Exercise 1. Let V be a \mathbb{K} -vector space. The following statements are equivalent:

- 1. V admits a direct sum decomposition $V = V_1 \oplus \cdots \oplus V_k$;
- 2. there exist complete orthogonal idempotents $\pi_1, \dots, \pi_k \in \text{End}(V)$ such that for any $1 \leq i \leq k, V_i = \text{im}(\pi_i)$.

Exercise 2. Show that the rank function is lower semi-continuous: that is to say, for any sequence of matrices $(A_k)_{k\geq 1}$ in $\mathcal{M}_{n,m}(\mathbb{K})$ of the same rank r and converging to a matrix $B \in \mathcal{M}_{n,m}(\mathbb{K})$. Then rank $(B) \leq r$.

Exercise 3. Prove that $\chi : \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}_{\leq n}[t]$, sending a matrix A to its characteristic polynomial $\chi_A(t)$, is continuous.

Exercise 4. Let $A, B \in \mathcal{M}_n(\mathbb{C})$. We denote [A, B] := AB - BA.

- 1. Prove that a matrix $A \in \mathcal{M}_n(\mathbb{C})$ is nilpotent if and only if for any k > 0, $\operatorname{Tr}(A^k) = 0$.
- 2. Prove that if [A, [A, B]] = 0 then

$$Tr([A, B]^m) = Tr([AB, [A, B]^{m-1}]).$$

Deduce that: if [A, [A, B]] = 0 then [A, B] is nilpotent.

Exercise 5. (Hilbert scheme of points on the plane)

For $n \geq 1$, we define

 $\operatorname{Hilb}_{n} := \{ I \subseteq \mathbb{C}[x, y] \text{ is an ideal } | \dim_{\mathbb{C}} \mathbb{C}[x, y] / I = n \}.$

Recall that a sub-vector space $I \subseteq \mathbb{C}[x, y]$ is an ideal, if for any $P \in \mathbb{C}[x, y]$, $Q \in I$, $PQ \in I$. Then I is a \mathbb{C} -vector space and $\mathbb{C}[x, y]/I$ is not only a ring but a \mathbb{C} -vector space, this allows us to define the dimension.

We define Com := $\{(A, B) \in \mathcal{M}_n(\mathbb{C}) \times \mathcal{M}_n(\mathbb{C}) \mid AB = BA\}.$

1. Let $P \in \mathbb{C}[x, y]$, $(A, B) \in \text{Com}$. Prove that $\operatorname{GL}_n(\mathbb{C})$ acts on Com via: for $g \in \operatorname{GL}_n(\mathbb{C})$,

$$g \cdot (A, B) := (gAg^{-1}, gBg^{-1}).$$

2. We call a pair of matrices $(A, B) \in \text{Com cyclic}$, if there exists $\mathbf{v} \in \mathbb{C}^n$ such that

$$\{P(A,B)\mathbf{v} \mid P \in \mathbb{C}[x,y]\} = \mathbb{C}^n.$$

Let Com^0 denote the set of cyclic pairs in Com. Prove that $\operatorname{Com}^0 \neq \emptyset$; it is a $\operatorname{GL}_n(\mathbb{C})$ -set, and it is open in $\operatorname{Com} \subseteq \mathcal{M}_n(\mathbb{C}) \times \mathcal{M}_n(\mathbb{C}) \cong \mathbb{C}^{2n^2}$. (Hint: for the last point, show that $\operatorname{Com} \setminus \operatorname{Com}^0$ is the zero set of some $n \times n$ determinants.)

- 3. Prove that if (A, B) cyclic, then $I(A, B) := \{P \in \mathbb{C}[x, y] \mid P(A, B) = 0\}$ is contained in Hilb_n.
- 4. Consider the map

 $\pi : \operatorname{Com}^0 \to \operatorname{Hilb}_n, \ (A, B) \mapsto I(A, B).$

Prove that for any $I \in \operatorname{Hilb}_n$, $\pi^{-1}(I)$ is a $\operatorname{GL}_n(\mathbb{C})$ -orbit. (Hint: let $V := \mathbb{C}[x, y]/I \cong \mathbb{C}^n$. Consider two endomorphisms μ_x and μ_y of V given by multiplication by x and y.)

N.B. This map π is used to endow Hilb_n with a topology structure.