Exercise 1. (Draw something!)

Draw the Hasse diagram of the dominance order on $\mathcal{P}(7)$. Study the orbits and the orbit closures of the $G = GL_7(\mathbb{C})$ conjugation action on the nilpotent cone $\mathcal{N}_7 \subset \mathcal{M}_7(\mathbb{C})$: for each of the orbit, give the Jordan normal form and the Young diagram.

Exercise 2. (Not always possible to glue)

Let A, \widetilde{A} be two matrices in $\mathcal{M}_4(\mathbb{C})$:

- 1. Compute the minimal polynomials $\mu_A(t)$ and $\mu_{\widetilde{A}}(t)$.
- 2. Show that A and \widetilde{A} are not in the same $\operatorname{GL}_n(\mathbb{C})$ -orbit.
- 3. Compute the Jordan-Dunford-Chevalley decomposition of A = D + N and $\tilde{A} = \tilde{D} + \tilde{N}$.
- 4. Show that N and \widetilde{N} are in the same nilpotent orbit.
- 5. Write \widetilde{D} and \widetilde{N} as polynomials in \widetilde{A} .

Exercise 3. (Diagonalisable vs semi-simple)

Let $A \in \mathcal{M}_n(\mathbb{C})$. We call a subspace $W \subseteq \mathbb{C}^n$ A-stable, if $A(W) \subseteq W$. Prove that $A \in \mathcal{M}_n(\mathbb{C})$ is diagonalisable, if and only if for any A-stable subspace W of \mathbb{C}^n , that exists an A-stable subspace $W' \subseteq \mathbb{C}^n$ such that $\mathbb{C}^n = W \oplus W'$.

Exercise 4. Let $M \in GL_n(\mathbb{C})$. Assume that there exists $k \ge 1$ such that M^k is diagonalisable. Prove that M is diagonalisable. (Hint: apply lemma of kernel to $M^k - \lambda I_n$.)

Exercise 5. (Harish-Chandra isomorphism)

Let $\mathbb{C}[\mathcal{M}_n(\mathbb{C})]$ denote the ring of polynomial functions on $\mathcal{M}_n(\mathbb{C})$: that is to say, functions $f : \mathcal{M}_n(\mathbb{C}) \to \mathbb{C}$ given by a polynomial in entries of a matrix in $\mathcal{M}_n(\mathbb{C})$. Let $\mathscr{T}_n \subset \mathcal{M}_n(\mathbb{C})$ denote the set of diagonal matrices and $\mathbb{C}[\mathscr{T}_n]$ the ring of polynomial functions on \mathscr{T}_n .

The group \mathfrak{S}_n acts on \mathscr{T}_n by permuting the diagonal elements; the group $\mathrm{GL}_n(\mathbb{C})$ acts on $\mathbb{C}[\mathcal{M}_n(\mathbb{C})]$ by: for $P \in \mathrm{GL}_n(\mathbb{C})$, $A \in \mathcal{M}_n(\mathbb{C})$ and $f \in \mathbb{C}[\mathcal{M}_n(\mathbb{C})]$,

$$(P \cdot f)(A) = f(PAP^{-1}).$$

Let $\mathbb{C}[\mathcal{M}_n(\mathbb{C})]^{\mathrm{GL}_n(\mathbb{C})}$ and $\mathbb{C}[\mathscr{T}_n]^{\mathfrak{S}_n}$ denote the set of invariants.

- 1. Prove that both $\mathbb{C}[\mathcal{M}_n(\mathbb{C})]^{\mathrm{GL}_n(\mathbb{C})}$ and $\mathbb{C}[\mathscr{T}_n]^{\mathfrak{S}_n}$ are rings.
- 2. Prove that the ring $\mathbb{C}[\mathscr{T}_n]^{\mathfrak{S}_n}$ is isomorphic to Λ_n , the ring of symmetric polynomials.
- 3. Notice that $\mathscr{T}_n \subset \mathcal{M}_n(\mathbb{C})$. Prove that the restriction of a function induces a well-defined ring homomorphism

$$\psi: \mathbb{C}[\mathcal{M}_n(\mathbb{C})]^{\mathrm{GL}_n(\mathbb{C})} \to \mathbb{C}[\mathscr{T}_n]^{\mathfrak{S}_n}$$

- 4. Prove that ψ is injective. (Hint: \mathscr{D}_n is dense in $\mathcal{M}_n(\mathbb{C})$.)
- 5. Admitting that the elementary symmetric functions generate the ring Λ_n , prove that ψ is an isomorphism.