Solution to Exercise 4, Sheet 4

Exercise. For $\sigma, \tau \in \mathfrak{S}_{N}$, show that the segment $\mathcal{S}_{X^{\sigma}, X^{\tau}}\left(X^{\sigma}\right.$ is the permutation matrix associated to σ) connecting X^{σ} and X^{τ} is an edge of the Birkhoff polytope B_{N} if and only if $\sigma^{-1} \tau$ is a cycle.

Proof. We first show that it suffices to consider the case where $\sigma=e$, the identity element. That is to say, $S_{X^{\sigma}, X^{\tau}}$ is an edge of B_{N} if and only if $S_{X^{e}, X^{\sigma^{-1}} \tau}$ is an edge of B_{N}.

Assume that $S_{X^{\sigma}, X^{\tau}}$ is an edge, then there exists a hyperplane $\mathcal{H}_{\alpha, b}$ such that

- $\mathcal{H}_{\alpha, b} \cap B_{N}=S_{X^{\sigma}, X^{\tau}}$;
- $B_{N} \subset \mathcal{H}_{\alpha, b}^{-}$.

We show that $S_{X^{e}, X^{\sigma^{-1}}}$ is an edge. Indeed, we consider $\alpha^{\prime}:=\alpha \cdot X^{\sigma}$, and claim that

1. $\mathcal{H}_{\alpha^{\prime}, b} \cap B_{N}=S_{X^{e}, X^{\sigma^{-1}}}$;
2. $B_{N} \subset \mathcal{H}_{\alpha^{\prime}, b^{\prime}}^{-}$.

We show the first part.
$C:$ if $\mathbf{x} \in \mathcal{H}_{\alpha^{\prime}, b} \cap B_{N}$ then $b=\alpha^{\prime}(\mathbf{x})=\alpha\left(X^{\sigma} \mathbf{x}\right)$, that is to say, $X^{\sigma} \mathbf{x} \in \mathcal{H}_{\alpha, b}$. Writing x into a convex combination of the permutation matrices shows that $X^{\sigma} \mathrm{x} \in B_{N}$, hence it is contained in $S_{X^{\sigma}, X^{\tau}}$: there exists $0 \leq \lambda \leq 1$ such that $X^{\sigma} \mathbf{x}=\lambda X^{\sigma}+(1-\lambda) X^{\tau}$, hence $\mathbf{x}=\lambda X^{e}+(1-\lambda) X^{\sigma^{-1} \tau}$.
$\supset:$ if $\mathbf{x}=\lambda X^{e}+(1-\lambda) X^{\sigma^{-1} \tau}$ for some $0 \leq \lambda \leq 1$, then $\mathbf{x} \in B_{N}$ and

$$
\alpha^{\prime}(\mathbf{x})=\lambda \alpha\left(X^{\sigma} X^{e}+(1-\lambda) X^{\sigma} X^{\sigma^{-1} \tau}\right)=\alpha\left(\lambda X^{\sigma}+(1-\lambda) X^{\tau}\right)=b .
$$

The second part: Let $\mathbf{x} \in B_{N}$. Write it as a convex combination of permutation matrices:

$$
\mathbf{x}=\sum_{\tau \in \mathfrak{G}_{N}} \lambda_{\tau} X^{\tau}
$$

Then

$$
\alpha^{\prime}(\mathbf{x})=\sum_{\tau \in \mathfrak{G}_{N}} \lambda_{\tau} \alpha\left(X^{\sigma} X^{\tau}\right) \leq b \sum_{\tau \in \mathfrak{S}_{N}} \lambda_{\tau}=b .
$$

We proved that $S_{X^{e}, X^{\sigma^{-1}} \tau}$ is an edge. The same argument shows the other implication.
Now it suffices to show that $S_{X^{e}, X^{\tau}}$ is an edge if and only if τ is a cycle.
Assume that τ is not a cycle, that is to say, $\tau=c_{1} c_{2}$ where c_{1} and c_{2} are multiplications of at least one cycle. We claim that

$$
X^{e}+X^{\tau}=X^{c_{1}}+X^{c_{2}}
$$

which means that $S_{X^{e}, X^{\tau}}$ is not an edge, as the middle point of the segment connecting X^{e} and X^{τ} can be expressed as a convex combination of $X^{c_{1}}$ and $X^{c_{2}}$.

To show this claim, it suffices to compare the (i, j)-entry of both sides, which is straightforward.

Now we assume that $\tau=\left(i_{1}, \cdots, i_{k}\right)$ is a cycle and want to show that $S_{X^{e}, X^{\tau}}$ is an edge. That is to say, we want to find $\mathcal{H}_{\alpha, b}$ such that

- $\mathcal{H}_{\alpha, b} \cap B_{N}=S_{X^{e}, X^{\tau}}$;
- $B_{N} \subset \mathcal{H}_{\alpha, b}^{-}$.

For $1 \leq i, j \leq N$ we denote $\varepsilon_{i, j}$ be the linear function on the vector space $\mathcal{M}_{N}(\mathbb{R})$ mapping a matrix to its (i, j)-entry. We consider

$$
\alpha:=\sum_{s=1}^{k-1} \varepsilon_{i_{s}, i_{s+1}}+\varepsilon_{i_{k}, i_{1}}+\sum_{i=1}^{n} \varepsilon_{i, i}
$$

and $b=N$. Let X be a double stochastic matrix in B_{N}. As its row and column sum are all 1 , we know that $B_{N} \subset \mathcal{H}_{\alpha, b}$. Moreover, if $\alpha(X)=N$, then X must be supported on the set

$$
\left\{\left(i_{s}, i_{s+1}\right),\left(i_{k}, i_{1}\right),(i, i) \mid s=1, \cdots, k-1 ; i=1, \cdots, N\right\}
$$

which means that if the index set of a entry is not in this set, then the entry is zero. Again by the double stochastic property, for $j \in J, X_{j, j}=1$ and

$$
X_{i_{1}, i_{2}}=X_{i_{2}, i_{3}}=\cdots=X_{i_{k-1}, i_{k}}=X_{i_{k}, i_{1}}
$$

which implies that

$$
X_{i_{1}, i_{1}}=\cdots=X_{i_{k}, i_{k}}=1-X_{i_{1}, i_{2}}
$$

Let $\lambda=X_{i_{1}, i_{1}}$ then $0 \leq \lambda \leq 1$ and

$$
X=\lambda X^{e}+(1-\lambda) X^{\tau}
$$

This prove that $\mathcal{H}_{\alpha, b} \cap B_{N} \subset S_{X^{e}, X^{\tau}}$. The other inclusion is clear, as $\alpha\left(X^{e}\right)=N$ and $\alpha\left(X^{\tau}\right)=N$ implies that the segment $S_{X^{e}, X^{\tau}} \subset \mathcal{H}_{\alpha, b}$.

