General Linear Groups, WS 18/19
 Exercise Sheet 2

Exercise 1. Let V be a \mathbb{K}-vector space. The following statements are equivalent:

1. V admits a direct sum decomposition $V=V_{1} \oplus \cdots \oplus V_{k}$;
2. there exist complete orthogonal idempotents $\pi_{1}, \cdots, \pi_{k} \in \operatorname{End}(V)$ such that for any $1 \leq$ $i \leq k, V_{i}=\operatorname{im}\left(\pi_{i}\right)$.

Exercise 2. Show that the rank function is lower semi-continuous: that is to say, for any sequence of matrices $\left(A_{k}\right)_{k \geq 1}$ in $\mathcal{M}_{n, m}(\mathbb{K})$ of the same rank r and converging to a matrix $B \in \mathcal{M}_{n, m}(\mathbb{K})$. Then $\operatorname{rank}(B) \leq r$.

Exercise 3. Prove that $\chi: \mathcal{M}_{n}(\mathbb{K}) \rightarrow \mathbb{K}_{\leq n}[t]$, sending a matrix A to its characteristic polynomial $\chi_{A}(t)$, is continuous.

Exercise 4. Let $A, B \in \mathcal{M}_{n}(\mathbb{C})$. We denote $[A, B]:=A B-B A$.

1. Prove that a matrix $A \in \mathcal{M}_{n}(\mathbb{C})$ is nilpotent if and only if for any $k>0, \operatorname{Tr}\left(A^{k}\right)=0$.
2. Prove that if $[A,[A, B]]=0$ then

$$
\operatorname{Tr}\left([A, B]^{m}\right)=\operatorname{Tr}\left(\left[A B,[A, B]^{m-1}\right]\right)
$$

Deduce that: if $[A,[A, B]]=0$ then $[A, B]$ is nilpotent.

Exercise 5. (Hilbert scheme of points on the plane)
For $n \geq 1$, we define

$$
\operatorname{Hilb}_{n}:=\left\{I \subseteq \mathbb{C}[x, y] \text { is an ideal } \mid \operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y] / I=n\right\} .
$$

Recall that a sub-vector space $I \subseteq \mathbb{C}[x, y]$ is an ideal, if for any $P \in \mathbb{C}[x, y], Q \in I, P Q \in I$. Then I is a \mathbb{C}-vector space and $\mathbb{C}[x, y] / I$ is not only a ring but a \mathbb{C}-vector space, this allows us to define the dimension.

We define Com $:=\left\{(A, B) \in \mathcal{M}_{n}(\mathbb{C}) \times \mathcal{M}_{n}(\mathbb{C}) \mid A B=B A\right\}$.

1. Let $P \in \mathbb{C}[x, y],(A, B) \in \operatorname{Com}$. Prove that $\mathrm{GL}_{n}(\mathbb{C})$ acts on Com via: for $g \in \mathrm{GL}_{n}(\mathbb{C})$,

$$
g \cdot(A, B):=\left(g A g^{-1}, g B g^{-1}\right) .
$$

2. We call a pair of matrices $(A, B) \in$ Com cyclic, if there exists $\mathbf{v} \in \mathbb{C}^{n}$ such that

$$
\{P(A, B) \mathbf{v} \mid P \in \mathbb{C}[x, y]\}=\mathbb{C}^{n}
$$

Let Com^{0} denote the set of cyclic pairs in Com. Prove that $\operatorname{Com}^{0} \neq \emptyset$; it is a $\mathrm{GL}_{n}(\mathbb{C})$-set, and it is open in $\operatorname{Com} \subseteq \mathcal{M}_{n}(\mathbb{C}) \times \mathcal{M}_{n}(\mathbb{C}) \cong \mathbb{C}^{2 n^{2}}$. (Hint: for the last point, show that Com $\backslash \mathrm{Com}^{0}$ is the zero set of some $n \times n$ determinants.)
3. Prove that if (A, B) cyclic, then $I(A, B):=\{P \in \mathbb{C}[x, y] \mid P(A, B)=0\}$ is contained in Hilb_{n}.
4. Consider the map

$$
\pi: \operatorname{Com}^{0} \rightarrow \operatorname{Hilb}_{n}, \quad(A, B) \mapsto I(A, B)
$$

Prove that for any $I \in \operatorname{Hilb}_{n}, \pi^{-1}(I)$ is a $\mathrm{GL}_{n}(\mathbb{C})$-orbit. (Hint: let $V:=\mathbb{C}[x, y] / I \cong \mathbb{C}^{n}$. Consider two endomorphisms μ_{x} and μ_{y} of V given by multiplication by x and y.)
N.B. This map π is used to endow Hilb_{n} with a topology structure.

