n}\right)$ denote the set of d-dimensional \mathbb{C}-vector subspaces in \mathbb{C}^{n}. Let

$$
\mathrm{P}_{d}:=\left\{\left.\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right) \right\rvert\, A \in \mathrm{GL}_{d}(\mathbb{C}), B \in \mathcal{M}_{d, n-d}(\mathbb{C}), C \in \mathrm{GL}_{n-d}(\mathbb{C})\right\}
$$

Prove that there exists a bijection

$$
\mathrm{GL}_{n}(\mathbb{C}) / \mathrm{P}_{d} \cong \operatorname{Gr}_{d}\left(\mathbb{C}^{n}\right)
$$

The set $\operatorname{Gr}_{d}\left(\mathbb{C}^{n}\right)$ is called a Graßmann variety, or a Graßmannian.

Exercise 4. Let G be a group and $H \subseteq G$ be a subgroup. The normalizer of H in G, denoted by $\mathcal{N}_{G}(H)$, is defined by:

$$
\mathcal{N}_{G}(H):=\left\{g \in G \mid g H g^{-1}=H\right\}
$$

1. Prove that H is a normal subgroup in $\mathcal{N}_{G}(H)$.
2. Show that $\mathcal{N}_{\mathrm{GL}_{n}(\mathbb{C})}\left(B_{n}(\mathbb{C})\right)=B_{n}(\mathbb{C})$.
3. Determine the flag $V_{\bullet} \in \mathcal{F}_{n}(\mathbb{C})$ having stabilizer $B_{n}(\mathbb{C})$ under the $\mathrm{GL}_{n}(\mathbb{C})$-action.

Exercise 5. (Complex structures on a real vector space)
Let $n \geq 1$ be a natural number. We denote

$$
\mathcal{C}=\left\{M \in \mathcal{M}_{n}(\mathbb{R}) \mid M^{2}=-\mathbf{I}_{n}\right\} .
$$

Elements in \mathcal{C} are called complex structures on \mathbb{R}^{n}.

1. Show that \mathbb{R}^{n} admits a complex structure if and only if n is even.
2. In this exercise we set $n=2$. Let $\operatorname{tr}: \mathcal{M}_{n}(\mathbb{R}) \rightarrow \mathbb{R}$ be the trace function.
(a) Prove that $\mathcal{C} \subseteq \operatorname{ker}(\operatorname{tr})$.
(b) Consider the map

$$
\varphi: \mathbb{R}^{3} \rightarrow \operatorname{ker}(\operatorname{tr}), \quad\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \mapsto\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right),
$$

determine the pre-image of \mathcal{C}.
(c) Let $\mathcal{H}:=\left\{\left.\binom{a}{b} \in \mathbb{R}^{2} \right\rvert\, b>0\right\}$ be the Poincaré upper half plane. Fix $\mathbf{v}:=\binom{a}{b} \in \mathcal{H}$. Prove that there exists $M \in \mathcal{C}$ such that its first column is \mathbf{v}. This gives a map $\mathcal{H} \rightarrow \mathcal{C}$. Prove that it is a homeomorphism (continuous bijection, whose inverse map is also continuous) to its image, then determine the image.
3. Let M be a complex structure on $\mathbb{R}^{2 n}$. Prove that

$$
\mathbb{C} \times \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}, \quad(a+b i, \mathbf{v}) \mapsto a \mathbf{v}+b M \mathbf{v}
$$

defines a \mathbb{C}-vector space structure on $\mathbb{R}^{2 n}$. We will call this \mathbb{C}-vector space structure "associated to M ".
4. Let $\mathbf{v}_{1}, \cdots, \mathbf{v}_{d} \in \mathbb{R}^{2 n}$. Prove that $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{d}\right\}$ forms a basis of the \mathbb{C}-vector space structure associated to M if and only if $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{d}, M \mathbf{v}_{1}, \cdots, M \mathbf{v}_{d}\right\}$ is a basis of the \mathbb{R}-vector space $\mathbb{R}^{2 n}$. Then deduce the dimension of the \mathbb{C}-vector space structure on $\mathbb{R}^{2 n}$ associated to M.
5. Verify that the map $\varphi_{M}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}, \mathbf{v} \mapsto M \mathbf{v}$ is a linear map with respect to the \mathbb{C}-vector space structure on $\mathbb{R}^{2 n}$ associated to M on both sides. Then deduce that $\mathcal{C}=\mathrm{GL}_{2 n}(\mathbb{R}) \cdot J_{n}$, where

$$
J_{n}=\left(\begin{array}{cc}
0 & -\mathbf{I}_{n} \\
\mathbf{I}_{n} & 0
\end{array}\right) \in \mathcal{C} .
$$

Determine the matrix of φ_{M} in a basis of the \mathbb{C}-vector space $\mathbb{R}^{2 n}$ associated to M.
6. Use the matrix J_{n} to give an injective map $\mathrm{GL}_{n}(\mathbb{C}) \rightarrow \mathrm{GL}_{2 n}(\mathbb{R})$.
7. Prove that there exists a bijection $\mathcal{C} \cong \mathrm{GL}_{2 n}(\mathbb{R}) / \mathrm{GL}_{n}(\mathbb{C})$.

