Convex polytopes in algebraic combinatorics, WS 17/18 Exercise Sheet 3

to be handed in on 20 , November, 2017 in the lecture.

Exercise 1. Let $P \subset \mathbb{R}^{N}$ be a polytope and $\mathbf{x} \in \mathbb{R}^{N}$ such that $\mathbf{x} \notin P$. Show that there exists $\alpha \in\left(\mathbb{R}^{N}\right)^{*}$ and $\lambda \in \mathbb{R}$ such that $\alpha(\mathbf{y})<\lambda$ for any $\mathbf{y} \in P$ but $\alpha(\mathbf{x})>\lambda$. If $0 \in P$ then we can choose $\lambda=1$.

Exercise 2. Compute the volume of the crosspolytope C_{N}^{Δ}.

Exercise 3.

1. Let $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n} \in \mathbb{R}^{N}$. Show that the dimension of the polytope $P=\operatorname{conv}\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ is the rank of the following matrix A minus 1 :

$$
A=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right) .
$$

2. Deduce that the permutahedron Π_{N} has dimension N.

Exercise 4. Compute and draw K° for axis parallel rectangles K in \mathbb{R}^{2} with opposite vertices $\mathbf{v}_{1}, \mathbf{v}_{2}$ given by:

1. $\mathbf{v}_{1}=(0,0)$ and $\mathbf{v}_{2}=(M, 1)$ for $M>0$ large;
2. $\mathbf{v}_{1}=(-\varepsilon,-\varepsilon)$ and $\mathbf{v}_{2}=(M, 1)$ for $M>0$ large and $\varepsilon>0$ small;
3. $\mathbf{v}_{1}=(\varepsilon, \varepsilon)$ and $\mathbf{v}_{2}=(M, 1)$ for $M>0$ large and $\varepsilon>0$ small.

Study the limit shape when $\varepsilon \rightarrow 0, M \rightarrow+\infty$.
Exercise 5. Let $p(z) \in \mathbb{C}[z]$ be a polynomial with complex coefficients in one variable with roots r_{1}, \cdots, r_{d}, then the roots of the derivative $p^{\prime}(z)$ of $p(z)$ are contained in the convex hull $\operatorname{conv}\left\{r_{1}, \cdots, r_{d}\right\}$.

