Convex polytopes in algebraic combinatorics, WS 17/18 Exercise Sheet 2

to be handed in on 6, November, 2017 in the lecture.

Exercise 1. Prove that the crosspolytope

$$
C_{N}^{\Delta}:=\operatorname{conv}\left\{ \pm \mathbf{e}_{1}, \cdots, \pm \mathbf{e}_{N}\right\} \subset \mathbb{R}^{N}
$$

admits the following H -description

$$
C_{N}^{\Delta}=\left\{\mathbf{x}=\left(x_{1}, \cdots, x_{N}\right) \in \mathbb{R}^{N}| | x_{1}\left|+\cdots+\left|x_{N}\right| \leq 1\right\} .\right.
$$

Exercise 2. Let $P \subset \mathbb{R}^{N}, Q \subset \mathbb{R}^{M}$ be polytopes. Prove that the product $P \times Q \subset \mathbb{R}^{N+M}$ is a polytope.

Exercise 3. Construct an affine surjective map from the Birkhoff polytope $B_{N} \subset \mathbb{R}^{N^{2}}$ onto the permutahedron $\Pi_{N-1} \subset \mathbb{R}^{N}$.

Exercise 4. Consider for $N \geq 1$ the light cone

$$
\mathcal{L}_{N}:=\left\{(\mathbf{x}, t) \in \mathbb{R}^{N} \times \mathbb{R}| | \mathbf{x} \mid \leq t\right\} .
$$

Show that \mathcal{L}_{2} is not polyhedral.

Exercise 5.

1. Let S be a compact subset of \mathbb{R}^{N}. Prove that the convex hull $\operatorname{conv}(S)$ is a compact subset of \mathbb{R}^{N}.
2. Give a closed subset S in \mathbb{R}^{2} such that $\operatorname{conv}(S)$ is not closed.
