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ASYMPTOTICS OF COMMUTING /¢-TUPLES IN SYMMETRIC GROUPS
AND LOG-CONCAVITY

KATHRIN BRINGMANN, JOHANN FRANKE, AND BERNHARD HEIM

ABSTRACT. Denote by N¢(n) the number of £-tuples of elements in the symmetric group Sy
with commuting components, normalized by the order of S,,. In this paper, we prove as-
ymptotic formulas for Ny(n). In addition, general criteria for log-concavity are shown, which
can be applied to N¢(n) among other examples. Moreover, we obtain a Bessenrodt—Ono
type theorem which gives an inequality of the form c(a)c(b) > c(a + b) for certain families of
sequences c(n).

1. INTRODUCTION AND STATEMENT OF RESULTS

In this paper we consider asymptotics for commuting ¢-tuples in S,,, where S,, denotes the
symmetric group for n,¢ € N. To be more precise, let |M| be the cardinality of a set M and
define

Cop = {(71'1, co, ) € Sf; sy = mmy for 1 < gk < €} ) (1.1)
The numbers |Cy,,| are divisible by |S,| and appear as the specialization of the ¢-th orbifold
characteristic to the n-th symmetric product of a manifold of ordinary Euler characteristic

1 (see [1] for a combinatorial approach and Theorem 2.1 of [10]). In this paper, we prove
asymptotics and log-concavity of

Cﬁn
Ng(n) = —|‘S’ ‘|

Bryan and Fulman [10]! proved the following.

(1.2)

Theorem 1.1 (Bryan and Fulman, see also [1], p. 3). For £ € N, we have

= " O ny—ge_1(n) _ - q"
Z:(]|C&n|m = 1:[1(1—q ) 91 = exp (295(”);) )

where gg(n) denote the number of subgroups of Z* of index n (we refer to the work of Lubotzky
and Segal [19] for more background on the group theoretic interpretation).

Since g2(n) = o1(n), where for m € N, oy, (n) := >, d™, we obtain that Na(n) = p(n),
where p(n) denotes the number of partitions of n (for more background, see [3, 23]). Thus,
Ny(n) equals to the number of conjugacy classes in S,, [13]. Note that ¢ = 3 reveals an
interesting connection to topology as highligted by Britnell (see introduction of [9]) due to

2020 Mathematics Subject Classification. Primary 05A17, 11P82; Secondary 05A20.
Key words and phrases. Generating functions, log-concavity, partition numbers, symmetric group.
1The result of Bryan—Fulman had been strongly influenced by Stanley ([10], acknowledgments).
2Further proofs have been obtained by [1] and [28]. The work of Bryan and Fulman can be considered as a
generalization of a combinatorial formulae due to Macdonald [20] and Hirzebruch and Héfer [17].
1


http://arxiv.org/abs/2401.05874v1

work of Liskovets and Medynkh [18]. Namely N3(n) counts the number of non-equivalent
n-sheeted coverings of a torus.

Recently, Neuhauser and one of the authors [2] proved that Ny(n) is log-concave for n > 20
for almost all ¢ if and only if n = 0 (mod3). Moreover it was shown by Nicolas (]22],
Proposition 1) and reproved by DeSalvo and Pak ([12], Theorem 1.1) that Na(n) is log-concave
for n > 26. In [2] it was conjectured that N3(n) is also log-concave for n > 22 (numerically
verified there for n < 10%). Based on numerical experiments they also speculated that for
fixed ¢, Ny(n) is log-concave for almost all n.

In this paper, using results by Bridges, Brindle, and two of the authors in [7], we prove
asymptotic formulas for Ny(n) for arbitrary ¢, and partially answer the question (5) posed in
Section 6 there. Note that we are in the situation of multiple poles which is not covered by
the classical result of Meinardus [21].

Theorem 1.2. For ¢ > 6 we have,® as n — oo,

_1|25\/_€ ferZg u ¢ Z_k > B&'
Ng(n) ( ) = p< E(_l Z £ 1—1—2—] s

2mln 2t

where Zy := (¢(2) - ¢(3) - - - C(ﬁ))% for certain Ay and By ;.

Remarks.

(1) We give a more explicit description for the constants Agy in (3.21). Theoretically, the
values By ; can also be calculated explicitly. They result from the calculation methods in
[7] by a rather complicated procedure.

(2) The cases ¢ € {3,4,5} are simpler and of special interest. They are treated separately in
Theorem 8.2 and Theorem 3.5.

It turns out that asymptotics like the one in Theorem 1.2 are sufficient to prove log-
concawity4 of sequences. Recall that a sequence a,, is called log-concave if a% > Gpt10n—1. We
prove the following general result.

Theorem 1.3. Assume that c(n) is a sequence with

c A Bu
c(n) ~ o XP <Z Axn ) Z o (n — 00).
AeS neT
Here k € R, S € QT N (0,1) is finite, T C Qf, C, Ay, Bu € R with By = 1. Let \* :=
max{\ € § : Ay # 0} and assume that Ay» > 0. Then, for n sufficiently large, c(n) is

log-concave.?

In particular, from Theorem 1.3 and Theorem 1.2, we conclude the following.

Corollary 1.4. Let® £ > 2. For n sufficiently large No(n) is log-concave.

3Here and in the following such series are meant as asymptotic expansions.

4For the definition, more background and applications in combinatorics see Stanley [27] and Section 5 of
Bréandén [6].

5The result can probably also be extended to real exponents, but this case is not required for any of our
applications and thus we do not allow this case here.

6Note that the case £ =1 is trivially true.



Remark. In Corollary 4.2 we give as further examples partitions into k-gonal numbers, as
well as n-dimensional representation numbers of the groups su(3) and so(5).

In 2016, Bessenrodt and Ono ([5], Theorem 2.1) proved that if a,b € N satisfy a,b > 1 and
a+b > 8, then p(a)p(b) > p(a + b) with equality if and only if {a,b} = {2,7}. We also show
a Bessenrodt—Ono type theorem for general sequences, which implies Bessenrodt’s and Ono’s
result on p(n) for a, b sufficiently large.

Theorem 1.5. Let c¢(n) be a sequence satisfying

¢ A
e(n) ~ — EXP (Z Axn )
AES
with k € R, S € RN (0,1), C, Ay € R. Let \* := max{\ € S : A\ # 0} with Ay- > 0. If
a,b> 1, then
c(a)e(b) > c(a +b).

Again, we can apply this to the sequences Ny(n).

Corollary 1.6. Let £ > 2. We have, for a,b > 1
Ng(a)Ng(b) > Ng(a + b)

The paper is organized as follows. In Section 2, we recall known results. In Section 3 we
prove Theorem 1.2. In Section 4, we show our main results concerning log-concavity and give
some examples. In Section 5 we provide a proof of Theorem 1.5. In Section 6, we state some
open questions.
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2. PRELIMINARIES

2.1. Results from [7]. We require some results from [7]. Let f : N — Ny, set A := N\
f~1({0}), and for ¢ = e~* (2 € C with Re(z) > 0), define

1 n
Gp(z) =Y prn)g" =[] 1)@ Ly(s)=) fT(ls)-
n>0 n>1 n>1
We let P be the set of poles of L}(s) := I'(s)((s+1)Ly(s), and for R > 0 we denote by Pp the
union of the poles of L} greater than —R with {0}. We require the following key properties
of these objects:
(P1) All poles of Ly are real. Let o > 0 be the largest pole of Ly. There exists L € N, such
that for all primes p, we have [A\ (pNNA)| > L > §.
(P2) Condition (P2) is attached to R € RT. The series Ly(s) converges for some s € C, has
a meromorphic continuation to {s € C : Re(s) > —R}, and is holomorphic on the line
{s € C: Re(s) = —R}. The function L}(s) = I'(s)((s + 1)Ly(s) has only real poles
0 < a:=71 > > ... that are all simple, except the possible pole at s = 0, that may
be double.
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(P3) For some a < 7, in every strip o1 < 0 < 03 in the domain of holomorphicity of L(s),
we uniformly have, for s = o + it,

Lf(s) = O, 0, (e“'”) , |t| — oo.
We have the following asymptotic behavior of p¢(n).

Theorem 2.1 ([7], Theorem 1.4). Assume (P1) for L € N, (P2) for R > 0, and (P3). Then,
for some M, N € N, we have

M N

C @ . B —mll’l{ 2L —a R

= — Ainatt A.n 1 -J 2(a+1)’ atl

pr(n) " exp mn + E in + E e +Or.Rr (n
J=2 J=2

Here, 0 <ay <apy_1<-—ay<aj= O%rl are given by L

1 w41
= -1 .
c a+1PR+Z<a—|—1 >NO

HEPR

The exponents 0 < o < B3 < ... are given by M + N, where M and N are defined by

e w1 R+«
M:=<¢60= 1-— :n,n, € Ng,0 € |0, ,
a+1n+g;< a+1>n“ T & 0 [ a+1>
R

N

= R
]Z:;bj@j : bj,K S NO,HJ' S (—ﬁ) N <0, a——|—1>

The coefficients A; and B; can be calculated explicitly; Ay, C, and b are given by

1 L' (0) 25O
A= <1 + —> (@al(a+ 1)C(a+ 1), ¢ Wallotlat 1)) =7
a 2n(a+1)
y 1-Li(0)+3
a+1 '

where w, := Ress—, L¢(s). Moreover, if o is the only positive pole of Ly, then we have M = 1.
The situation of exactly two positive poles was worked out explicitly in Theorem 4.4 of [7].

Theorem 2.2. Assume that f : N — Ny satisfies the conditions of Theorem 2.1 and that L
has exactly two positive poles o > 3, such that %ﬁ <a< ﬁﬁ for some A € N. Then

) =< AinaST 4 AgnatT 4 AiA G+ ik
n) = —ex ne ne n e a
by b p 1 2 2 k

N B [ 2L-a R
X 1+Zn_l/]j+OL’R <n_mm{m’a_+l ) 7 (n_>oo)7
j=2
with
A = (wal (@ + D)¢(a+ 1))ar <1+l>7 Ay e —wTBXB A+ _
« (wal(a + 1)¢(a+1))a5



and for k >3

1

arT A Ji JA
+1
o cp -« m K Kyh
A = Ky + T
o m J15,725+-5IX ati
m=1 0< 1, fr<m cf
Jit..tix=m
J1+2je+. A ja=k—1
A J1 JA
&) Z -8 Z m Ky - Ky
ari m . ' J15J250-IX at1
Bef T m=1 0<41,-,ja<m ¢
O i
J1+272+...+Aja=k—2
Here, (mlQOk) = Tmel with ijl m; = m denotes the multinomial coefficient.

The v; run through M + N, the K; are given in Lemma 4.3 of [7], and c1, c2, and c3 are
defined by

Cl = wal“(a + 1)C(Oé + 1), Co 1= wﬁf(ﬁ + 1)C(5 + 1), C3 = Lf(O)

Remark. By Lemma 4.3 of [7], the first values of K; are given by

o C Ala—2

K1:Cf+1, K2:72i7 K3:2(—§B)+17
(a+ et 2o+ 1)2e,

C%’ (2042 —9a8 — 20+ 982 + 35)

K= 32 ;
6(c+ 1)3¢, M
K c3(6a® — 4403 — 1502 + 96052 + 5603 + 6a — 643% — 4832 — 83)
5= _

15+3

24(a + 1)de
Remark. As the number of positive poles increases, the situation quickly becomes much more
complicated. The focus of this paper is, in particular, the case of three poles.
We also require the behavior of a certain saddle point function. We adopt the notation for
the coefficients of asymptotic expansions from [7] and write for a sequence g(n)

N

G i B
Q(H)ZZﬁJFOR(n B, (m<wm<--<vp<R).
7j=1

Proposition 2.3 (Corollary 3.4 of [7]). Let ®; := Log(Gy) and assume that f: N — Ny
satisfies the conditions of Theorem 2.1. Let o, > 0 solve’

—®%(0) = n.
Then

On = Z nVe.j + 0 (n o >

1<j<N,

"We go back and forth between functions and sequences in our notations here. For more details see
Subsection 2.2 in [7].
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with a1 = afT;, L = (Wal'(a+1)¢(a + 1))#1 and we have
f7

. 1 p1 1 R
L1<j<N,)= - )N | N |——, — 1),
ogr 1= 7= Noh = | 77 H; <a+1 > 0 [a—i—l’a—i—l—i_ >
R

The following is required for a more explicit investigation of the involved constants.

Lemma 2.4 (Lemma 4.1 of [7]). Let f : N — Ny satisfy the conditions of Theorem 2.1. Then

M
enen(} (g ) d; —min{ Ll Rte atd

J=1

1
for some M €N, di = —~—(waI'(a + 1)¢(a + 1)) 2@FD | and v; runs through

Va+l
a+2 a p1 R+a
N — —1)Ng | Nn|0 .
datl) arl 0T 2 <a+1 > 0 [’a—kl)
HEPR
In particular, we have vy = 2&121).

2.2. Results from complex analysis. We require the Lagrange inversion formula.

Lemma 2.5 (Corollary 11.2 of [11]). Let ¢ : B.(0) — D, where for r € RY as usual B,(0) :=
{z € C: |z] < r}, be a holomorphic function such that ¢(0) = 0 and ¢'(0) # 0, with ¢(z) =:
En21 anz™. Then ¢ is locally biholomorphic and its local inverse has a power series expansion

¢ w) = Y brw®, with

¢ ¢
by = 1k Z (_1)51+52+zg+...k'“(k—1+€1+£2+"')<%>1<@>2...,
1

L110003) - - - a a
ROt 4y a0 s ! !
O +205 4 =k—1

To study the asymptotics of Ny(n) we first have to investigate the analytic properties of the
Dirichlet series attached to the sequence gy_1(n) from Theorem 1.1 with f; :== g;—1. Solomon
[26] (see also [19], Theorem 15.1, p. 296) proved that, for £ > 2,

-2
Ly(s) = [] ¢(s - k. (2.1)

k=0

For the following investigations the following result is essential; its proof follows from standard
properties of the Riemann zeta function.

Proposition 2.6. The function Ly, has one pole at s = 1 for £ = 2, two poles s € {1,2}
for £ = 3, and three poles s € {{ — 3,0 — 2,0 — 1} for £ > 4. If £ > 4, then we have for
ve{l—30—-2/0-1}

Rese—, L}, (s) = (v =D +1) [ <¢w—k)
0%71236—12



and Lg,(0) = 0. Additionally, for £ > 6 the function L%, only has simple poles in s €
{ —3,6—2,0—1}. For (e {4,5}, L3, has an additional simple pole in s =0, with residue
¢'(=2) ¢'(=2)

Res,_oL% (s) = .
ess=0L, (5) o1 2880

Ress—oL}, (s) =

3. ASYMPTOTIC EXPANSIONS FOR Ny(n)

3.1. Exponent sets. For our calculations, we need the following lemma which follows by a
direct calculation.

Lemma 3.1. For £ > 3 and f = fs, we have, as R — o0,

(-1 1 1 1
ﬁ—T—ZNO, M—ZNO, N_ZNO

3.2. The case ¢ = 2. This case is the partition function and is classical. In the setting of
the present paper it is

2n N
eV 3 B; N+1
No(n) =p(n)=——— 11+ —j-+ON(n_T)
=0 = T (12
for certain B; and was treated in [7].
3.3. The case ¢ = 3. The following theorem gives the asymptotic behavior of N3(n).

Theorem 3.2. We have, as n — oo,

_dEy A2 11 2 1 4 oo
e 2 288¢(3) ((3) 72 3m)3((3)3 2 T3 1 Bs j
224 .37 - T72 -T2 2 4-33-((3)3 j=1 M3
for certain numbers Bs ;.
Proof. We have by (2.1) (see [4], p. 231)
— 1(n)
Lp(s) =((s)C(s =) =D — = (3.1)
n=1

Thus the only positive poles of Ly,(s) are a = 2 and = 1. Moreover, as f3(n) = o1(n) # 0
for n € N, we have f5 '({0}) = 0, and hence we can choose L arbitrarily large. We see that
(P1) is satisfied. We have P = {1,2} and these poles are simple, so (P2) is satisfied. Note
that we may choose R arbitrarily large, as ((s)((s — 1) has a meromorphic continuation to
the entire complex plane. By properties of the Riemann zeta function, Ly, (0 + it) < et on
vertical strips with finite width for arbitrary a > 0, so in particular (P3) is satisfied. Thus we
can use Theorem 2.2.
First, we note that A = 2 satisfies %B <a< ﬁﬂ. Using (3.1), we compute

2 1 1 log(2m)  ¢'(—1)
= — =——, L#(0)=—, L = — .
wo=g =g Lp(0) =55 Ln(0) 24 2
Thus
el ¢(3)m 47 (3m)5¢(3) w3
C = e, b=, A= , Ap=-——y . (3.2)
V2372 736 72 2 4-33-((3)3
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: _ _ 2 _ 7%(3)
Using that co = —J5 and ¢ = —3= we next compute
2
0
Az =— i
57T 288¢C(3)
Finally, we find with Theorem 2.2 and (3.2)
_d=n_ a2 11 2 1 4
ez WWEI((3)7 3m)3((3)5 2 T3 1
N3(n) ~ T H(Lexp (37) ()n3—ﬁn3 .
224 . 372 .72 -T2 2 4-33.C(3)3
With Lemma 3.1 and Theorem 2.1 we conclude that the exponents in the polynomial terms
in the expansions of N3(n) are given by %NO, as (M +N)N0,00) = %NO. O

3.4. The cases ¢ € {4,5}. We are now ready to determine the asymptotic behavior of Ny(n)
and N5(n).

Theorem 3.3. We have, as n — oo,

d(=2) 1 1 7 3 1 00
24 12((3)8 27 .2 - ((3)2 By ;
N4(n) ~ 613 17T Cl( ) 5 €XP ﬂ;,) Cl( ) le +A4,2n% +A4,3n% +A474 1 +Z—4j’]
2% .32 -58 .n8 32 - H14 =1 n4
1
e 2880 e 10
No(n) o €2 (CBIC)
, -35 -55 -ns
1
955 -5 - (C(3)((H))3s
X exp ( (C;Q)C( )) 7’L0 _|_A5 27’Ld +A5 37’Lo —|—A5 47’Lo —|—A5 5) 1 —|—Z
- 35 ns
j=1

with computable constants Asj; (2 <j<4) and As; (2 <j <5) and certain By; and Bs ;.

Proof. By Theorem 2.1 we have, for ¢ € {4,5}, as « = £ — 1, L;,(0) = 0, and wy_; =
¢(2)¢(3)---¢(¢—1) (all by Proposition 2.6)

C_efz()(ﬁ—l)bl\/— y_ L1
N \V2ml 2
We find
/ !
/ o C(_2) / _ C(—Q)
7(0) = 24 L4 (0) = 2880

The constants A4 and As; can now be computed by straightforward calculations. With
Lemma 3.1 and Theorem 2.1 we conclude that the exponents in the polynomial terms in the
expansions of Ny(n) are given by Ny (for £ € {4,5}), as (M +N) N [0,00) = +Ny. O

3.5. Proof of Theorem 1.2. To prove Theorem 1.2, we do some preliminary considerations.
By Lemma 3.2 of [7] we have that, as z — 0 in a cone in the right half plane,

Py, (2) = Z Rese=—_,L},(s)2” — Ly,(0) Log(z) + LY, (0) + Or (|z|R) (3.3)
VE—PR\{O}
and for k € N
k . o —1)*(k — D!Ly, (0 B
oWz = 3 ()Ress— L} ()2 + (=D — MO Lo, (\zyR ’f) . (3.4)

ve—Pr\{0}



where (s), :=s(s—1)--- (s —k+1). By Proposition 2.6, Ly, has exactly three positive poles
{¢—-3,6—2,0—1}. As L,(0) = 0 by Proposition 2.6 the above becomes

Cy Oy C

3 R-1
cI)fl( ) ZZ +2£—_1+2£—_2+OR (’Z‘ ), (35)
where we have, according to Proposition 2.6 and k =1 in (3.4),
C1 = (£ —1)C(0) H Cl—1—-Fk) >0, Cy=(—-2)C(l-1) H C(l—2—Fk)#0,
0<k<t—2 0<k<t—2
kAl—2 k#(—3
Cs=(-3)e—-2) [[ c¢e-3-k#o. (3.6)
0<k<t—2
k#C—4

To calculate the exponent sets £, M, and N, we apply Proposition 2.3. Let a := ¢ — 1.
By Proposition 2.3 the exponents of the saddle point function g, belonging to f, lie in %N.
Our next goal is to prove the following version of Lemma 4.3 of [7].

Lemma 3.4. For ¢ > 4, let f := f;,. Then, as n — 00,
o K
Qe ~ 5
j=1 Mt

for some constants Ky ; independent of n that can be calculated explicitly using ay(z), by(x),
and ey, defind below in (3.10), (3.13), and (3.14), respectively. We have

1
Ky =Cf. (3.7)

Proof. Note that it suffices to treat all of the following asymptotic expansions formally, as in
Section 3 of [7] it was shown that the analytical considerations can be made rigorous under
the assumptions of Theorem 2.1.

By Proposition 2.3, the exponents of gy, lie in %N. Hence, by Proposition 3.3 of [7] there
exist Ky ; € R, such that

~ Z Ke, (n — 00).

j=1 nt
1
With (3.5) we obtain a g 1 = Ci. We also have a,, 1 = afq),fe,l by Proposition 2.3, since

1
a+1=/{. We conclude that K,; = a,,1 = C{.
For the exact values of the coefficients K, ; we need to resolve
C C C
Qf,n Qé,n Qé,n

by (3.5) and Proposition 2.3. In order to do so, we divide (3.8) by n to obtain

1N\ ¢ 1\ -1 1\ 42
[ [ [
01 i + CQ’I’L_% n + 0371_% n —1=0.
Otn OQtn Otn

Thus we are interested in points (z,z) = (x, z(z)) on the curve
Clzz + C2x26—1 + ng226_2 —1=0
9




n

1
. Making the change of variables

for small values of x, where z =

Q¢,n
_1
z=tw+C)* (3.9)
we obtain
)4 /-1 £—2
/¢ =k {—1 -1k {—2 -2k

Clz<k>wk01 ’ —|—C’2$Z< B >wkC’1 O 4 Oa? ( ) >wkC'1 T _1=0,

k=0 k=0 k=0

using the Binomial Theorem. We rewrite this in the shape:

¢
Z ar(x)wk =0,
k=0
where

AP 0—1\ k1 0— 2\ k2
ap(z) = <k>01‘+02< . )le 1x+03< . )le Y22 S0, (3.10)

where ds = 1 if a statement S holds and ds = 0 otherwise. In other words, each ai(z) is a
polynomial in x of degree at most 2. As

14 2_q
ag(xz) = CoCf x4 C3CY z2,
we obtain the identity
l

po(w) i= Y an(e)ut = —ao(e) = ~CaCi
k=1

1 21 o
r— C3C) z°. (3.11)

We now apply Lemma 2.5 to (3.11) to Taylor approximate its root close to w =0 as x — 0.

As C1 # 0 (we even show C7 > 0 in (3.6)), we have, by definition

1 2_ 3_
ar(z) = (OF + (£ — 1)CoCF ' + (0 — 2)C307 22 #£ 0. (3.12)

for all x sufficiently small (i.e., all n sufficiently large). Thus ¢, (0) = 0 and ¢/,(0) = a1(x) # 0.
Thus we may apply Lemma 2.5 and obtain that the coefficients of the inverse function are

__ 1 tittortsr K (B=1+b+l+...)
b(z) = Far (@) Z (—1)attetts e (3.13)

()" ()"

As a result, for x sufficiently small, we can solve (3.11) with

l1,£,03:-2>0
l1+202+---=k—1

0 14 24 k e’} \
w(z) = Zbk(m) <—C2Cf x — C3C x2> =: Zehx (3.14)
k=1 h=0
_1
with e, € R. We now have an expansion for w = z — C; * in powers of ne. Resolving (3.9)
_1
(recall z = Ze,z ), i.e.,
-3
Ot



_1 00
! :C’I%n_%zclw<n 2 .
i O

leads to the closed expression
n

Otm = — 1
C, " +w (n_i>
The lemma now follows as the previous equation gives the desired expansion

We are now ready to prove Theorem 1.2

Proof of Theorem 1.2. We identify the part of the asymptotic in
ngzntl(QZ n) = o0t @s, (00n)
(3.15)

with non-negative exponents. In other words, we ask for the term
enee n+<13fe(92 n) = exp ([nQZ,n + (I)fz(gfm)]*) (1 + 0(1))
where the notation [|, means the part of an asymptotic expansion Z;‘;l ajnﬁj with 3; > 0
First we get with Lemma 3.4, as n — oo
l
o
non =Y Kyt +0 ("_%) - (3.16)
j=1
Moreover, with (3.3) and integrating (3.5) we get as z — 07 (in a cone)
C Cy Cs /
) = L, (0 1
513 = oy T m gy T g)ees T a0 Folh)
since Ly,(0) = 0. Thus in particular, as n — oo
4 Cy Cs /
Dy, (00n) = + L (0) + o(1). (3.17)
R T e VP T
We next use (3.7) and rewrite
-1
1 fe'e)
1 1 d 1 K
— o~ ]:”_l 14— e,gl_+1
G Cin i S Knt of \ o =
We can work with the following identity regarding formal power series
1 0 0 m o9
—_—— = (=)™ b2" =1+ ez,
Iy TEP S bB 2
with ) ) )
cn = Z (_1)j1+j2+---<j1 +j2 +j3+>b]11bézbg)’3
> J1,725 735 -+
.]17.727 Jn 0
J1+2j2+3j3+-=n
We thus obtain -
1 m
nt —m
Qé n Z ne
(cayrse (PR o g -
J1,J25735 - - - ’ ’ ’

|
)=

where
C, >

D,, =
o J1,92,--20
J1+2j2+3j3+--=m
11



Using the Multinomial Theorem again, we find
Ch n Co Cs
(¢~ 1)9?7} (€ —2)0p,; "= 3)0r,,

1o _k -1
SxD YU D DU (W 1 A

k=0 mi,mg,...>
mi+mat-t=f—1
mo+2ma+---=k

00

—2 k {—2

7 T D" D2 1

APt (02 Yoy @19
k= mi,ma,...>0

mi+mo+--t-=0—2
mo+2ma+--=k

C3 -3~ _k ¢—3 i
[ SU D SN (R 0
k=0 mi,m2,...>0

my gt =0—3
mo+2ma+-=k

o

We next determine closed formulas for the exponent coefficients A, ;. We first find with
Theorem 2.1

Aua= (14 727 ) (602) -+ gle = - DGO, (3.19)

Also note that, combing Theorem 2.1 and Lemma 2.4, we obtain

N
nQe, . .
€ ntz(Qé,n) E : d; 1+ 05 R <n_mm iii,fﬁi’fﬂ&ﬁ) >
nYi '

V2T =
M N
C o . Bj — min o R
= pexp Aina+t + Z Ajn% 1+ Z 5 +OL.R (n {2(a+1> atl
j=2 Jj=2
for some numbers 0 < apy < --- < az < ;35. Consequently with (3.15), comparing the

exponential terms with powers in £N [0, 00) (note that the term L}Z(O) is treated separately,
so we have to subtract it),

—k
[n@z,n + (I)fl(ggm) — L;]e (0)] = AlnoﬁLl + ZA Y = ZA[ LN ‘3 . (320)

Using Lemma 3.1 employing (3.16), (3.17), and (3.18), to obtain for k > 2,

C -1
App = Kpj + — > ( )D@”lD;ﬂz .
>0

-1 mi,ma, ...
mi,ma,...>
mi+matt=l—1

mo+2ms—+---=k—1
Cy (-2
Dmle2 .
+€—2 Z>0 <m1,m2,...> 0 1

mi,ma,...>
mi+mo+--+-=0-2
mo+2ms—+---=k—2
12




OF -3
DD ---. (3.21
+€—3 Z>O (ml,mg,...> 0 1 ( )

my,m2,.
mi4mot-f=0—3
ma+2mgz+---=k—3

If £ > 6, then we have L}Z(O) = 0, since Ly, has a zero in s = 0 of order at least 2. This
simplifies the formula to the one in Theorem 1.2. Theorem 2.1, Proposition 2.6, and

R~

(- 1)1%72
V27l
as well as (3.19) gives the value of A;;. With Lemma 3.1 and Theorem 2.1 we conclude

that the exponents in the polynomial terms in the expansions of Ny(n) are given by %No, as
(M +N)N[0,00) = 1Nj. O

C =

4. LOoG-CONCAVITY AND THE PROOF OF THEOREM 1.3

4.1. Proof of Theorem 1.3. In this subsection, we prove our general result on log-
concavity.

Proof of Theorem 1.3. We have
2

A
c(n)? —e(n+1e(n —1) ~ C? exp (2 27:;;5 A’ Z % (4.1)
neT

_exp (Paes Ax ((n + DM+ (n = 1)Y)) Bu By
(n+1)f(n—1)~ ; (n+ 1)+ I;_ (n—1)

We now claim that for all A € S, we have

exp (AA ((n + DM+ (n—1)* - 2n>‘)) =1+ 772)\;1)‘ +o (n_2+)‘) (4.2)

for vy1 € R. To see this, write A = ¢ with ged(a,b) = 1 and set x := n~%. Then
2y b

()’ (3 o
T T
— x_la ((1+xb>% + (1—a:b>% —2) =: fap(z).

o) =1+ +1-y»*-2=0(").
Thus f, has a Taylor expansion of the shape

fa,b(x) = Z a}\’jx%j—a'

j>1

_1 ay ax1 —242
fa,b (n b) = E : 2bj-a n2Z—AX —I—O(ﬂ :

j>1n b

SIS
Il

(n+1)% +(n—1)% —2n

Now, as y — 0,

Thus

Plugging in the expansion of the exponential function gives the claim, using that 0 < A < 1.
13



Using (4.2), we obtain

exp <Z A, ((n—i— D)+ (n— 1) — Qn)‘)> =11 (

o <n—2+A>>
AES AES
=1+ 72)\ ,\1 +0< _2+’\*>.

Note that vy« 1 = Ay«ay+ 1 and that oy = A(A —1) <O0.
Next we claim that (for n > 1)

1 _ 1 2K dj
(nt D —DF @21 " b ; n2 (43)

for certain ;. To see this, set z := n~2. Then we want
=1+ Z 0; !
(:v ) 7>1

The left-hand side is
Thus, by (4.1),

c(n)? —c(n+ 1e(n — 1)

W and the claim follows.

Czexp (227;;8 Axn ) Z @
HeT

Yax1 —24\* ) ﬁu 5u
~ (L e () (140w >);<n+1>u§<n_1>v
The sign of this is dictated by

ﬁ ﬁu *, — * — ﬁ Bu
I G e G ) R ID B v B2

w,veT e
As By = 1, the above equals mod (o(n=2t")),

5u5u Buﬁu Iax,1
Z ity Z (n+1)E(n -1 n2=x»

wveT wveT
0<pu4v<2—\* 0<pu4v<2—\*
1 1
=2 > B <— — ) (4.4)
K 2u B(n — 1)@
s n (n+1)H(n—1)
0<u<1-27

2 1 1 a1
* ; Buby (n“+V (n+1)kn—-1» (n+1)"(n+ 1)#> n2=A*"
Ogu<u
1<ptv<2-A*
Next, by (4.3) we obtain that (for n > 1)
1

(n+ 1)H(n —1)H =0 (7).
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Similarly, we see that, for certain p,,

- 1)Ml(n Tt 1)V1(n v on—t— [ 14 ; ;;T, .
Thus (4.4) becomes
O (n%) - 35
To conclude the claim, we note that we have
sgn(—7ax,1) = sgn(Ax-) = 1. O

4.2. Examples. We can show the following result.

Corollary 4.1. Let f: N — Ny satisfy all conditions of Theorem 2.1, and assume that we
can choose L in (P1) arbitrarly large. Assume furthermore that L¢(s) has a meromorphic
continuation to C with only rational poles. Then pg(n) is log-concave for n sufficiently large.

Proof. Theorem 2.1 provides an expansion for p¢(n) as in Theorem 1.3, since the rational poles
of L¢(s) guarantee that all exponents occuring in the expansion of ps(n) are again rational.

Note that \* = ;95 and® A, > 0 again by Theorem 2.1. This gives then the claim. d

There are several further applications. Examples are, besides the classical partitions and
plane partitions, partitions into k-gonal numbers pi(n), and the number of n-dimensional
representations for the groups su(3) and s0(5), denoted by 74,(3)(n) and r4,(5)(n), respectively.
The asymptotic behavior of the numbers r4,(3)(n) was first studied by Romik [25] and later
refined by two of the authors in [8]. Asymptotic expressions for ry,5)(n) and py(n) were given
in [7]. We directly obtain the following:

Corollary 4.2. Let k > 3. For n sufficiently large, the sequences px(n), reys)(n), and
Tso(5)(n) are log-concave.

Finally, we give another example in a slightly different direction. For d € N, let?
d

> pan)g" =] 1-g")™. (4.5)

n>0 n>1

Note that we have pg(n) = p(n) and p1(n) = pp(n) is the plane partition function. Note that
the corresponding L-series is given by

It is not hard to check that the conditions (P1), (P2), and (P3) are satisfied, and we have
PrC{d+1}uU{-1,-2,-3,...}
for the set of poles s # 0 of L}(s) :=I'(s)((s + 1)((s — d). Note that « =d + 1 and

B 1 ((—=d) 1 B 1 .
b_2(d+2)_d+2+§’ A1_<1+d—+1>((d+1)!<(d+2)) ,

8Note the abuse of notation.
Isee [15], where a generalization of generating function for the partition and plane partition function was
studied
15



, 1-¢(-a)
e CD((d+1)¢(d+2)) @2

B 27 (d + 2)

As a consequence, we have by Theorem 2.1

d+1
C aniiz Ea
_be —_—

pa(n) ~ -

with certain Fy ;. Note that, by the same arguments used for the other examples above, pq(n)
is log-concave for n sufficiently large. In [16] it had been proven that in the case of plane
partitions, p1(n) is log-concave for almost all n and conjectured that this is already valid for
n > 12. This conjecture had been proven by Ono, Pujahari, and Rolen [24].

5. PROOF OF THEOREM 1.5

The idea of the following proof is similar to that of Theorem 1.3.

Proof of Theorem 1.5. Assume that a, b > 1. Then
—— exp ZA,\ a”+b - — exp ZAA(a—Fb)
a"b AES ( > (CL + b) AES
= ¢ exp <Z Ay (a)‘ + b)‘>> (1 — ﬂexp (Z Ay <(a +b)* —a’ — b)‘>)) .
atbk fyere C(a+0b)~

AeS

c(a)e(b) — c(a+b) ~

Without loss of generality we may assume that a > b and write a = b, x > 1. Then

a”b"
T+ P (Z A (@0 —at - bx>>

A€S
z"o" A A_ oA
= Cr)r exp <)\E€S Axb ((1 +x)t -z 1>) .

Let fo(z) := (1 + ) —2* — 1. Tt is not hard to see that f;(z) < 0. As f\(0) = 0, we have
fa(x) <0 for x > 1. Moreover , using 1'Hospital,

lim ((:c F1N -2t 1) — 1

T—00

We conclude —1 < fy(z) < 0 for all z > 1. This gives the claim. O

6. OPEN QUESTIONS

We leave some open questions to the interested reader.

(1) What can be said about Turan type inequalities for the sequences studied? Note that the
case { = 2 of the partition function was treated in ([14], Theorems 1 and 2) by showing
that certain classes of Jensen polynomials have real roots. The more general case £ > 3

will be much harder.
16



(2)

(1]
2]

3
4

It would be interesting to make the results of this paper (in particular log-concavity)
explicit. The hard part would be to make [7] explicit. For example, the case { = 2 of
the partition function was treated in ([12], Theorem 1.1). Note that this turns out to be
much easier than the higher cases of £ as in the partition case one has an exact formula,
which yields inequalities for the partition function.

According to a conjecture by Chen (see Conjecture 1.2 in [12]), the sequence |Cs )| =
nlp(n) is log-convex for all n > 1, which was shown by DeSalvo and Pak 2015 ([12],
Theorem 4.1). The question now is whether this is also true for sufficiently large n for the
|Ce.| for all £> 3, and to what extent this could be related to the results of this work.
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