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ASYMPTOTICS OF COMMUTING ℓ-TUPLES IN SYMMETRIC GROUPS

AND LOG-CONCAVITY

KATHRIN BRINGMANN, JOHANN FRANKE, AND BERNHARD HEIM

Abstract. Denote by Nℓ(n) the number of ℓ-tuples of elements in the symmetric group Sn

with commuting components, normalized by the order of Sn. In this paper, we prove as-
ymptotic formulas for Nℓ(n). In addition, general criteria for log-concavity are shown, which
can be applied to Nℓ(n) among other examples. Moreover, we obtain a Bessenrodt–Ono
type theorem which gives an inequality of the form c(a)c(b) > c(a+ b) for certain families of
sequences c(n).

1. Introduction and statement of results

In this paper we consider asymptotics for commuting ℓ-tuples in Sn, where Sn denotes the
symmetric group for n, ℓ ∈ N. To be more precise, let |M | be the cardinality of a set M and
define

Cℓ,n :=
{

(π1, . . . , πℓ) ∈ Sℓ
n : πjπk = πkπj for 1 ≤ j, k ≤ ℓ

}

. (1.1)

The numbers |Cℓ,n| are divisible by |Sn| and appear as the specialization of the ℓ-th orbifold
characteristic to the n-th symmetric product of a manifold of ordinary Euler characteristic
1 (see [1] for a combinatorial approach and Theorem 2.1 of [10]). In this paper, we prove
asymptotics and log-concavity of

Nℓ(n) :=
|Cℓ,n|
|Sn|

. (1.2)

Bryan and Fulman [10]1 proved the following.2

Theorem 1.1 (Bryan and Fulman, see also [1], p. 3). For ℓ ∈ N, we have

∞
∑

n=0

|Cℓ,n|
qn

n!
=

∞
∏

n=1

(1− qn)−gℓ−1(n) = exp

( ∞
∑

n=1

gℓ(n)
qn

n

)

,

where gℓ(n) denote the number of subgroups of Zℓ of index n (we refer to the work of Lubotzky
and Segal [19] for more background on the group theoretic interpretation).

Since g2(n) = σ1(n), where for m ∈ N, σm(n) :=
∑

d|n d
m, we obtain that N2(n) = p(n),

where p(n) denotes the number of partitions of n (for more background, see [3, 23]). Thus,
N2(n) equals to the number of conjugacy classes in Sn [13]. Note that ℓ = 3 reveals an
interesting connection to topology as highligted by Britnell (see introduction of [9]) due to

2020 Mathematics Subject Classification. Primary 05A17, 11P82; Secondary 05A20.
Key words and phrases. Generating functions, log-concavity, partition numbers, symmetric group.
1The result of Bryan–Fulman had been strongly influenced by Stanley ([10], acknowledgments).
2Further proofs have been obtained by [1] and [28]. The work of Bryan and Fulman can be considered as a

generalization of a combinatorial formulae due to Macdonald [20] and Hirzebruch and Höfer [17].
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work of Liskovets and Medynkh [18]. Namely N3(n) counts the number of non-equivalent
n-sheeted coverings of a torus.

Recently, Neuhauser and one of the authors [2] proved that Nℓ(n) is log-concave for n ≥ 20
for almost all ℓ if and only if n ≡ 0 (mod 3). Moreover it was shown by Nicolas ([22],
Proposition 1) and reproved by DeSalvo and Pak ([12], Theorem 1.1) that N2(n) is log-concave
for n ≥ 26. In [2] it was conjectured that N3(n) is also log-concave for n ≥ 22 (numerically
verified there for n ≤ 105). Based on numerical experiments they also speculated that for
fixed ℓ, Nℓ(n) is log-concave for almost all n.

In this paper, using results by Bridges, Brindle, and two of the authors in [7], we prove
asymptotic formulas for Nℓ(n) for arbitrary ℓ, and partially answer the question (5) posed in
Section 6 there. Note that we are in the situation of multiple poles which is not covered by
the classical result of Meinardus [21].

Theorem 1.2. For ℓ ≥ 6 we have,3 as n → ∞,

Nℓ(n) ∼
(ℓ− 1)!

1
2ℓ
√
Zℓ√

2πℓn
ℓ+1
2ℓ

exp

(

ℓΓ(ℓ)
1
ℓZℓ

ℓ− 1
n

ℓ−1
ℓ +

ℓ
∑

k=2

Aℓ,kn
ℓ−k
ℓ

)



1 +

∞
∑

j=1

Bℓ,j

n
j
ℓ



 ,

where Zℓ := (ζ(2) · ζ(3) · · · ζ(ℓ)) 1
ℓ for certain Aℓ,k and Bℓ,j.

Remarks.

(1) We give a more explicit description for the constants Aℓ,k in (3.21). Theoretically, the
values Bℓ,j can also be calculated explicitly. They result from the calculation methods in
[7] by a rather complicated procedure.

(2) The cases ℓ ∈ {3, 4, 5} are simpler and of special interest. They are treated separately in
Theorem 3.2 and Theorem 3.3.

It turns out that asymptotics like the one in Theorem 1.2 are sufficient to prove log-
concavity4 of sequences. Recall that a sequence an is called log-concave if a2n ≥ an+1an−1. We
prove the following general result.

Theorem 1.3. Assume that c(n) is a sequence with

c(n) ∼ C

nκ
exp

(

∑

λ∈S
Aλn

λ

)

∑

µ∈T

βµ

nµ
(n → ∞).

Here κ ∈ R, S ⊂ Q+ ∩ (0, 1) is finite, T ⊂ Q+
0 , C, Aλ, βµ ∈ R with β0 = 1. Let λ∗ :=

max{λ ∈ S : Aλ 6= 0} and assume that Aλ∗ > 0. Then, for n sufficiently large, c(n) is
log-concave.5

In particular, from Theorem 1.3 and Theorem 1.2, we conclude the following.

Corollary 1.4. Let6 ℓ ≥ 2. For n sufficiently large Nℓ(n) is log-concave.

3Here and in the following such series are meant as asymptotic expansions.
4For the definition, more background and applications in combinatorics see Stanley [27] and Section 5 of

Brändén [6].
5The result can probably also be extended to real exponents, but this case is not required for any of our

applications and thus we do not allow this case here.
6Note that the case ℓ = 1 is trivially true.
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Remark. In Corollary 4.2 we give as further examples partitions into k-gonal numbers, as
well as n-dimensional representation numbers of the groups su(3) and so(5).

In 2016, Bessenrodt and Ono ([5], Theorem 2.1) proved that if a, b ∈ N satisfy a, b > 1 and
a+ b > 8, then p(a)p(b) ≥ p(a+ b) with equality if and only if {a, b} = {2, 7}. We also show
a Bessenrodt–Ono type theorem for general sequences, which implies Bessenrodt’s and Ono’s
result on p(n) for a, b sufficiently large.

Theorem 1.5. Let c(n) be a sequence satisfying

c(n) ∼ C

nκ
exp

(

∑

λ∈S
Aλn

λ

)

with κ ∈ R, S ∈ R ∩ (0, 1), C,Aλ ∈ R. Let λ∗ := max{λ ∈ S : Aλ 6= 0} with Aλ∗ > 0. If
a, b ≫ 1, then

c(a)c(b) > c(a+ b).

Again, we can apply this to the sequences Nℓ(n).

Corollary 1.6. Let ℓ ≥ 2. We have, for a, b ≫ 1

Nℓ(a)Nℓ(b) > Nℓ(a+ b).

The paper is organized as follows. In Section 2, we recall known results. In Section 3 we
prove Theorem 1.2. In Section 4, we show our main results concerning log-concavity and give
some examples. In Section 5 we provide a proof of Theorem 1.5. In Section 6, we state some
open questions.

Acknowledgments

The first author received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No.
101001179).

2. Preliminaries

2.1. Results from [7]. We require some results from [7]. Let f : N → N0, set Λ := N \
f−1({0}), and for q = e−z (z ∈ C with Re(z) > 0), define

Gf (z) :=
∑

n≥0

pf (n)q
n :=

∏

n≥1

1

(1− qn)f(n)
, Lf (s) :=

∑

n≥1

f(n)

ns
.

We let P be the set of poles of L∗
f (s) := Γ(s)ζ(s+1)Lf (s), and for R > 0 we denote by PR the

union of the poles of L∗
f greater than −R with {0}. We require the following key properties

of these objects:

(P1) All poles of Lf are real. Let α > 0 be the largest pole of Lf . There exists L ∈ N, such
that for all primes p, we have |Λ \ (pN ∩ Λ)| ≥ L > α

2 .
(P2) Condition (P2) is attached to R ∈ R+. The series Lf (s) converges for some s ∈ C, has

a meromorphic continuation to {s ∈ C : Re(s) ≥ −R}, and is holomorphic on the line
{s ∈ C : Re(s) = −R}. The function L∗

f (s) = Γ(s)ζ(s + 1)Lf (s) has only real poles
0 < α := γ1 > γ2 > . . . that are all simple, except the possible pole at s = 0, that may
be double.
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(P3) For some a < π
2 , in every strip σ1 ≤ σ ≤ σ2 in the domain of holomorphicity of Lf (s),

we uniformly have, for s = σ + it,

Lf (s) = Oσ1,σ2

(

ea|t|
)

, |t| → ∞.

We have the following asymptotic behavior of pf (n).

Theorem 2.1 ([7], Theorem 1.4). Assume (P1) for L ∈ N, (P2) for R > 0, and (P3). Then,
for some M,N ∈ N, we have

pf (n) =
C

nb
exp



A1n
α

α+1 +
M
∑

j=2

Ajn
αj







1 +
N
∑

j=2

Bj

nβj
+OL,R

(

n
−min

{

2L−α
2(α+1)

, R
α+1

})



 .

Here, 0 ≤ αM < αM−1 < · · ·α2 < α1 =
α

α+1 are given by L

L :=
1

α+ 1
PR +

∑

µ∈PR

(

µ+ 1

α+ 1
− 1

)

N0.

The exponents 0 < β2 < β3 < . . . are given by M+N , where M and N are defined by

M :=







θ =
α

α+ 1
n+

∑

µ∈PR

(

1− µ+ 1

α+ 1

)

nµ : n, nµ ∈ N0, θ ∈
[

0,
R+ α

α+ 1

)







,

N :=







K
∑

j=1

bjθj : bj ,K ∈ N0, θj ∈ (−L) ∩
(

0,
R

α+ 1

)







.

The coefficients Aj and Bj can be calculated explicitly; A1, C, and b are given by

A1 :=

(

1 +
1

α

)

(ωαΓ(α+ 1)ζ(α + 1))
1

α+1 , C :=
eL

′

f
(0)(ωαΓ(α+ 1)ζ(α+ 1))

1
2−Lf (0)

α+1

√

2π(α+ 1)
,

b :=
1− Lf (0) +

α
2

α+ 1
,

where ων := Ress=νLf (s). Moreover, if α is the only positive pole of Lf , then we have M = 1.

The situation of exactly two positive poles was worked out explicitly in Theorem 4.4 of [7].

Theorem 2.2. Assume that f : N → N0 satisfies the conditions of Theorem 2.1 and that Lf

has exactly two positive poles α > β, such that λ+1
λ

β < α ≤ λ
λ−1β for some λ ∈ N. Then

pf (n) =
C

nb
exp

(

A1n
α

α+1 +A2n
β

α+1 +
λ+1
∑

k=3

Akn
(k−1)β
α+1

+ k−2
α+1

+2−k

)

×



1 +
N
∑

j=2

Bj

nνj
+OL,R

(

n
−min

{

2L−α
2(α+1)

, R
α+1

})



 , (n → ∞),

with

A1 := (ωαΓ(α+ 1)ζ(α+ 1))
1

α+1

(

1 +
1

α

)

, A2 :=
ωβΓ(β)ζ(β + 1)

(ωαΓ(α+ 1)ζ(α+ 1))
β

α+1

,

4



and for k ≥ 3

Ak := Kk +
c

1
α+1

1

α

λ
∑

m=1

(−α

m

)

∑

0≤j1,...,jλ≤m
j1+...+jλ=m

j1+2j2+...+λjλ=k−1

(

m

j1,j2,...,jλ

) K
j1
2 · · ·Kjλ

λ+1

c
m

a+1

1

+
c2

βc
β

a+1

1

λ
∑

m=1

(−β

m

)

∑

0≤j1,...,jλ≤m
j1+...+jλ=m

j1+2j2+...+λjλ=k−2

(

m

j1,j2,...,jλ

) K
j1
2 · · ·Kjλ

λ+1

c
m

a+1

1

.

Here,
(

m
m1,m2,...,mk

)

:= m!
m1!m2!···mk !

with
∑k

j=1mj = m denotes the multinomial coefficient.

The νj run through M + N , the Kj are given in Lemma 4.3 of [7], and c1, c2, and c3 are
defined by

c1 := ωαΓ(α+ 1)ζ(α+ 1), c2 := ωβΓ(β + 1)ζ(β + 1), c3 := Lf (0).

Remark. By Lemma 4.3 of [7], the first values of Kj are given by

K1 = c
1

α+1

1 , K2 =
c2

(α+ 1)c
β

α+1

1

, K3 =
c22(α− 2β)

2(α + 1)2c
2β+1
α+1

1

,

K4 =
c32
(

2α2 − 9αβ − 2α+ 9β2 + 3β
)

6(α+ 1)3c
3β+2
α+1

1

,

K5 =
c42(6α

3 − 44α2β − 15α2 + 96αβ2 + 56αβ + 6α− 64β3 − 48β2 − 8β)

24(α + 1)4c
4β+3
α+1

1

.

Remark. As the number of positive poles increases, the situation quickly becomes much more
complicated. The focus of this paper is, in particular, the case of three poles.

We also require the behavior of a certain saddle point function. We adopt the notation for
the coefficients of asymptotic expansions from [7] and write for a sequence g(n)

g(n) =

N
∑

j=1

ag,j

nνj
+OR

(

n−R
)

, (ν1 < ν2 < · · · < νR < R).

Proposition 2.3 (Corollary 3.4 of [7]). Let Φf := Log(Gf ) and assume that f : N → N0

satisfies the conditions of Theorem 2.1. Let ̺n > 0 solve7

−Φ′
f (̺) = n.

Then

̺n =
∑

1≤j≤N̺

a̺,j

nν̺,j
+O

(

n
− R

α+1
−1
)

7We go back and forth between functions and sequences in our notations here. For more details see
Subsection 2.2 in [7].
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with a̺,1 = a
1

α+1

−Φ′

f
,1 = (ωαΓ(α+ 1)ζ(α+ 1))

1
α+1 and we have

{ν̺,j : 1 ≤ j ≤ N̺} =





1

α+ 1
−
∑

µ∈PR

(

µ+ 1

α+ 1
− 1

)

N0



 ∩
[

1

α+ 1
,

R

α+ 1
+ 1

)

.

The following is required for a more explicit investigation of the involved constants.

Lemma 2.4 (Lemma 4.1 of [7]). Let f : N → N0 satisfy the conditions of Theorem 2.1. Then

pf (n) =
en̺nGf (̺n)√

2π





M
∑

j=1

dj

nνj
+OL,R

(

n
−min

{

L+1
α+1

,R+α
α+1

+ α+2
2(α+1)

})





for some M ∈ N, d1 =
1√
α+1

(ωαΓ(α+ 1)ζ(α + 1))
1

2(α+1) , and νj runs through

α+ 2

2(α+ 1)
+

α

α+ 1
N0 +



−
∑

µ∈PR

(

µ+ 1

α+ 1
− 1

)

N0



 ∩
[

0,
R+ α

α+ 1

)

.

In particular, we have ν1 =
α+2

2(α+1) .

2.2. Results from complex analysis. We require the Lagrange inversion formula.

Lemma 2.5 (Corollary 11.2 of [11]). Let φ : Br(0) → D, where for r ∈ R+ as usual Br(0) :=
{z ∈ C : |z| < r}, be a holomorphic function such that φ(0) = 0 and φ′(0) 6= 0, with φ(z) =:
∑

n≥1 anz
n. Then φ is locally biholomorphic and its local inverse has a power series expansion

φ−1(w) =:
∑

k≥1 bkw
k, with

bk =
1

kak1

∑

ℓ1,ℓ2,ℓ3···≥0
ℓ1+2ℓ2+···=k−1

(−1)ℓ1+ℓ2+ℓ3+...k · · · (k − 1 + ℓ1 + ℓ2 + . . . )

ℓ1!ℓ2!ℓ3! · · ·

(

a2

a1

)ℓ1
(

a3

a1

)ℓ2

· · · .

To study the asymptotics of Nℓ(n) we first have to investigate the analytic properties of the
Dirichlet series attached to the sequence gℓ−1(n) from Theorem 1.1 with fℓ := gℓ−1. Solomon
[26] (see also [19], Theorem 15.1, p. 296) proved that, for ℓ ≥ 2,

Lfℓ(s) =

ℓ−2
∏

k=0

ζ(s− k). (2.1)

For the following investigations the following result is essential; its proof follows from standard
properties of the Riemann zeta function.

Proposition 2.6. The function Lfℓ has one pole at s = 1 for ℓ = 2, two poles s ∈ {1, 2}
for ℓ = 3, and three poles s ∈ {ℓ − 3, ℓ − 2, ℓ − 1} for ℓ ≥ 4. If ℓ ≥ 4, then we have for
ν ∈ {ℓ− 3, ℓ− 2, ℓ− 1}

Ress=νL
∗
fℓ
(s) = (ν − 1)!ζ(ν + 1)

∏

0≤k≤ℓ−2
k 6=ν−1

ζ(ν − k)

6



and Lfℓ(0) = 0. Additionally, for ℓ ≥ 6 the function L∗
fℓ

only has simple poles in s ∈
{ℓ− 3, ℓ− 2, ℓ− 1}. For ℓ ∈ {4, 5}, L∗

fℓ
has an additional simple pole in s = 0, with residue

Ress=0L
∗
f4
(s) =

ζ ′(−2)

24
, Ress=0L

∗
f5
(s) =

ζ ′(−2)

2880
.

3. Asymptotic expansions for Nℓ(n)

3.1. Exponent sets. For our calculations, we need the following lemma which follows by a
direct calculation.

Lemma 3.1. For ℓ ≥ 3 and f = fℓ, we have, as R → ∞,

L =
ℓ− 1

ℓ
− 1

ℓ
N0, M =

1

ℓ
N0, N =

1

ℓ
N0.

3.2. The case ℓ = 2. This case is the partition function and is classical. In the setting of
the present paper it is

N2(n) = p(n) =
e
π
√

2n
3

4
√
3n



1 +

N
∑

j=1

Bj

n
j

2

+ON

(

n−N+1
2

)





for certain Bj and was treated in [7].

3.3. The case ℓ = 3. The following theorem gives the asymptotic behavior of N3(n).

Theorem 3.2. We have, as n → ∞,

N3(n) ∼
e
− ζ′(−1)

2
− π2

288ζ(3) ζ(3)
11
72

2
11
24 · 3 47

72 · π 11
72 · n 47

72

exp

(

(3π)
2
3 ζ(3)

1
3

2
n

2
3 − π

4
3

4 · 3 2
3 · ζ(3) 1

3

n
1
3

)



1 +

∞
∑

j=1

B3,j

n
j

3





for certain numbers B3,j.

Proof. We have by (2.1) (see [4], p. 231)

Lf3(s) = ζ(s)ζ(s− 1) =

∞
∑

n=1

σ1(n)

ns
. (3.1)

Thus the only positive poles of Lf3(s) are α = 2 and β = 1. Moreover, as f3(n) = σ1(n) 6= 0

for n ∈ N, we have f−1
3 ({0}) = ∅, and hence we can choose L arbitrarily large. We see that

(P1) is satisfied. We have P = {1, 2} and these poles are simple, so (P2) is satisfied. Note
that we may choose R arbitrarily large, as ζ(s)ζ(s − 1) has a meromorphic continuation to

the entire complex plane. By properties of the Riemann zeta function, Lf3(σ + it) ≪ ea|t| on
vertical strips with finite width for arbitrary a > 0, so in particular (P3) is satisfied. Thus we
can use Theorem 2.2.

First, we note that λ = 2 satisfies λ+1
λ

β < α ≤ λ
λ−1β. Using (3.1), we compute

ω2 =
π2

6
, ω1 = −1

2
, Lf3(0) =

1

24
, L′

f3
(0) =

log(2π)

24
− ζ ′(−1)

2
.

Thus

C =
eL

′

g3
(0)ζ(3)

11
72

√
2 · 3 47

72 · π 7
36

, b =
47

72
, A1 =

(3π)
2
3 ζ(3)

1
3

2
, A2 = − π

4
3

4 · 3 2
3 · ζ(3) 1

3

. (3.2)

7



Using that c2 = −π2

12 and c1 =
π2ζ(3)

3 we next compute

A3 = − π2

288ζ(3)
.

Finally, we find with Theorem 2.2 and (3.2)

N3(n) ∼
e
− ζ′(−1)

2
− π2

288ζ(3) ζ(3)
11
72

2
11
24 · 3 47

72 · π 11
72 · n 47

72

exp

(

(3π)
2
3 ζ(3)

1
3

2
n

2
3 − π

4
3

4 · 3 2
3 · ζ(3) 1

3

n
1
3

)

.

With Lemma 3.1 and Theorem 2.1 we conclude that the exponents in the polynomial terms
in the expansions of N3(n) are given by 1

3N0, as (M+N ) ∩ [0,∞) = 1
3N0. �

3.4. The cases ℓ ∈ {4, 5}. We are now ready to determine the asymptotic behavior of N4(n)
and N5(n).

Theorem 3.3. We have, as n → ∞,

N4(n) ∼
e

ζ′(−2)
24 π

1
4 ζ(3)

1
8

2
13
8 · 3 1

4 · 5 1
8 · n 5

8

exp

(

2
7
4 · π 3

2 · ζ(3) 1
4

3
3
2 · 5 1

4

n
3
4 +A4,2n

1
2 +A4,3n

1
4 +A4,4

)



1 +
∞
∑

j=1

B4,j

n
j

4



 ,

N5(n) ∼
e

ζ′(−2)
2880 (πζ(3)ζ(5))

1
10

2
2
5 · 3 1

5 · 5 3
5 · n 3

5

× exp

(

5
4
5 · π 6

5 · (ζ(3)ζ(5)) 1
5

2
9
5 · 3 2

5

n
4
5 +A5,2n

3
5 +A5,3n

2
5 +A5,4n

1
5 +A5,5

)



1 +

∞
∑

j=1

B5,j

n
j
5



 ,

with computable constants A4,j (2 ≤ j ≤ 4) and A5,j (2 ≤ j ≤ 5) and certain B4,j and B5,j .

Proof. By Theorem 2.1 we have, for ℓ ∈ {4, 5}, as α = ℓ − 1, Lfℓ(0) = 0, and ωℓ−1 =
ζ(2)ζ(3) · · · ζ(ℓ− 1) (all by Proposition 2.6)

C =
e
L′

fℓ
(0)

(ℓ− 1)!
1
2ℓ
√
Zℓ√

2πℓ
, b =

ℓ+ 1

2ℓ
.

We find

L′
f4
(0) =

ζ ′(−2)

24
, L′

g5
(0) =

ζ ′(−2)

2880
.

The constants A4,1 and A5,1 can now be computed by straightforward calculations. With
Lemma 3.1 and Theorem 2.1 we conclude that the exponents in the polynomial terms in the
expansions of Nℓ(n) are given by 1

ℓ
N0 (for ℓ ∈ {4, 5}), as (M+N ) ∩ [0,∞) = 1

ℓ
N0. �

3.5. Proof of Theorem 1.2. To prove Theorem 1.2, we do some preliminary considerations.
By Lemma 3.2 of [7] we have that, as z → 0 in a cone in the right half plane,

Φfℓ(z) =
∑

ν∈−PR\{0}
Ress=−νL

∗
fℓ
(s)zν − Lfℓ(0) Log(z) + L′

fℓ
(0) +OR

(

|z|R
)

(3.3)

and for k ∈ N

Φ
(k)
fℓ

(z) =
∑

ν∈−PR\{0}
(ν)kRess=−νL

∗
fℓ
(s)zν−k +

(−1)k(k − 1)!Lfℓ(0)

zk
+OR,k

(

|z|R−k
)

, (3.4)

8



where (s)k := s(s− 1) · · · (s− k+1). By Proposition 2.6, Lfℓ has exactly three positive poles
{ℓ− 3, ℓ− 2, ℓ− 1}. As Lfℓ(0) = 0 by Proposition 2.6 the above becomes

−Φ′
fℓ
(z) =

C1

zℓ
+

C2

zℓ−1
+

C3

zℓ−2
+OR

(

|z|R−1
)

, (3.5)

where we have, according to Proposition 2.6 and k = 1 in (3.4),

C1 = (ℓ− 1)!ζ(ℓ)
∏

0≤k≤ℓ−2
k 6=ℓ−2

ζ (ℓ− 1− k) > 0, C2 = (ℓ− 2)!ζ(ℓ− 1)
∏

0≤k≤ℓ−2
k 6=ℓ−3

ζ(ℓ− 2− k) 6= 0,

C3 = (ℓ− 3)!ζ(ℓ− 2)
∏

0≤k≤ℓ−2
k 6=ℓ−4

ζ(ℓ− 3− k) 6= 0. (3.6)

To calculate the exponent sets L,M, and N , we apply Proposition 2.3. Let α := ℓ − 1.
By Proposition 2.3 the exponents of the saddle point function ̺ℓ,n belonging to fℓ lie in 1

ℓ
N.

Our next goal is to prove the following version of Lemma 4.3 of [7].

Lemma 3.4. For ℓ ≥ 4, let f := fℓ. Then, as n → ∞,

̺ℓ,n ∼
∞
∑

j=1

Kℓ,j

n
j

ℓ

for some constants Kℓ,j independent of n that can be calculated explicitly using ak(x), bk(x),
and eh defind below in (3.10), (3.13), and (3.14), respectively. We have

Kℓ,1 = C
1
ℓ

1 . (3.7)

Proof. Note that it suffices to treat all of the following asymptotic expansions formally, as in
Section 3 of [7] it was shown that the analytical considerations can be made rigorous under
the assumptions of Theorem 2.1.

By Proposition 2.3, the exponents of ̺ℓ,n lie in 1
ℓ
N. Hence, by Proposition 3.3 of [7] there

exist Kℓ,j ∈ R, such that

̺ℓ,n ∼
∞
∑

j=1

Kℓ,j

n
j
ℓ

(n → ∞).

With (3.5) we obtain a−Φ′

fℓ
,1 = C1. We also have a̺ℓ,1 = a

1
ℓ

−Φ′

fℓ
,1 by Proposition 2.3, since

α+ 1 = ℓ. We conclude that Kℓ,1 = a̺ℓ,1 = C
1
ℓ

1 .
For the exact values of the coefficients Kℓ,j we need to resolve

C1

̺ℓℓ,n
+

C2

̺ℓ−1
ℓ,n

+
C3

̺ℓ−2
ℓ,n

− n = 0 (3.8)

by (3.5) and Proposition 2.3. In order to do so, we divide (3.8) by n to obtain

C1

(

n− 1
ℓ

̺ℓ,n

)ℓ

+ C2n
− 1

ℓ

(

n− 1
ℓ

̺ℓ,n

)ℓ−1

+ C3n
− 2

ℓ

(

n− 1
ℓ

̺ℓ,n

)ℓ−2

− 1 = 0.

Thus we are interested in points (x, z) = (x, z(x)) on the curve

C1z
ℓ + C2xz

ℓ−1 + C3x
2zℓ−2 − 1 = 0

9



for small values of x, where z = n
−

1
ℓ

̺ℓ,n
. Making the change of variables

z =: w + C
− 1

ℓ

1 (3.9)

we obtain

C1

ℓ
∑

k=0

(

ℓ

k

)

wkC
− ℓ−k

ℓ

1 + C2x

ℓ−1
∑

k=0

(

ℓ− 1

k

)

wkC
− ℓ−1−k

ℓ

1 + C3x
2
ℓ−2
∑

k=0

(

ℓ− 2

k

)

wkC
− ℓ−2−k

ℓ

1 − 1 = 0,

using the Binomial Theorem. We rewrite this in the shape:

ℓ
∑

k=0

ak(x)w
k = 0,

where

ak(x) :=

(

ℓ

k

)

C
k
ℓ

1 + C2

(

ℓ− 1

k

)

C
k+1
ℓ

−1

1 x+ C3

(

ℓ− 2

k

)

C
k+2
ℓ

−1

1 x2 − δk=0, (3.10)

where δS = 1 if a statement S holds and δS = 0 otherwise. In other words, each ak(x) is a
polynomial in x of degree at most 2. As

a0(x) = C2C
1
ℓ
−1

1 x+ C3C
2
ℓ
−1

1 x2,

we obtain the identity

ϕx(w) :=

ℓ
∑

k=1

ak(x)w
k = −a0(x) = −C2C

1
ℓ
−1

1 x− C3C
2
ℓ
−1

1 x2. (3.11)

We now apply Lemma 2.5 to (3.11) to Taylor approximate its root close to w = 0 as x → 0.
As C1 6= 0 (we even show C1 > 0 in (3.6)), we have, by definition

a1(x) = ℓC
1
ℓ

1 + (ℓ− 1)C2C
2
ℓ
−1

1 x+ (ℓ− 2)C3C
3
ℓ
−1

1 x2 6= 0. (3.12)

for all x sufficiently small (i.e., all n sufficiently large). Thus ϕx(0) = 0 and ϕ′
x(0) = a1(x) 6= 0.

Thus we may apply Lemma 2.5 and obtain that the coefficients of the inverse function are

bk(x) =
1

ka1(x)k

∑

ℓ1,ℓ2,ℓ3···≥0
ℓ1+2ℓ2+···=k−1

(−1)ℓ1+ℓ2+ℓ3+...k · · · (k − 1 + ℓ1 + ℓ2 + . . . )

ℓ1!ℓ2!ℓ3! · · ·
(3.13)

×
(

a2(x)

a1(x)

)ℓ1
(

a3(x)

a1(x)

)ℓ2

· · · .

As a result, for x sufficiently small, we can solve (3.11) with

w(x) =
∞
∑

k=1

bk(x)

(

−C2C
1
ℓ
−1

1 x− C3C
2
ℓ
−1

1 x2
)k

=:
∞
∑

h=0

ehx
h (3.14)

with eh ∈ R. We now have an expansion for w = z −C
− 1

ℓ

1 in powers of n− 1
ℓ . Resolving (3.9)

(recall z = n
−

1
ℓ

̺ℓ,n
), i.e.,

n− 1
ℓ

̺ℓ,n
= C

− 1
ℓ

1 +w
(

n− 1
ℓ

)
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leads to the closed expression

̺ℓ,n =
n− 1

ℓ

C
− 1

ℓ

1 + w
(

n− 1
ℓ

)
= C

1
ℓ

1 n
− 1

ℓ

∞
∑

m=0

C
m
ℓ

1 w
(

n− 1
ℓ

)m

.

The lemma now follows as the previous equation gives the desired expansion. �

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We identify the part of the asymptotic in

en̺ℓ,nGfℓ(̺ℓ,n) = en̺ℓ,n+Φfℓ
(̺ℓ,n)

with non-negative exponents. In other words, we ask for the term

en̺ℓ,n+Φfℓ
(̺ℓ,n) = exp

(

[n̺ℓ,n +Φfℓ(̺ℓ,n)]∗
)

(1 + o(1)), (3.15)

where the notation []∗ means the part of an asymptotic expansion
∑∞

j=1 ajn
βj with βj ≥ 0.

First we get with Lemma 3.4, as n → ∞,

n̺ℓ,n =

ℓ
∑

j=1

Kℓ,jn
ℓ−j

ℓ +O
(

n− 1
ℓ

)

. (3.16)

Moreover, with (3.3) and integrating (3.5) we get as z → 0+ (in a cone)

Φfℓ(z) =
C1

(ℓ− 1)zℓ−1
+

C2

(ℓ− 2)zℓ−2
+

C3

(ℓ− 3)zℓ−3
+ L′

gℓ
(0) + o(1),

since Lfℓ(0) = 0. Thus in particular, as n → ∞,

Φfℓ(̺ℓ,n) =
C1

(ℓ− 1)̺ℓ−1
ℓ,n

+
C2

(ℓ− 2)̺ℓ−2
ℓ,n

+
C3

(ℓ− 3)̺ℓ−3
ℓ,n

+ L′
gℓ
(0) + o(1). (3.17)

We next use (3.7) and rewrite

1

̺ℓ,n
∼ 1

C
1
ℓ

1 n
− 1

ℓ +
∑∞

j=2Kℓ,jn
− j

ℓ

=
n

1
ℓ

C
1
ℓ

1



1 +
1

C
1
ℓ

1

∞
∑

j=1

Kℓ,j+1

n
j

ℓ





−1

.

We can work with the following identity regarding formal power series:

1

1 +
∑∞

k=1 bkz
k
=

∞
∑

m=0

(−1)m

( ∞
∑

k=1

bkz
k

)m

= 1 +

∞
∑

n=1

cnz
n,

with

cn =
∑

j1,j2,...,jn≥0
j1+2j2+3j3+···=n

(−1)j1+j2+...

(

j1 + j2 + j3 + . . .

j1, j2, j3, . . .

)

b
j1
1 b

j2
2 b

j3
3 · · · .

We thus obtain
1

̺ℓ,n
∼ n

1
ℓ

∞
∑

m=0

Dm

n
m
ℓ

,

where

Dm := C
− 1

ℓ

1

∑

j1,j2,...≥0
j1+2j2+3j3+···=m

(−1)j1+j2+...

(

j1 + j2 + j3 + . . .

j1, j2, j3, . . .

)

C
−m

ℓ

1 K
j1
ℓ,2K

j2
ℓ,3K

j3
ℓ,4 · · · .
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Using the Multinomial Theorem again, we find

C1

(ℓ− 1)̺ℓ−1
ℓ,n

+
C2

(ℓ− 2)̺ℓ−2
ℓ,n

+
C3

(ℓ− 3)̺ℓ−3
ℓ,n

=
C1

ℓ− 1
n

ℓ−1
ℓ

∞
∑

k=0

n− k
ℓ

∑

m1,m2,...≥0
m1+m2+···+···=ℓ−1

m2+2m3+···=k

(

ℓ− 1

m1,m2, . . .

)

Dm1
0 Dm2

1 · · ·

+
C2

ℓ− 2
n

ℓ−2
ℓ

∞
∑

k=0

n− k
ℓ

∑

m1,m2,...≥0
m1+m2+···+···=ℓ−2

m2+2m3+···=k

(

ℓ− 2

m1,m2, . . .

)

Dm1
0 Dm2

1 · · · (3.18)

+
C3

ℓ− 3
n

ℓ−3
ℓ

∞
∑

k=0

n− k
ℓ

∑

m1,m2,...≥0
m1+m2+···+···=ℓ−3

m2+2m3+···=k

(

ℓ− 3

m1,m2, . . .

)

Dm1
0 Dm2

1 · · · .

We next determine closed formulas for the exponent coefficients Aℓ,k. We first find with
Theorem 2.1

Aℓ,1 =

(

1 +
1

ℓ− 1

)

(ζ(2) · · · ζ(ℓ− 1)(ℓ− 1)!ζ(ℓ))
1
ℓ . (3.19)

Also note that, combing Theorem 2.1 and Lemma 2.4, we obtain

en̺ℓ,nGfℓ(̺ℓ,n)√
2π





N
∑

j=1

dj

nνj
+OL,R

(

n
−min

{

L+1
α+1

,R+α
α+1

+ α+2
2(α+1)

})





=
C

nb
exp



A1n
α

α+1 +

M
∑

j=2

Ajn
αj







1 +

N
∑

j=2

Bj

nβj
+OL,R

(

n
−min

{

2L−α
2(α+1)

, R
α+1

})



 ,

for some numbers 0 ≤ αM < · · · < α2 < α
α+1 . Consequently with (3.15), comparing the

exponential terms with powers in L∩ [0,∞) (note that the term L′
fℓ
(0) is treated separately,

so we have to subtract it),

[

n̺ℓ,n +Φfℓ(̺ℓ,n)− L′
gℓ
(0)
]

∗ = A1n
α

α+1 +

M
∑

j=2

Ajn
αj =:

ℓ
∑

k=1

Aℓ,kn
ℓ−k
ℓ . (3.20)

Using Lemma 3.1 employing (3.16), (3.17), and (3.18), to obtain for k ≥ 2,

Aℓ,k = Kℓ,k +
C1

ℓ− 1

∑

m1,m2,...≥0
m1+m2+···+···=ℓ−1
m2+2m3+···=k−1

(

ℓ− 1

m1,m2, . . .

)

Dm1
0 Dm2

1 · · ·

+
C2

ℓ− 2

∑

m1,m2,...≥0
m1+m2+···+···=ℓ−2
m2+2m3+···=k−2

(

ℓ− 2

m1,m2, . . .

)

Dm1
0 Dm2

1 · · ·
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+
C3

ℓ− 3

∑

m1,m2,...≥0
m1+m2+···+···=ℓ−3
m2+2m3+···=k−3

(

ℓ− 3

m1,m2, . . .

)

Dm1
0 Dm2

1 · · ·. (3.21)

If ℓ ≥ 6, then we have L′
fℓ
(0) = 0, since Lfℓ has a zero in s = 0 of order at least 2. This

simplifies the formula to the one in Theorem 1.2. Theorem 2.1, Proposition 2.6, and

C =
(ℓ− 1)!

1
2ℓZ

1
2
ℓ√

2πℓ

as well as (3.19) gives the value of Aℓ,1. With Lemma 3.1 and Theorem 2.1 we conclude

that the exponents in the polynomial terms in the expansions of Nℓ(n) are given by 1
ℓ
N0, as

(M+N ) ∩ [0,∞) = 1
ℓ
N0. �

4. Log-Concavity and the proof of Theorem 1.3

4.1. Proof of Theorem 1.3. In this subsection, we prove our general result on log-
concavity.

Proof of Theorem 1.3. We have

c(n)2 − c(n+ 1)c(n − 1) ∼ C2





exp
(

2
∑

λ∈S Aλn
λ
)

n2κ





∑

µ∈T

βµ

nµ





2

(4.1)

− exp
(
∑

λ∈S Aλ

(

(n+ 1)λ + (n − 1)λ
))

(n+ 1)κ(n− 1)κ

∑

µ∈T

βµ

(n+ 1)µ

∑

ν∈T

βν

(n− 1)ν



.

We now claim that for all λ ∈ S, we have

exp
(

Aλ

(

(n+ 1)λ + (n− 1)λ − 2nλ
))

= 1 +
γλ,1

n2−λ
+ o

(

n−2+λ
)

(4.2)

for γλ,1 ∈ R. To see this, write λ = a
b
with gcd(a, b) = 1 and set x := n− 1

b . Then

(n+ 1)
a
b + (n− 1)

a
b − 2n

a
b =

(

1

xb
+ 1

) a
b

+

(

1

xb
− 1

) a
b

− 2x−a

=
1

xa

(

(

1 + xb
)

a
b
+
(

1− xb
)

a
b − 2

)

=: fa,b(x).

Now, as y → 0,

gλ(y) := (1 + y)λ + (1− y)λ − 2 = O
(

y2
)

.

Thus fa,b has a Taylor expansion of the shape

fa,b(x) =
∑

j≥1

αλ,jx
2bj−a.

Thus

fa,b

(

n− 1
b

)

=
∑

j≥1

αλ,j

n
2bj−a

b

=
αλ,1

n2−λ
+ o

(

n−2+λ
)

.

Plugging in the expansion of the exponential function gives the claim, using that 0 < λ < 1.
13



Using (4.2), we obtain

exp

(

∑

λ∈S
Aλ

(

(n+ 1)λ + (n− 1)λ − 2nλ
)

)

=
∏

λ∈S

(

1 +
γλ,1

n2−λ
+ o

(

n−2+λ
))

= 1 +
γλ∗,1

n2−λ∗
+ o

(

n−2+λ∗

)

.

Note that γλ∗,1 = Aλ∗αλ∗,1 and that αλ,1 = λ(λ− 1) < 0.
Next we claim that (for n > 1)

1

(n+ 1)κ(n− 1)κ
=

1

(n2 − 1)κ
= n−2κ



1 +
∑

j≥1

δj

n2j



 (4.3)

for certain δj . To see this, set x := n−2. Then we want

x−κ

(

1
x
− 1
)κ = 1 +

∑

j≥1

δjx
j .

The left-hand side is 1
(1−x)κ and the claim follows.

Thus, by (4.1),

c(n)2 − c(n+ 1)c(n − 1)

∼ C2 exp
(

2
∑

λ∈S Aλn
λ
)

n2κ









∑

µ∈T

βµ

nµ





2

−
(

1 +
γλ∗,1

n2−λ∗
+ o

(

n−2+λ∗

))

(

1 +O
(

n−2
))

∑

µ∈T

βµ

(n+ 1)µ

∑

ν∈T

βν

(n− 1)ν



.

The sign of this is dictated by
∑

µ,ν∈T

βµβν

nµ+ν
−
(

1 +
γλ∗,1

n2−λ∗
+ o

(

n−2+λ∗

))

(

1 +O
(

n−2
))

∑

µ∈T

βµ

(n+ 1)µ

∑

ν∈T

βν

(n− 1)ν
.

As β0 = 1, the above equals mod (o(n−2+λ∗

)),
∑

µ,ν∈T
0≤µ+ν≤2−λ∗

βµβν

nµ+ν
−

∑

µ,ν∈T
0≤µ+ν≤2−λ∗

βµβν

(n+ 1)µ(n− 1)ν
− γλ∗,1

n2−λ∗

= 2
∑

µ∈T
0≤µ≤1−λ∗

2

β2
µ

(

1

n2µ
− 1

(n+ 1)µ(n− 1)µ

)

(4.4)

+
∑

µ∈T
0≤µ<ν

1≤µ+ν≤2−λ∗

βµβν

(

2

nµ+ν
− 1

(n+ 1)µ(n − 1)ν
− 1

(n+ 1)ν(n+ 1)µ

)

− γλ∗,1

n2−λ∗
.

Next, by (4.3) we obtain that (for n > 1)

1

(n+ 1)µ(n− 1)µ
= n−2µ +O

(

n−2µ−2
)

.
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Similarly, we see that, for certain ρr,

1

(n + 1)µ(n− 1)ν
+

1

(n+ 1)ν(n− 1)µ
= 2n−µ−ν



1 +
∑

r≥1

ρr

n2r



 .

Thus (4.4) becomes

O
(

n−2
)

− γλ∗,1

n2−λ∗
.

To conclude the claim, we note that we have

sgn(−γλ∗,1) = sgn(Aλ∗) = 1. �

4.2. Examples. We can show the following result.

Corollary 4.1. Let f : N → N0 satisfy all conditions of Theorem 2.1, and assume that we
can choose L in (P1) arbitrarly large. Assume furthermore that Lf (s) has a meromorphic
continuation to C with only rational poles. Then pf (n) is log-concave for n sufficiently large.

Proof. Theorem 2.1 provides an expansion for pf (n) as in Theorem 1.3, since the rational poles
of Lf (s) guarantee that all exponents occuring in the expansion of pf (n) are again rational.

Note that λ∗ = α
α+1 and8 A1 > 0 again by Theorem 2.1. This gives then the claim. �

There are several further applications. Examples are, besides the classical partitions and
plane partitions, partitions into k-gonal numbers pk(n), and the number of n-dimensional
representations for the groups su(3) and so(5), denoted by r

su(3)(n) and r
so(5)(n), respectively.

The asymptotic behavior of the numbers r
su(3)(n) was first studied by Romik [25] and later

refined by two of the authors in [8]. Asymptotic expressions for r
so(5)(n) and pk(n) were given

in [7]. We directly obtain the following:

Corollary 4.2. Let k ≥ 3. For n sufficiently large, the sequences pk(n), r
su(3)(n), and

r
so(5)(n) are log-concave.

Finally, we give another example in a slightly different direction. For d ∈ N0, let
9

∑

n≥0

pd(n)q
n :=

∏

n≥1

(1− qn)−nd

. (4.5)

Note that we have p0(n) = p(n) and p1(n) = pp(n) is the plane partition function. Note that
the corresponding L-series is given by

∑

n≥1

nd

ns
= ζ(s− d).

It is not hard to check that the conditions (P1), (P2), and (P3) are satisfied, and we have

PR ⊆ {d+ 1} ∪ {−1,−2,−3, . . .}
for the set of poles s 6= 0 of L∗

d(s) := Γ(s)ζ(s+ 1)ζ(s − d). Note that α = d+ 1 and

b =
1

2(d+ 2)
− ζ(−d)

d+ 2
+

1

2
, A1 =

(

1 +
1

d+ 1

)

((d+ 1)!ζ(d+ 2))
1

d+2 ,

8Note the abuse of notation.
9see [15], where a generalization of generating function for the partition and plane partition function was

studied
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C =
eζ

′(−d)((d+ 1)!ζ(d+ 2))
1
2−ζ(−d)

d+2

√

2π(d+ 2)
.

As a consequence, we have by Theorem 2.1

pd(n) ∼
C

nb
eA1n

d+1
d+2



1 +
∑

j≥1

Ed,j

n
j

d+2





with certain Ed,j. Note that, by the same arguments used for the other examples above, pd(n)
is log-concave for n sufficiently large. In [16] it had been proven that in the case of plane
partitions, p1(n) is log-concave for almost all n and conjectured that this is already valid for
n ≥ 12. This conjecture had been proven by Ono, Pujahari, and Rolen [24].

5. Proof of Theorem 1.5

The idea of the following proof is similar to that of Theorem 1.3.

Proof of Theorem 1.5. Assume that a, b ≫ 1. Then

c(a)c(b) − c(a+ b) ∼ C2

aκbκ
exp

(

∑

λ∈S
Aλ

(

aλ + bλ
)

)

− C

(a+ b)κ
exp

(

∑

λ∈S
Aλ(a+ b)λ

)

=
C2

aκbκ
exp

(

∑

λ∈S
Aλ

(

aλ + bλ
)

)(

1− aκbκ

C(a+ b)κ
exp

(

∑

λ∈S
Aλ

(

(a+ b)λ − aλ − bλ
)

))

.

Without loss of generality we may assume that a ≥ b and write a = xb, x ≥ 1. Then

aκbκ

C(a+ b)κ
exp

(

∑

λ∈S
Aλ

(

(a+ b)λ − aλ − bλ
)

)

=
xκbκ

C(x+ 1)κ
exp

(

∑

λ∈S
Aλb

λ
(

(1 + x)λ − xλ − 1
)

)

.

Let fλ(x) := (1 + x)λ − xλ − 1. It is not hard to see that f ′
λ(x) < 0. As fλ(0) = 0, we have

fλ(x) < 0 for x ≥ 1. Moreover , using l’Hospital,

lim
x→∞

(

(x+ 1)λ − xλ − 1
)

= −1.

We conclude −1 ≤ fλ(x) < 0 for all x ≥ 1. This gives the claim. �

6. Open questions

We leave some open questions to the interested reader.

(1) What can be said about Turán type inequalities for the sequences studied? Note that the
case ℓ = 2 of the partition function was treated in ([14], Theorems 1 and 2) by showing
that certain classes of Jensen polynomials have real roots. The more general case ℓ ≥ 3
will be much harder.
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(2) It would be interesting to make the results of this paper (in particular log-concavity)
explicit. The hard part would be to make [7] explicit. For example, the case ℓ = 2 of
the partition function was treated in ([12], Theorem 1.1). Note that this turns out to be
much easier than the higher cases of ℓ as in the partition case one has an exact formula,
which yields inequalities for the partition function.

(3) According to a conjecture by Chen (see Conjecture 1.2 in [12]), the sequence |C2,n| =
n!p(n) is log-convex for all n > 1, which was shown by DeSalvo and Pak 2015 ([12],
Theorem 4.1). The question now is whether this is also true for sufficiently large n for the
|Cℓ,n| for all ℓ ≥ 3, and to what extent this could be related to the results of this work.
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