General Linear Groups, WS 18/19 Partial solution

Solution to Sheet 1, Exercise 4.

The part (1) is follows from the definition. We start with the part (3).

Recall the standard flag $V^{std}_{\bullet} := (V^{std}_1, \cdots, V^{std}_{n-1})$ where $V^{std}_i = \operatorname{span}\{\mathbf{e}_1, \cdots, \mathbf{e}_i\}$. Assume that $V_{\bullet} = (V_1, \cdots, V_{n-1})$ is a flag such that for any $b \in B_n(\mathbb{C}), b \cdot V_{\bullet} = V_{\bullet}$, we show that $V_{\bullet} = V^{std}_{\bullet}$. This implies that the flag having $B_n(\mathbb{C})$ as stabilizer is exactly V^{std}_{\bullet} .

We start by showing that $V_1 = \text{span}\{\mathbf{e}_1\}$. Assume that $V_1 = \text{span}\{\mathbf{v}_1\}, \mathbf{v}_1 = \lambda_1 \mathbf{e}_1 + \cdots + \lambda_n \mathbf{e}_n$. Let $b = (b_{i,j}) \in B_n(\mathbb{C})$ be given by $b_{i,j} = 1$ if and only if $i \leq j$. Then

$$b\mathbf{v}_1 = (\lambda_1 + \dots + \lambda_n)\mathbf{e}_1 + (\lambda_2 + \dots + \lambda_n)\mathbf{e}_2 + \dots + \lambda_n\mathbf{e}_n.$$

Since $b\mathbf{v}_1 \in V_1$, $\lambda_2 = \cdots = \lambda_n = 0$. This implies $V_1 = V_1^{std}$.

Assume for $\ell = 1, \dots, k-1$, $V_{\ell} = V_{\ell}^{std}$. We show that $V_k = V_k^{std}$. Since $V_{k-1}^{std} = V_{k-1} \subset V_k$, we can assume that $V_k = \text{span}\{\mathbf{e}_1, \dots, \mathbf{e}_{k-1}, \mathbf{v}_k\}$ where $\mathbf{v}_k = \lambda_1 \mathbf{e}_1 + \dots + \lambda_n \mathbf{e}_n$. Similarly,

$$b\mathbf{v}_k = (\lambda_1 + \dots + \lambda_n)\mathbf{e}_1 + \dots + (\lambda_k + \dots + \lambda_n)\mathbf{e}_k + (\lambda_{k+1} + \dots + \lambda_n)\mathbf{e}_{k+1} + \dots + \lambda_n\mathbf{e}_n \in V_k.$$

Since $b\mathbf{v}_k \in V_k$, we can assume that

$$b\mathbf{v}_k = \mu_1 \mathbf{e}_1 + \dots + \mu_{k-1} \mathbf{e}_{k-1} \mu_k \mathbf{v}_k = (\mu_1 + \mu_k \lambda_1) \mathbf{e}_1 + \dots + (\mu_{k-1} + \mu_k \lambda_{k-1}) \mathbf{e}_{k-1} + \mu_k \lambda_k \mathbf{e}_k + \dots + \mu_k \lambda_n \mathbf{e}_n$$

If $\lambda_n \neq 0$ then $\mu_k = 1$. Consider the coefficient of \mathbf{e}_{n-1} gives a contradiction, which implies $\lambda_n = 0$. Continue this argument shows that $\lambda_{k+1} = \cdots = \lambda_n = 0$, hence $\mathbf{v}_k \in V_k^{std}$ and $\mathbf{e}_k \in V_k$. This terminates the proof.

By (1) we know that $B_n(\mathbb{C}) \subseteq \mathcal{N}_{\mathrm{GL}_n(\mathbb{C})}(B_n(\mathbb{C}))$. It suffices to show that if $gB_n(\mathbb{C})g^{-1} = B_n(\mathbb{C})$ then $g \in B_n(\mathbb{C})$.

In the lecture we have shown that $\operatorname{Stab}_{\operatorname{GL}_n(\mathbb{C})}(V^{std}) = B_n(\mathbb{C})$, by Exercise 1.11, $\operatorname{Stab}(gV^{std}) = gB_n(\mathbb{C})g^{-1} = B_n(\mathbb{C})$. From (3) this implies $gV^{std} = V^{std}$, and $g \in B_n(\mathbb{C})$ (see the discussion after Proposition 1.21 in the lecture).

Solution to Sheet 2, Exercise 4 (1).

We show that if for any k > 0, $\operatorname{Tr}(A^k) = 0$ then $A \in \mathcal{M}_n(\mathbb{C})$ is nilpotent.

Assume that $\lambda_1, \dots, \lambda_r$ are all distinct non-zero eigenvalues of A with multiplicities m_1, \dots, m_r . The assumption $\text{Tr}(A^k) = 0$ implies that

$$m_1\lambda_1 + m_2\lambda_2 + \dots + m_r\lambda_r = 0,$$
$$\dots$$
$$m_1\lambda_1^r + m_2\lambda_2^r + \dots + m_r\lambda_r^r = 0.$$

It means that (m_1, \dots, m_r) is a non-zero solution of the linear system

$$\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_r x_r = 0$$

$$\begin{split} \lambda_1^r x_1 + \lambda_2^r x_2 + \cdots + \lambda_r^r x_r &= 0. \end{split}$$
 By Cramer's rule, it implies that the matrix $\begin{bmatrix} \lambda_1 & \cdots & \lambda_r \\ \vdots & & \vdots \\ \lambda_1^r & \cdots & \lambda_r^r \end{bmatrix}$ has zero determinant, but as a van der Monde determinant, it has determinant

$$\lambda_1 \cdots \lambda_r \prod_{1 \le i < j \le r} (\lambda_i - \lambda_j) \ne 0.$$

This contradiction implies that there is no non-zero eigenvalue of A, and hence A is nilpotent.