General Linear Groups, WS 18/19
 Exercise Sheet 3

Exercise 1. (Draw something!)
Draw the Hasse diagram of the dominance order on $\mathcal{P}(7)$. Study the orbits and the orbit closures of the $\mathrm{G}=\mathrm{GL}_{7}(\mathbb{C})$ conjugation action on the nilpotent cone $\mathscr{N}_{7} \subset \mathcal{M}_{7}(\mathbb{C})$: for each of the orbit, give the Jordan normal form and the Young diagram.

Exercise 2. (Not always possible to glue)
Let A, \widetilde{A} be two matrices in $\mathcal{M}_{4}(\mathbb{C})$:

$$
A:=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \widetilde{A}:=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

1. Compute the minimal polynomials $\mu_{A}(t)$ and $\mu_{\widetilde{A}}(t)$.
2. Show that A and \widetilde{A} are not in the same $\mathrm{GL}_{n}(\mathbb{C})$-orbit.
3. Compute the Jordan-Dunford-Chevalley decomposition of $A=D+N$ and $\widetilde{A}=\widetilde{D}+\widetilde{N}$.
4. Show that N and \widetilde{N} are in the same nilpotent orbit.
5. Write \widetilde{D} and \widetilde{N} as polynomials in \widetilde{A}.

Exercise 3. (Diagonalisable vs semi-simple)
Let $A \in \mathcal{M}_{n}(\mathbb{C})$. We call a subspace $W \subseteq \mathbb{C}^{n} A$-stable, if $A(W) \subseteq W$. Prove that $A \in \mathcal{M}_{n}(\mathbb{C})$ is diagonalisable, if and only if for any A-stable subspace W of \mathbb{C}^{n}, that exists an A-stable subspace $W^{\prime} \subseteq \mathbb{C}^{n}$ such that $\mathbb{C}^{n}=W \oplus W^{\prime}$.

Exercise 4. Let $M \in \mathrm{GL}_{n}(\mathbb{C})$. Assume that there exists $k \geq 1$ such that M^{k} is diagonalisable. Prove that M is diagonalisable. (Hint: apply lemma of kernel to $M^{k}-\lambda \mathrm{I}_{n}$.)

Exercise 5. (Harish-Chandra isomorphism)
Let $\mathbb{C}\left[\mathcal{M}_{n}(\mathbb{C})\right]$ denote the ring of polynomial functions on $\mathcal{M}_{n}(\mathbb{C})$: that is to say, functions $f: \mathcal{M}_{n}(\mathbb{C}) \rightarrow \mathbb{C}$ given by a polynomial in entries of a matrix in $\mathcal{M}_{n}(\mathbb{C})$. Let $\mathscr{T}_{n} \subset \mathcal{M}_{n}(\mathbb{C})$ denote the set of diagonal matrices and $\mathbb{C}\left[\mathscr{T}_{n}\right]$ the ring of polynomial functions on \mathscr{T}_{n}.

The group \mathfrak{S}_{n} acts on \mathscr{T}_{n} by permuting the diagonal elements; the group $\mathrm{GL}_{n}(\mathbb{C})$ acts on $\mathbb{C}\left[\mathcal{M}_{n}(\mathbb{C})\right]$ by: for $P \in \mathrm{GL}_{n}(\mathbb{C}), A \in \mathcal{M}_{n}(\mathbb{C})$ and $f \in \mathbb{C}\left[\mathcal{M}_{n}(\mathbb{C})\right]$,

$$
(P \cdot f)(A)=f\left(P A P^{-1}\right)
$$

Let $\mathbb{C}\left[\mathcal{M}_{n}(\mathbb{C})\right]^{\mathrm{GL}_{n}(\mathbb{C})}$ and $\mathbb{C}\left[\mathscr{T}_{n}\right]^{\mathfrak{S}_{n}}$ denote the set of invariants.

1. Prove that both $\mathbb{C}\left[\mathcal{M}_{n}(\mathbb{C})\right]^{\mathrm{GL}}(\mathbb{C})$ and $\mathbb{C}\left[\mathscr{T}_{n}\right]^{\mathfrak{G}_{n}}$ are rings.
2. Prove that the ring $\mathbb{C}\left[\mathscr{T}_{n}\right]^{\mathfrak{G}_{n}}$ is isomorphic to Λ_{n}, the ring of symmetric polynomials.
3. Notice that $\mathscr{T}_{n} \subset \mathcal{M}_{n}(\mathbb{C})$. Prove that the restriction of a function induces a well-defined ring homomorphism

$$
\psi: \mathbb{C}\left[\mathcal{M}_{n}(\mathbb{C})\right]^{\operatorname{GL}_{n}(\mathbb{C})} \rightarrow \mathbb{C}\left[\mathscr{T}_{n}\right]^{\mathscr{G}_{n}} .
$$

4. Prove that ψ is injective. (Hint: \mathscr{D}_{n} is dense in $\mathcal{M}_{n}(\mathbb{C})$.)
5. Admitting that the elementary symmetric functions generate the ring Λ_{n}, prove that ψ is an isomorphism.
