Convex polytopes in algebraic combinatorics, WS 17/18 Exercise Sheet 4

to be handed in on 4, December, 2017 in the lecture.

Exercise 1. Let $P \subset \mathbb{R}^{N}$ be a full dimensional polytope. Show that $\operatorname{int}(P) \neq \emptyset$.
Exercise 2. Let $P \subset \mathbb{R}^{N}$ and $Q \subset \mathbb{R}^{M}$ be two polytopes.

1. Show that the non-empty faces of $P \times Q$ are exactly the products of the faces of P with the faces of Q.
2. Deduce the f-vector and f-polynomial of $P \times Q$ in terms of the f -vectors and f-polynomials of P and Q.

Exercise 3.

1. Let P be a polytope of dimension $d-1$ and $\operatorname{bipyr}(P)$ is the bipyramid over P. Prove that:

- for $0 \leq k \leq d-2, f_{k}(\operatorname{bipyr}(P))=2 f_{k-1}(P)+f_{k}(P)$;
- $f_{d-1}(\operatorname{bipyr}(P))=2 f_{d-2}(P)$.

2. Deduce the f-polynomial of the crosspolytope C_{N}^{Δ}.

Exercise 4. For $\sigma, \tau \in \mathfrak{S}_{N}$, show that the segment $\mathcal{S}_{X^{\sigma}, X^{\tau}}\left(X^{\sigma}\right.$ is the permutation matrix associated to σ) connecting X^{σ} and X^{τ} is an edge of the Birkhoff polytope B_{N} if and only if $\sigma^{-1} \tau$ is a cycle.

Exercise 5. Assume for the moment that $f(P)=(15,34,28,9)$ is the f -vector of a polytope P. Answer the following questions:

1. What is the dimension of P ?
2. (optional) Is P simple or simplicial?
3. Could P be a prism over another polytope?
4. Could P be a pyramid over another polytope?
(optional) Study the assumption: Is $f(P)$ really an f -vector of a polytope P ?
