to be handed in on 4, December, 2017 in the lecture.

Exercise 1. Let $P \subset \mathbb{R}^N$ be a full dimensional polytope. Show that $int(P) \neq \emptyset$.

Exercise 2. Let $P \subset \mathbb{R}^N$ and $Q \subset \mathbb{R}^M$ be two polytopes.

- 1. Show that the non-empty faces of $P \times Q$ are exactly the products of the faces of P with the faces of Q.
- 2. Deduce the f-vector and f-polynomial of $P \times Q$ in terms of the f-vectors and f-polynomials of P and Q.

Exercise 3.

- 1. Let P be a polytope of dimension d-1 and $\operatorname{bipyr}(P)$ is the bipyramid over P. Prove that:
 - for $0 \le k \le d-2$, $f_k(\text{bipyr}(P)) = 2f_{k-1}(P) + f_k(P)$;
 - $f_{d-1}(\operatorname{bipyr}(P)) = 2f_{d-2}(P).$
- 2. Deduce the *f*-polynomial of the crosspolytope C_N^{Δ} .

Exercise 4. For $\sigma, \tau \in \mathfrak{S}_N$, show that the segment $\mathcal{S}_{X^{\sigma},X^{\tau}}$ (X^{σ} is the permutation matrix associated to σ) connecting X^{σ} and X^{τ} is an edge of the Birkhoff polytope B_N if and only if $\sigma^{-1}\tau$ is a cycle.

Exercise 5. Assume for the moment that f(P) = (15, 34, 28, 9) is the f-vector of a polytope P. Answer the following questions:

- 1. What is the dimension of P?
- 2. (optional) Is P simple or simplicial?
- 3. Could P be a prism over another polytope?
- 4. Could P be a pyramid over another polytope?

(optional) Study the assumption: Is f(P) really an f-vector of a polytope P?