Convex polytopes in algebraic combinatorics, WS 17/18 Exercise Sheet 1

to be handed in on 23, October, 2017 in the lecture.

Exercise 1. Prove that for a subset $A \subset \mathbb{R}^{N}$, the following statements are equivalent:

1. A is a convex subset of \mathbb{R}^{N};
2. any convex combination of a finitely number of points in A is in A.

Exercise 2. Let $M \subset \mathbb{R}^{N}$ be a set and P be the set of all affine combinations of elements in M. Show that P is an affine subspace of \mathbb{R}^{N}.

Exercise 3. Let $\mathbf{x}_{1}, \cdots, \mathbf{x}_{n} \in \mathbb{R}^{N}$ be distinct points. Show that there exists $\alpha \in\left(\mathbb{R}^{N}\right)^{*}, \alpha \neq 0$ such that for any $b \in \mathbb{R}$, the hyperplane $\mathcal{H}_{\alpha, b}$ contains at most one of the points $\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}$.

Exercise 4. For any subset $M \subset \mathbb{R}^{N}$, show that:

1. if $0 \in \operatorname{aff}(M)$, then $\operatorname{dim} \operatorname{aff}(M)=\operatorname{dim} \operatorname{span}_{\mathbb{R}} M$;
2. if $0 \notin \operatorname{aff}(M)$, then $\operatorname{dim} \operatorname{aff}(M)=\operatorname{dim} \operatorname{span}_{\mathbb{R}} M-1$.
