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Abstract. Recently, Kac and Wakimoto established specialized character formulas for ir-
reducible highest weight s`(m, 1)∧ modules, and established a main exponential term in
their asymptotic expansions. By different methods, we improve upon the Kac-Wakimoto
asymptotics for these characters, obtaining an asymptotic expansion with an arbitrarily
large number of terms beyond the main term. More specifically, it is well known that in the
case of holomorphic modular forms, asymptotic information may be obtained using modular
transformation properties. However here, this is not the case due to the analytic nature
of the Kac-Wakimoto series as discovered recently by the first author and Ono. We first
“complete” these series by adding to them certain integrals, obtaining functions that exhibit
suitable modular transformation laws, at the expense of the completed objects being non-
holomorphic. We then exploit this mock-modular behavior of the Kac-Wakimoto series to
obtain our asymptotic expansion. In particular, we show that beyond the main term, the as-
ymptotic behavior is dictated by the non-holomorphic part of the completed Kac-Wakimoto
characters, which is a priori invisible. Euler numbers (equivalently, zeta-values) appear as
coefficients.

1. Introduction and Statement of Results

One of the most beautiful connections between modular forms and Lie algebras is given
by “Monstrous moonshine”. In 1979, Conway and Norton made a then surprising conjecture
relating the Fourier coefficients of the modular function j, defined by

j(τ) =
1

q
+ 744 + 196884q + 21493760q2 + ...

(q := e2πiτ , τ ∈ H), to dimensions of irreducible representations of the Monster group [8],
and Borcherds ultimately gave a proof in 1992 [1]. Prior to this, important work of Kac [12]
established the so-called Weyl-Kac character formula and denominator identity, first relating
infinite-dimensional Lie algebras and modular forms. Of the numerous consequences of Kac’s
work are many beautiful identities. For example, if we let

q
d
24

∑
n≥0

pd(n)qn := q
d
24

∏
k≥1

(
1− qk

)d
denote the d-th power, (d ∈ Z), of the Dedekind η-function, η(τ) := q

1
24

∏
n≥1(1 − qn) (a

weight 1
2

modular form), the Weyl-Kac denominator formula and the “MacDonald identities”
established that the coefficients pd(n) encode information about representations of affine Lie
algebras [19]. Others, including Lepowsky, Milne and Wilson [16, 17, 18], proved further
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identities along these lines, and showed, for example, that the classical Rogers-Ramanujan
identity ∑

n≥0

qn
2

(q; q)n
=
∏
n≥1

(
1− q5n−1

)−1 (
1− q5n−4

)−1
,

(a; q)n :=
∏n−1

j=0 (1− aqj), and subsequent generalizations, become principally specialized

characters for the standard modules for A
(1)
1 .

More recently, Kac and Wakimoto [14] found a specialized character formula for trL(Λ(s))q
L0 ,

where L(Λ(s); r + 1) is the irreducible s`(m, 1)∧ module with highest weight Λ(s), and L0 the
“energy operator”. In [7], the first author and Ono answered a question of Kac regarding the
“modularity” of the characters trL(Λ(s))q

L0 , and proved that they are “holomorphic parts” of

certain nonholomorphic modular functions. Following this, in [10], the second author showed
that the Kac-Wakimoto characters are, up to simple q-series, universal mock theta functions
[11].

In this paper, we aim to understand the asymptotic behavior (see [13]) of the Kac-Wakimoto
characters of [14], given by

trL(Λ(s))q
L0 := 2q−

s
2
φ(q2)2

φ(q)m+2

∑
k=(k1,...,km−1)∈Zm−1

q
1
2

∑m−1
i=1 ki(ki+1)

1 + q
∑m−1
i=1 ki−s

,(1.1)

with s ∈ Z, m ≥ 2,m ∈ N, and φ(q) :=
∏∞

n=1(1− qn).
Replacing τ by it, t ∈ R+, Kac and Wakimoto [14] established the following asymptotic

behavior for trL(Λ(s))q
L0 as t→ 0+:

trL(Λ(s))q
L0 ∼

√
t

2
e
π(m+1)

12t .(1.2)

Their methods involve series manipulations and modular transformations of theta functions.
Using completely different methods, our main result in this paper improves upon the as-

ymptotic behavior given for trL(Λ(s))q
L0 as established by Kac and Wakimoto in (1.2), who

give the main exponential term in the asymptotic expansion of trL(Λ(s))q
L0 . Here, we obtain

an asymptotic expansion for trL(Λ(s))q
L0 with an arbitrarily large number of terms (beyond

the main term). More precisely, it is well known that in the case of holomorphic modular
forms, asymptotic information may be understood using modular transformation properties.
However, here, due to the analytic nature of the Kac-Wakimoto series as discovered recently
by the first author and Ono [7], we must proceed by different methods. We first relate the
Kac-Wakimoto characters trL(Λ(s))q

L0 to “multivariable Appell functions”, natural general-

izations of certain Lerch sums studied recently by Zwegers [21, 22] (see §2 for definitions).
Zwegers’ work, together with the work of Ono and the first author have sparked a flurry of
recent research on harmonic weak Maass forms and mock theta functions (see for example
[2, 3, 4, 5, 6, 20]). We point out the historical significance of Zwegers’ thesis [21], which
after nearly 100 years, finally explained the “modularity” of Ramanujan’s mock theta func-
tions (simple q-series expansions resembling classical theta functions) via the mock-modular
functions µ(u, v; τ). (See §2.)
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We then exploit the philosophy that mock modular forms may be “completed” by adding
certain non-holomorphic integrals to produce functions exhibiting suitable modular trans-
formation properties, at the expense of the completed objects being non-holomorphic. We
show that in the case of the Kac-Wakimoto series, beyond the main term, their asymptotic
behavior is dictated by the non-holomorphic part of the completed series, which is a priori
invisible.

To state our theorem, we let Ej, j ≥ 0, denote the Euler numbers (relatives of Bernoulli
numbers), defined by the generating function

∞∑
j=0

Ejx
j

j!
=

2

ex + e−x
.

Theorem 1.1. Let m,N ∈ N,m ≥ 2, and s ∈ Z. Then as t→ 0+, we have

trL(Λ(s))q
L0 =

√
t

2
e
π(m+1)

12t
−π(m−2)t

12

(
N∑
j=0

aj(m− 1, s)tj +O
(
tN+1

))
,

where the coefficients aj(n, s), n ∈ N, s ∈ Z are defined as

(1.3) aj(n, s) :=
(πs)j

j!

j∑
`=0

(
j

`

)( n
4s

)`
Ej+`.

Futher, if m− 1 = 2s, we have as t→ 0+

trL(Λ(s))q
L0 =

√
t

2
e
π(m+1)

12t
+
πt(5−4m)

12 +O

(
e
π(m2−12m+14)

12t

)
.(1.4)

Remarks.
1) The implied constant in Theorem 1.1 depends on N , m, and s.
2) Conversation and correspondence with Don Zagier led us to believe that the case n = 2s
(see (1.4) and (3.3)) is indeed special. More specifically, by ellpitic transformation laws
satisfied by the Mordell integral h(u; τ) (see §2), it would be sufficient to assume 0 ≤ s < n.
Zagier’s work to us implied that in this range, the case n = 2s is the only setting in which
the aj(n, s) are expected to have exponential growth.
3) We show in the course of the proof of Theorem 1.1 that the terms exp(−π(m−2)t/12)aj(m−
1, s)tj are dictated by the non-holomorphic part of the completed non-holomorphic Kac-
Wakimoto series.
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2. Multivariable Appell functions and modularity of Kac-Wakimoto
characters

To study the asymptotic behavior of the Kac-Wakimoto characters trL(Λ(s))q
L0 we would

like to map the cusp 0 to the cusp∞. For this, we rewrite the series in terms of multivariable
Appell functions, which are related to automorphic objects, and were recently studied by
Zwegers [21, 22]. We start by recalling these functions and their automorphic properties.
Firstly define for n ∈ N

µn(u, v) = µn(u, v; τ) :=
eπiu∏n

j=1 ϑ(vj; τ)

∑
k∈Zn

(−1)|k|q
1
2
||k||2+ 1

2
|k|e2πik·v

1− e2πiuq|k|
,(2.1)

where |k| :=
∑n

i=1 ki, ||k||2 :=
∑n

i=1 k
2
i , and u ∈ C, v ∈ Cn, τ ∈ H. The classical Jacobi theta

function ϑ is defined by

ϑ(u) = ϑ(u; τ) :=
∑
ν∈ 1

2
+Z

eπiν
2τ+2πiν(u+ 1

2)

= −iq
1
8 e−πiu

∞∏
n=1

(1− qn)
(
1− e2πiuqn−1

) (
1− e−2πiuqn

)
.

To state the transformation laws of µn, we require further functions. To be more precise, we
define “shifted” multivariable Appell sums µn,` and also a Mordell integral h. These functions
are given by (0 ≤ ` ≤ n− 1)

µn,`(u, v) = µn,`(u, v; τ) := (−1)`q−
`2

2n e−
2πi`
n

(u−|v|)µn(u+ `τ, v; τ),(2.2)

h(u) = h(u; τ) :=

∫
R

eπiτx
2−2πux

cosh (πx)
dx.

Clearly we have that µn(u, v) = µn,0(u, v). The following proposition gives an expression for
the Kac-Wakimoto characters trL(Λ(s))q

L0 in terms of the multivariable Appell sums µn,`, the
Mordell integral h, and the Dedekind η-function. In what follows and throughout, for c ∈ C,
we use the notation c := (c, c, . . . , c) ∈ CN , N ∈ N.

Proposition 2.1. For m ∈ N,m ≥ 2, and s ∈ Z, we have

trL(Λ(s))q
L0 = i−m+1 η

2m
(
− 1

2τ

)
η2m+1

(
− 1
τ

)√ 1

(m− 1)
e
− πis
m−1

+
πi(m−2)2

4(m−1)τ
+πiτ

(
s2

m−1
+m−2

12

)

×
m−2∑
r=0

e−
2πirs
m−1 µm−1,r

(
− 1

2τ
,
−1

2τ
;−1

τ

)
+

√
−iτ
2

q
m−2
24

η2m
(
− 1

2τ

)
η2m+1

(
− 1
τ

)h (sτ ; (m− 1)τ) .(2.3)

To prove Proposition 2.1, we will make use of various modular and elliptic transformation
laws satisfied by the functions µn. In particular, from the multivariable Appell function µn,
Zwegers [22] formed a non-holomorphic function µ̂n, and established modular transformation
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properties of this “completed” function µ̂n. To be more precise, define

(2.4) µ̂n(u, v) = µ̂n(u, v; τ) := µn(u, v; τ)− i

2
R

(
u− |v| − n+ 1

2
;nτ

)
.

Here the real-analytic function R is defined by

R(u) = R(u; τ) :=
∑
ν∈ 1

2
+Z

{
sgn(ν)− E

(
(ν + a)

√
2y
)}

(−1)ν−
1
2 e−πiν

2τ−2πiνu,(2.5)

where y := Im(τ), a := Im(u)/Im(τ), and the function E is defined by

E(u) := 2

∫ u

0

e−πu
2

du.

The following proposition states some modular and elliptic transformation laws for the func-
tions R, µ̂n, and h as established by Zwegers [21, 22]. The function µ̂n,` appearing in Propo-
sition 2.2 below is defined as in (2.2), with µn,` replaced by µ̂n,`.

Proposition 2.2. Let u, v ∈ C, τ ∈ H, λ1, ν1 ∈ Z and λ2, ν2 ∈ Zn such that λ1 − |λ2| ∈ nZ.
Then the following are true:

(1) µ̂n(u, v) = (−1)λ1+|λ2|+ν1+|ν2|e−
2πi
n

(λ1−|λ2|)(u−|v|)q−
1
2n

(λ1−|λ2|)2

×µ̂n (u+ λ1τ + ν1, v + λ2τ + ν2) ,

(2) µ̂n,`(u, v; τ) = in+1

√
i

nτ
e
πi
nτ

(u−|v|)2
n−1∑
r=0

e
2πir`
n µ̂n,r

(
−u
τ
,−v

τ
;−1

τ

)
,

(3) R(u+ 1) = −R(u),

(4) R(u; τ) = − 1√
−iτ

e
πiu2

τ

(
R

(
−u
τ

;−1

τ

)
− h

(
−u
τ

;−1

τ

))
,

(5) h(u; τ) =
1√
−iτ

e
πiu2

τ h

(
u

τ
;−1

τ

)
.

We next give a proposition which relates the function R at the arguments τ
n

and nτ . Its
proof just requires the explicit definition of R as given in (2.5).

Proposition 2.3. For n ∈ N, u ∈ C, τ ∈ H, we have

R
(
u;
τ

n

)
=

n−1∑
`=0

q−
1
2n(`−n−1

2 )
2

e−2πi(`−n−1
2 )(u+ 1

2)R

(
nu+

(
`− n− 1

2

)
τ +

n− 1

2
;nτ

)
.

We are now ready to prove Proposition 2.1.

Proof of Proposition 2.1. It is not hard to see that one can rewrite the Kac-Wakimoto char-
acters as

trL(Λ(s))q
L0 = i(−2)mq

m−2
24

η2m(2τ)

η2m+1(τ)
µm−1

(
1

2
− sτ, 1

2
; τ

)
.(2.6)
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Next, using (2.4), and the transformation laws in Proposition 2.2, we rewrite (for n ∈ N)

(2.7) µn

(
1

2
− sτ, 1

2
; τ

)
= in+1

√
i

nτ
e
−πis
n

+
πi(n−1)2

4nτ
+πis2τ

n

n−1∑
r=0

e−
2πirs
n µn,r

(
− 1

2τ
,−

1

2τ
;−1

τ

)

+
in

2

√
i

nτ
e−

πis
n

+
πi(n−1)2

4nτ
+πis2τ

n

n−1∑
r=0

e−
2πirs
n (−1)re

πir2

nτ e−
2πir
n (n−1

2τ )R

(
n− 1

2τ
− r

τ
− n+ 1

2
;−n

τ

)

− i

2
(−1)n

√
i

nτ
e
πis2τ
n R

(
s

n
;− 1

nτ

)
+
i

2
(−1)n

√
i

nτ
e
πis2τ
n h

(
s

n
;− 1

nτ

)
.

To further simplify (2.7) we apply Proposition 2.3 with u = s/n and replace τ by −1/τ to
find that R

(
s
n
;− 1

nτ

)
equals

−ie−
πis
n

+
πi(n−1)2

4nτ
−πin

2

n−1∑
r=0

(−1)re−
2πirs
n

+πir2

nτ
−πir(n−1)

nτ R

((
r − n− 1

2

)(
−1

τ

)
− n+ 1

2
;−n

τ

)
.

Using this, we obtain from (2.7) that µn
(

1
2
− sτ, 1

2
; τ
)

equals
(2.8)

in+1

√
i

nτ
e
−πis
n

+
πi(n−1)2

4nτ
+πis2τ

n

n−1∑
r=0

e−
2πirs
n µn,r

(
− 1

2τ
,−

1

2τ
;−1

τ

)
+
i

2
(−1)n

√
i

nτ
e
πis2τ
n h

(
s

n
;− 1

nτ

)
.

Inserting (2.8) into (2.6) (with n = m−1), using Proposition 2.2 (5), and the transformation
law of the η-function, η(−1/τ) =

√
−iτη(τ) gives the claim. �

3. Asymptotic behavior of the Kac Wakimoto characters

In this section we determine the asymptotic behavior of the Kac-Wakimoto characters
trL(Λ(s))q

L0 by making use of Proposition 2.1, and analyzing the behavior of the functions
η, µn,r, and h in Proposition 3.1 and Proposition 3.2.

Proposition 3.1. As t→ 0+, for n ∈ N, s ∈ Z, and 0 ≤ r ≤ n− 1, we have that

(1)
η2n+2

(
i
2t

)
η2n+3

(
i
t

) = e
π
12t

(n+2)
(
1 +O

(
e−

π
t

))
,

(2) µn,r

(
i

2t
,
i

2t
;
i

t

)
∼

(
n+1
r+1

)
ine

π
nt

(
r2+(1−n)r

)
− π

2t
−πn

4t .

Proof of Proposition 3.1. Proposition 3.1 (1) is obvious. To prove Proposition 3.1 (2), we
re-write

(3.1) µn,r

(
τ

2
,
τ

2
; τ

)
=

(−1)rq−
r2

2n
+
r(n−1)

2n
+ 1

4
+ r

2

ϑn
(
τ
2
; τ
) ∑

k∈Zn

(−1)|k|q
1
2
||k||2+|k|

1− q|k|+r+ 1
2

.
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We first determine the smallest exponent in q in the Lerch sum. For this, we re-write it as∑
k∈Zn

(−1)|k|q
1
2
||k||2+|k|

1− q|k|+r+ 1
2

=
∑
k∈Zn

|k|+r+1
2>0

j≥0

(−1)|k|q
1
2
||k||2+|k|+j(|k|+r+ 1

2)

−
∑
k∈Zn

|k|+r+1
2<0

j≥1

(−1)|k|q
1
2
||k||2+|k|−j(|k|+r+ 1

2).(3.2)

We first treat the first sum on the right hand side of (3.2). For the exponent to be minimal
one requires that j = 0 and this contribution is given by∑

k∈Zn
|k|+r+1

2>0

(−1)|k|q
1
2
||k||2+|k| = q−

n
2 (−1)n

∑
k∈Zn

|k|+r+1
2−n>0

(−1)|k|q
1
2
||k||2 .

The minimal exponent occurs if n− r of the ki are 1 and the remaining ki are 0. This gives
the contribution (−1)r ( nr ) q−

r
2 . Similarly, the second sum on the right hand side of (3.2) has

minimal exponent for j = 1 and this contribution is given by

−q−r−
1
2

∑
k∈Zn

|k|+r+1
2<0

(−1)|k|q
1
2
||k||2 .

The exponent is minimal if r + 1 of the ki are −1 and the remaining ki are 0. This gives the
contribution (−1)r ( n

r+1 ) q−
r
2 . Combining the terms gives that the minimal exponent is − r

2

and this term has a weighting of (−1)r
(
n+1
r+1

)
.

Now one easily obtains the claim, using that

ϑ

(
i

2t
;
i

t

)
∼ −ie

π
4t .

�

Finally, we analyze the behavior of the functions h(sit;nit), which one can see by Proposi-
tion 2.1, Proposition 3.1 (with n = m− 1), and Proposition 3.2 below, essentially determine
the asymptotic expansion of the Kac-Wakimoto series beyond the main term.

Proposition 3.2. For s ∈ Z, n,N ∈ N, and t ∈ R+, we have as t→ 0+

h(sit;nit) =
N∑
j=0

aj(n, s)t
j +O

(
tN+1

)
,

where the coefficients aj are defined in (1.3). Moreover, for n = 2s, we have

h(sit; 2sit) = e−
πst
2 = e−

πnt
4 .(3.3)

Remarks.
1) One can also rewrite the asymptotic expansion above for h(sit;nit) in terms of the
Riemann-zeta function and the Hurwitz-zeta function, using the identity (see [15] equation
(3.15))

E2j =
2(2j)!(−1)j

π2j+14j

(
4j(1− 2 · 4j)ζ(2j + 1) + ζ

(
2j + 1,

1

4

))
.
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2) The implied constant in Proposition 3.2 depends on s, n, and N .

Proof of Proposition 3.2. We first consider the general case. By definition, we have

H(t) := h (sit;nit) =

∫
R

e−2πistx−πntx2

cosh(πx)
dx.

It is not hard to see that H is infinitely many times differentiable. By Taylor’s Theorem we
have that

H(t) = TN(t) +RN(t),

where TN is the Nth Taylor polynomial at 0, and we use the remainder RN in the Lagrange
form

RN(t) :=
h(N+1)(c)

(N + 1)!
tN+1

with c ∈ (0, t).
To prove Proposition 3.2, we will first explicitly determine TN and then show that RN(t) =

O
(
tN+1

)
. We first observe that for ` ∈ N0

H(`)(t) =

∫
R

e−2πistx−πntx2

cosh(πx)

(
−2πisx− nπx2

)`
dx,(3.4)

where we justify interchanging the order of integration and differentiation by dominated
convergence. We now write TN(t) =

∑N
j=0 aj(n, s)t

j and show that the coefficients aj have

the representation given in (1.3). From (3.4) we obtain, using the Binomial Theorem, that

aj(n, s) =
(−π)j

j!

∫
R

(nx2 + 2isx)
j

cosh(πx)
dx =

(−π)j

j!

j∑
`=0

(
j

`

)
n`(2is)j−`

∫
R

xj+`

cosh(πx)
dx.(3.5)

Using the known identity for Euler numbers (see [9], for example)∫
R

x`

cosh(πx)
dx = (−2i)−`E`

gives the shape of the coefficients aj(n, s) as claimed in the proposition.
We will next prove that RN(t) = O

(
tN+1

)
which is equivalent to showing that H(N+1)(c)

(recall that c ∈ (0, t)) can be uniformly bounded (i.e. independent of t). Proceeding as in
(3.5), we obtain

∣∣H(N+1)(c)
∣∣ ≤ πN+1

N+1∑
`=0

(
N + 1

`

)
n`(2|s|)N+1−`

∫
R

|x|N+1+`

cosh(πx)
dx <∞,(3.6)

which is independent of t. To justify the finiteness of (3.6), note that for n ∈ N0,∫
R

|x|2n

cosh(πx)
dx = (−1)n2−2nE2n,∫

R

|x|2n+1

cosh(πx)
dx = 2

(∫ 1

0

+

∫ ∞
1

)
x2n+1

cosh(πx)
dx ≤ 2 + (−1)n+12−2n−1E2n+2.
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We finally consider the special case n = 2s. Here the situation simplifies if one instead works
with the inverted function h. To be more precise, Proposition 2.2 (5) gives that

(3.7) h(sit; 2sit) =
1√
2st

e−
πst
2 h

(
1

2
;− 1

2sit

)
.

Inserting the definition of h gives

h

(
1

2
;− 1

2sit

)
=

∫
R

e−
πx2

2st
−πx

cosh (πx)
dx =

∫
R
e−

πx2

2st dx =
√

2st,

so that h(sit; 2sit) = e−
πst
2 . �

Theorem 1.1. now follows easily from Proposition 2.1, Proposition 3.1 (with n = m − 1),
and Proposition 3.2.
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