General Linear Groups, WS 18/19 Exercise Sheet 6

Exercise 1. Let $\lambda \in \mathcal{P}(n)$, $\lambda = (k^{n_k}, (k-1)^{n_{k-1}}, \dots, 1^{n_1})$, where r^{n_r} stands for there are n_r copies of r. (For example, $(3, 3, 2, 1, 1, 1, 1, 1) = (3^2, 2^1, 1^5)$.) Let \mathcal{C}_{λ} be the conjugacy class in \mathfrak{S}_n associated to λ . Show that

$$#\mathcal{C}_{\lambda} = \frac{n!}{k^{n_k} \cdots 2^{n_2} 1^{n_1} n_k! \cdots n_1!}$$

Exercise 2. We study representations of \mathfrak{S}_5 .

- 1. Find $\# \operatorname{Irr}_{\mathbb{C}}(\mathfrak{S}_5)$.
- 2. Find the dimensions of finite dimensional irreducible representations of \mathfrak{S}_5 .
- 3. Find the character of the 6-dimensional irreducible representation of \mathfrak{S}_5 .

Exercise 3. Let $V \in \operatorname{Irr}_{\mathbb{C}}(\mathfrak{S}_n)$. Show that $V^* \cong V$ as representations of \mathfrak{S}_n .

Exercise 4. Let G and H be two finite groups and $\varphi : G \to H$ be a surjective group homomorphism.

- 1. Show that φ induces a map $\varphi^* : \operatorname{rep}_{\mathbb{C}}(H) \to \operatorname{rep}_{\mathbb{C}}(G), \, \rho_V \mapsto \rho_V \circ \varphi.$
- 2. Show that φ^* induces a map $\varphi^* : \operatorname{Irr}_{\mathbb{C}}(H) \to \operatorname{Irr}_{\mathbb{C}}(G)$.
- 3. Show that φ^* is an injective map.

Exercise 5.

Part I

Let G be a finite group. Recall that a representation (ρ_V, V) of G is called faithful, if ρ_V is injective. The goal of this exercise is to prove the following statement: any finite dimensional irreducible representation of G is a subrepresentation in some tensor power of V.

1. Let $V, W \in \operatorname{rep}_{\mathbb{C}}(G)$. Show the following identity

$$(*) \qquad \sum_{n=0}^{+\infty} \langle \chi_V^n, \chi_W \rangle t^n = \frac{1}{\#G} \sum_{C \in \mathcal{C}(G)} \#C \frac{\overline{\chi_W(C)}}{1 - t\chi_V(C)}.$$

- 2. Show that the right hand side of (*) is non-zero. (Hint: look at $e \in G$.)
- 3. Assume that V is faithful and $W \in \operatorname{Irr}_{\mathbb{C}}(G)$. Show that if W is not a subrepresentation of any $V^{\otimes k}$ $(k \ge 1)$, then the left hand side of (*) is zero.
- 4. Conclude.

Part II

Let G be a finite group and $V \in \operatorname{rep}_{\mathbb{C}}(G)$ be a faithful representation of G. For $W \in \operatorname{Irr}_{\mathbb{C}}(G)$, we let r_W^V denote the smallest natural number k such that W is a subrepresentation of $V^{\otimes k}$. According to Part I, this number is well-defined.

- 1. Show that for any finite group G, its left regular representation $\mathbb{C}(G)$ is faithful. For any $W \in \operatorname{Irr}_{\mathbb{C}}(G)$, find $r_{W}^{\mathbb{C}(G)}$.
- 2. For $G = \mathfrak{S}_3$ and \mathfrak{S}_4 , find a finite dimensional faithful irreducible representation V of G, and compute r_W^V for $W \in \operatorname{Irr}_{\mathbb{C}}(G)$.