Convex polytopes in algebraic combinatorics, WS 17/18 Exercise Sheet 6

to be handed in on 11, January, 2018 in the lecture.

Exercise 1. Let P be the following poset.

Compute the face lattice of the order polytope $\mathcal{O}(P)$ and the chain polytope $\mathcal{C}(P)$.

Exercise 2.

Let P be the following poset where p, q are non-marked elements.

Study the face lattices of the marked order polytopes and the marked chain polytopes when t varies.

Exercise 3.

For $\lambda=(3,2,1)$, determine the face lattice of the Gelfand-Tsetlin polytope $\mathrm{GT}_{3}(\lambda)$ and the Feigin-Fourier-Littelmann-Vinberg polytope $\mathrm{FFLV}_{3}(\lambda)$. Are they combinatorially equivalent? Are they unimodularly equivalent? Prove your statements.

Open question for Xmas. For a finite poset P, give a combinatorial description (similar to the Geissinger theorem) of the face lattice of the chain polytope $\mathcal{C}(P)$.

Fröhliche Weihnachten und alles Gute für das neue Jahr!!

