## Convex polytopes in algebraic combinatorics, WS 17/18 Exercise Sheet 5

to be handed in on 18, December, 2017 in the lecture.

Exercise 1. Let $P$ be a simplicial d-polytope.

1. Check that the Dehn-Sommerville equations for $d=4$ are equivalent to the two linear relations $f_{0}(P)-f_{1}(P)+f_{2}(P)-f_{3}(P)=0$ and $f_{2}(P)=2 f_{3}(P)$.
2. For $d=5$, find a linear relation that follows from the Dehn-Sommerville equations but is independent of the Euler formula and $2 f_{3}(P)=5 f_{4}(P)$.

Exercise 2. Compute the face lattice $\mathcal{L}\left(C_{3}^{\Delta}\right)$ of the octahedron.
Exercise 3. Let $P \subset \mathbb{R}^{M}$ and $Q \subset \mathbb{R}^{N}$ be two polytopes. Show that if $P$ and $Q$ are affinely equivalent, then they are combinatorially equivalent.

Exercise 4. Let $P \subset \mathbb{R}^{N}$ and $Q \subset \mathbb{R}^{M}$ be full-dimensional polytopes, both with 0 in the interior.

1. Describe $\left(P^{\circ} \times Q^{\circ}\right)^{\circ}$ in the case that $P$ is the interval $[-1,1]$ and $Q$ is a regular $n$-gon centered at 0 .
2. In the general case, describe the vertices of $\left(P^{\circ} \times Q^{\circ}\right)^{\circ}$ in terms of the vertices of the polytopes $P$ and $Q$.

## Exercise 5.

1. Show that if $P$ and $Q$ are d-polytopes, and the face poset of $P$ is a subposet of the face poset of $Q$, then $P$ and $Q$ are combinatorially equivalent.
2. (optional) Show that a simple $d$-polytope all of whose 2 -faces are quadrangular is combinatorially equivalent to an $n$-cube.
