General Linear Groups, WS 18/19
 Partial solution

Solution to Sheet 1, Exercise 4.

The part (1) is follows from the definition. We start with the part (3).
Recall the standard flag $V_{\bullet}^{\text {std }}:=\left(V_{1}^{\text {std }}, \cdots, V_{n-1}^{\text {std }}\right)$ where $V_{i}^{\text {std }}=\operatorname{span}\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{i}\right\}$. Assume that $V_{\bullet}=\left(V_{1}, \cdots, V_{n-1}\right)$ is a flag such that for any $b \in B_{n}(\mathbb{C}), b \cdot V_{\bullet}=V_{\mathbf{\bullet}}$, we show that $V_{\bullet}=V_{\bullet}^{\text {std }}$. This implies that the flag having $B_{n}(\mathbb{C})$ as stabilizer is exactly $V_{\bullet}^{\text {std }}$.

We start by showing that $V_{1}=\operatorname{span}\left\{\mathbf{e}_{1}\right\}$. Assume that $V_{1}=\operatorname{span}\left\{\mathbf{v}_{1}\right\}, \mathbf{v}_{1}=\lambda_{1} \mathbf{e}_{1}+\cdots+\lambda_{n} \mathbf{e}_{n}$. Let $b=\left(b_{i, j}\right) \in B_{n}(\mathbb{C})$ be given by $b_{i, j}=1$ if and only if $i \leq j$. Then

$$
b \mathbf{v}_{1}=\left(\lambda_{1}+\cdots+\lambda_{n}\right) \mathbf{e}_{1}+\left(\lambda_{2}+\cdots+\lambda_{n}\right) \mathbf{e}_{2}+\cdots+\lambda_{n} \mathbf{e}_{n} .
$$

Since $b \mathbf{v}_{1} \in V_{1}, \lambda_{2}=\cdots=\lambda_{n}=0$. This implies $V_{1}=V_{1}^{\text {std }}$.
Assume for $\ell=1, \cdots, k-1, V_{\ell}=V_{\ell}^{s t d}$. We show that $V_{k}=V_{k}^{s t d}$. Since $V_{k-1}^{s t d}=V_{k-1} \subset V_{k}$, we can assume that $V_{k}=\operatorname{span}\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{k-1}, \mathbf{v}_{k}\right\}$ where $\mathbf{v}_{k}=\lambda_{1} \mathbf{e}_{1}+\cdots+\lambda_{n} \mathbf{e}_{n}$. Similarly,

$$
b \mathbf{v}_{k}=\left(\lambda_{1}+\cdots+\lambda_{n}\right) \mathbf{e}_{1}+\cdots+\left(\lambda_{k}+\cdots+\lambda_{n}\right) \mathbf{e}_{k}+\left(\lambda_{k+1}+\cdots+\lambda_{n}\right) \mathbf{e}_{k+1}+\cdots+\lambda_{n} \mathbf{e}_{n} \in V_{k} .
$$

Since $b \mathbf{v}_{k} \in V_{k}$, we ca assume that
$b \mathbf{v}_{k}=\mu_{1} \mathbf{e}_{1}+\cdots+\mu_{k-1} \mathbf{e}_{k-1} \mu_{k} \mathbf{v}_{k}=\left(\mu_{1}+\mu_{k} \lambda_{1}\right) \mathbf{e}_{1}+\cdots+\left(\mu_{k-1}+\mu_{k} \lambda_{k-1}\right) \mathbf{e}_{k-1}+\mu_{k} \lambda_{k} \mathbf{e}_{k}+\cdots+\mu_{k} \lambda_{n} \mathbf{e}_{n}$.
If $\lambda_{n} \neq 0$ then $\mu_{k}=1$. Consider the coefficient of \mathbf{e}_{n-1} gives a contradiction, which implies $\lambda_{n}=0$. Continue this argument shows that $\lambda_{k+1}=\cdots=\lambda_{n}=0$, hence $\mathbf{v}_{k} \in V_{k}^{s t d}$ and $\mathbf{e}_{k} \in V_{k}$. This terminates the proof.

By (1) we know that $B_{n}(\mathbb{C}) \subseteq \mathcal{N}_{\mathrm{GL}_{n}(\mathbb{C})}\left(B_{n}(\mathbb{C})\right)$. It suffices to show that if $g B_{n}(\mathbb{C}) g^{-1}=$ $B_{n}(\mathbb{C})$ then $g \in B_{n}(\mathbb{C})$.

In the lecture we have shown that $\operatorname{Stab}_{\mathrm{GL}_{n}(\mathbb{C})}\left(V_{\mathbf{\bullet}}^{\text {std }}\right)=B_{n}(\mathbb{C})$, by Exercise 1.11, $\operatorname{Stab}\left(g V_{\bullet}^{\text {std }}\right)=g B_{n}(\mathbb{C}) g^{-1}=B_{n}(\mathbb{C})$. From (3) this implies $g V_{\bullet}^{\text {std }}=V_{\bullet}^{\text {std }}$, and $g \in B_{n}(\mathbb{C})$ (see the discussion after Proposition 1.21 in the lecture).

Solution to Sheet 2, Exercise 4 (1).

We show that if for any $k>0, \operatorname{Tr}\left(A^{k}\right)=0$ then $A \in \mathcal{M}_{n}(\mathbb{C})$ is nilpotent.
Assume that $\lambda_{1}, \cdots, \lambda_{r}$ are all distinct non-zero eigenvalues of A with multiplicities m_{1}, \cdots, m_{r}. The assumption $\operatorname{Tr}\left(A^{k}\right)=0$ implies that

$$
\begin{gathered}
m_{1} \lambda_{1}+m_{2} \lambda_{2}+\cdots+m_{r} \lambda_{r}=0, \\
\cdots \\
m_{1} \lambda_{1}^{r}+m_{2} \lambda_{2}^{r}+\cdots+m_{r} \lambda_{r}^{r}=0 .
\end{gathered}
$$

It means that $\left(m_{1}, \cdots, m_{r}\right)$ is a non-zero solution of the linear system

$$
\lambda_{1} x_{1}+\lambda_{2} x_{2}+\cdots+\lambda_{r} x_{r}=0,
$$

$$
\lambda_{1}^{r} x_{1}+\lambda_{2}^{r} x_{2}+\cdots+\lambda_{r}^{r} x_{r}=0 .
$$

By Cramer's rule, it implies that the matrix $\left[\begin{array}{ccc}\lambda_{1} & \cdots & \lambda_{r} \\ \vdots & & \vdots \\ \lambda_{1}^{r} & \cdots & \lambda_{r}^{r}\end{array}\right]$ has zero determinant, but as a van der Monde determinant, it has determinant

$$
\lambda_{1} \cdots \lambda_{r} \prod_{1 \leq i<j \leq r}\left(\lambda_{i}-\lambda_{j}\right) \neq 0 .
$$

This contradiction implies that there is no non-zero eigenvalue of A, and hence A is nilpotent.

