to be handed in on 6, November, 2017 in the lecture.

Exercise 1. Prove that the crosspolytope

$$C_N^{\Delta} := \operatorname{conv}\{\pm \mathbf{e}_1, \cdots, \pm \mathbf{e}_N\} \subset \mathbb{R}^N$$

admits the following H-description

$$C_N^{\Delta} = \{ \mathbf{x} = (x_1, \cdots, x_N) \in \mathbb{R}^N \mid |x_1| + \cdots + |x_N| \le 1 \}.$$

Exercise 2. Let $P \subset \mathbb{R}^N$, $Q \subset \mathbb{R}^M$ be polytopes. Prove that the product $P \times Q \subset \mathbb{R}^{N+M}$ is a polytope.

Exercise 3. Construct an affine surjective map from the Birkhoff polytope $B_N \subset \mathbb{R}^{N^2}$ onto the permutahedron $\Pi_{N-1} \subset \mathbb{R}^N$.

Exercise 4. Consider for $N \ge 1$ the light cone

$$\mathcal{L}_N := \{ (\mathbf{x}, t) \in \mathbb{R}^N \times \mathbb{R} \mid |\mathbf{x}| \le t \}.$$

Show that \mathcal{L}_2 is not polyhedral.

Exercise 5.

- 1. Let S be a compact subset of \mathbb{R}^N . Prove that the convex hull $\operatorname{conv}(S)$ is a compact subset of \mathbb{R}^N .
- 2. Give a closed subset S in \mathbb{R}^2 such that $\operatorname{conv}(S)$ is not closed.