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Abstract. Moments of the partition rank and crank statistics have been studied for their connec-
tions to combinatorial objects such as Durfee symbols, as well as for their connections to harmonic
Maass forms. This paper proves a conjecture due to two of the authors that refined a conjecture
of Garvan. Garvan’s original conjecture states that the moments of the crank function are always
larger than the moments of the rank function, even though the moments have the same main as-
ymptotic term. The refined version provides precise asymptotic estimates for both the moments and
their differences. Our proof uses the Hardy-Ramanujan circle method, multiple sums of Bernoulli
polynomials, and the theory of quasimock theta functions.

1. Introduction and statement of results

The theory of partitions has long motivated the study of hypergeometric series and automorphic
forms. A foundational example for the interplay between these fields is Euler’s partition function
p(n), which has the generating function

(1.1) P (q) :=
∞∑
n=0

p(n)qn =
∞∏
n=1

1

1− qn
.

If q := e2πiτ is the standard uniformizer at infinity, then this coincides with q
1
24 /η(τ) where η(τ) :=

q1/24
∏∞
n=1(1− qn) is Dedekind’s weight 1/2 modular form.

On the other hand, many partition generating functions do not naturally appear in the theory
of modular forms but rather in more general automorphic contexts, such as the theory of harmonic
Maass forms. Ramanujan’s famous mock theta functions are prime examples of this phenomenon
[27]. As a result, the study of generating functions from partition theory has inspired a number of
important results about mock theta functions and harmonic Maass forms [9, 12, 14, 15]. Harmonic
Maass forms are real analytic generalizations of modular forms in that they satisfy the same linear
fractional transformation laws and (weak) growth conditions at cusps, but they are not holomorphic
functions of the complex upper half plane, and instead are only required to be annihilated by the
weight k hyperbolic Laplacian.

Many of these modern results originated in Ramanujan’s original results on the arithmetic of the
partition function [25, 26]. Most famously, the three “Ramanujan congruences” state that for all n,

p(5n+ 4) ≡ 0 (mod 5),(1.2)
p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).
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In an effort to provide a combinatorial explanation of Ramanujan’s congruences, Dyson introduced
[18] the rank of a partition, which is defined as

rank(λ) := largest part of λ− number of parts of λ.

He conjectured that the partitions of 5n + 4 (resp. 7n + 5) form 5 (resp. 7) groups of equal
size when sorted by their rank modulo 5 (resp. 7). Building on Dyson’s observations, Atkin and
Swinnerton-Dyer later proved Dyson’s rank conjectures [8].

Dyson further conjectured the existence of an analogous statistic, the crank, that would explain
all three congruences simultaneously. Garvan finally found the crank while studying q-series of the
sort seen in Ramanujan’s “Lost Notebook” [20], and together with Andrews presented the following
definition [5]. Let o(λ) denote the number of ones in a partition, and define µ(λ) as the number of
parts strictly larger than o(λ). Then

(1.3) crank(λ) :=

{
largest part of λ if o(λ) = 0,

µ(λ)− o(λ) if o(λ) > 0.

Works of the first two authors and Ken Ono show that both the rank and crank also play key roles
in understanding the infinitely many other congruences for p(n) [10, 14, 22].

It is more useful here to work with generating functions than combinatorial definitions. If
M(m,n) and N (m,n) are the number of partitions of n with crank and rank m, respectively, then,
aside from the anomalous case of M(m,n) when n = 1, the two-parameter generating functions
may be written as [5, 8]

C(x; q) :=
∑
m∈Z
n≥0

M(m,n)xmqn =
∏
n≥1

1− qn

(1− xqn)(1− x−1qn)
=

1− x
(q)∞

∑
n∈Z

(−1)nqn(n+1)/2

1− xqn
,

R(x; q) :=
∑
m∈Z
n≥0

N (m,n)xmqn =
∑
n≥0

qn
2

(xq; q)n(x−1q; q)n
=

1− x
(q)∞

∑
n∈Z

(−1)nqn(3n+1)/2

1− xqn
.

Although the final expressions for C(x; q) and R(x; q) appear quite similar, their analytic behaviors
are markedly different. For example, if x 6= 1 is a fixed root of unity, then C(x; q) is essentially a
meromorphic modular form [22], whereas R(x; q) corresponds to the holomorphic part of a harmonic
Maass form [14, 29].

In addition to the importance of the rank and crank statistics in the study of Ramanujan’s
congruences, a number of recent works highlight the importance of the weighted moments of the
crank and rank statistics. For example, Andrews obtained an elegant description of the smallest
parts partition function spt(n), the number of smallest parts among the integer partitions of n, in
terms of p(n) and N2(n) :=

∑
mm

2N(m,n). Andrews proved [3] that

spt(n) = np(n)− 1

2
N2(n).

Additionally, Andrews introduced marked Durfee symbols in [4], which are combinatorial generaliza-
tions of partitions, and are intrinsically connected to crank and rank moments. Atkin and Garvan’s
original study of rank and crank moments also had important applications to partition congruences
[7].

Furthermore, rank moments have particularly interesting automorphic properties. In joint work
with Garvan, the first two authors showed that the generating function is (essentially) a quasimock
theta function, defined as the holomorphic part of sums of weak Maass forms and their derivatives
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(just as Atkin and Garvan showed that the crank moments are related to quasimodular forms)
[7, 11, 12]. These types of q-series arise quite frequently in mathematical physics in the study of
topological Yangs-Mills from string theory [2, 23].

To be precise, for a nonnegative integer k, define the k-th crank (resp. rank) moment as

Mk(n) :=
∑
m∈Z

mkM(m,n),(1.4)

Nk(n) :=
∑
m∈Z

mkN (m,n).

Both the crank and rank moments vanish when k is odd due to the symmetries of the statistics [7].
Thus we need only consider even moments, and for k ∈ N, we therefore define

C2k(q) :=
∑
n

M2k(n)qn

R2k(q) :=
∑
n

N2k(n)qn

be the generating functions for M2k(n) and N2k(n). As alluded to earlier, C2k(q) is essentially a
quasimodular form, and R2k(q) is (up to a fractional power of q) a quasimock theta function [12].

In this paper we focus on conjectural observations of Garvan regarding the relative size of the
crank and rank moments [20].

Conjecture (Garvan). Let k ≥ 1 be an integer.
(1) As n→∞, we have M2k(n) ∼ N2k(n).
(2) For all n ≥ 2, we have M2k(n) > N2k(n).

Remark. Garvan’s conjecture can be interpreted as stating that the distribution of the crank statistic
is slightly “wider” than that of the rank, but not enough to affect the main asymptotic behavior.
This is unexpected, as there is little about the combinatorial definitions of the crank and rank
that suggest any close relations. Also, part (1) of his conjecture does not appear in [20], but was
mentioned in private communication to the first two authors.

A refined conjecture was given by the first two authors in [13].

Refined Conjecture. Suppose that k ≥ 1.
(1) As n→∞,

M2k(n) ∼ N2k(n) ∼ α2k · nk p(n),

where αk ∈ Q is non-negative.
(2) Garvan’s inequality holds for all n, and as n→∞,

D2k(n) := M2k(n)−N2k(n) ∼ β2k nk−
1
2 · p(n),

where β2k ∈
√
6
π Q is positive

Remark. Garvan also personally provided numerical data to the authors that suggested the shape
of part (1) of this conjecture. Furthermore, we emphasize out that neither part of this conjecture
is a strict refinement of Garvan’s conjectures, as they requires sufficiently large values of n.

The first two authors proved this conjecture in the cases k = 2 and 4. However, this proof did not
suggest the general form of α2k or β2k, and the techniques rapidly became too unwieldy for use on
higher k. In this paper, we amplify and improve our use of the circle method by using more precise
modular transformations; this was inspired by Ramanujan’s original treatment of asymptotics for
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the partition function. We prove the refined conjecture in all cases by explicitly computing the first
two terms of the asymptotic expansions for the rank and crank moments.

In the following result, we use the standard notations where Bn(x) denotes the Bernoulli poly-
nomials, and Iα(x) denotes the modified Bessel functions.

Theorem 1.1. We have

M2k(n) = πξ2k(24n− 1)k−3/4I3/2(yn) + ξ̃2k(24n− 1)k−5/4I1/2(yn) +O
(
nk−7/4 · n−1/4 exp(yn)

)
,

where
yn :=

π

6

√
24n− 1.

The constants are given by

ξ2k := (−1)k2B2k(1/2) and ξ̃2k := −3(2k)(2k − 3)ξ2k + ξ′2k, h

where ξ′0 := 0, and for k > 0,

ξ′2k := −1

4
(2k)(2k − 1)ξ2k−2.

Remark. At x = 1/2, the Bernoulli polynomials evaluate to B2k(1/2) =
(
21−2k − 1

)
B2k, where B2k

is the usual Bernoulli number. In particular, we have that ξ2k = 2(−1)kB2k(1/2) > 0.

Remark. Regardless of index, each of the modified Bessel functions has the main asymptotic term

Ia(y) ∼ ey

y
(see [6]).

The proof of Theorem 1.1 uses a recursive relation for the crank moment generating functions
given in [7]. We then relate these to the rank moments with Atkin-Garvan’s “Rank-Crank PDE”
[7], which we state precisely in Section 4. This PDE is a recursive formula for the rank moment
generating functions that involves triple products of crank moment generating functions, and arises
from a heat operator relation for Jacobi Maass forms, as shown by the first author and Zwegers in
[16]. Using evaluations of multiple sums of Bernoulli polynomials to obtain an asymptotic expansion
for the coefficients of products of crank moment generating functions (see Section 3), we deduce the
following rank moment asymptotics.

Theorem 1.2. For k ≥ 0 we have

N2k(n) =πλ2k(24n− 1)k−3/4I3/2(yn) + λ̃2k(24n− 1)k−5/4I1/2(yn) +O
(
nk−7/4 · n−1/4 exp(yn)

)
,

where λ2k := ξ2k and

λ̃2k :=

{
−3 · 2k(2k − 3)ξ2k − 3

42k(2k − 1)ξ2k−2 k > 0,

0 k = 0.

Combining Theorems 1.1 and 1.2, we obtain an asymptotic expansion for the difference of the
rank and crank moments.

Corollary 1.3. For any k ≥ 1 as n→∞ we have

D2k(n) ∼ 1

2
· 2k(2k − 1)ξ2k−2(24n− 1)k−5/4I1/2(yn).

Finally, the constants in the refined conjecture can now be computed using the fact that

p(n) ∼ 2π(24n− 1)−3/4I3/2(yn).
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Corollary 1.4. The refined conjecture is true, with (positive) constants

α2k = (−24)kB2k(1/2),

β2k =

√
6

π
· 2k(2k − 1)(−24)k−1B2k−2(1/2).

2. Crank Asymptotics and the proof of Theorem 1.1

Here we prove a modified version of Theorem 1.1, which reflects the Bessel function indices that
arise most naturally when using the circle method.

Theorem 2.1. For k ≥ 0 we have

M2k(n) =πξ2k · (24n− 1)k−3/4I3/2−2k(yn) + ξ′2k · (24n− 1)k−5/4I3/2−2k+1(yn)

+O
(
nk−7/4 · n−1/4 exp(yn)

)
.

Theorem 1.1 follows from Theorem 2.1 through a simple formula for shifting the indices of Bessel
functions.

Lemma 2.2. For ` ∈ Z, we have the relation

I3/2−2`(yn) = I3/2(yn)− 3

π
(24n− 1)−1/2(2`)(2`− 3)I1/2(yn) +O

(
n−1I−1/2(yn)

)
.

Proof. The total shift is the result of successive applications of the Bessel function relation [6]

(2.1) Ia−1(x) =
2a

x
Ia(x) + Ia+1(x).

�

Remark. Formula (2.1) also implies the following simpler recurrence for the second order term in
Theorem 1.1, which is also needed for the proof of Theorem 1.1:

I3/2−2`+1(yn) = I3/2−2(`−1)+1(yn) +O
(
n−1/2I3/2−2`+2(yn)

)
.

Proof of Theorem 2.1. The idea of the proof is to find a recursive formula for the leading order
constants, which we then solve explicitly with Bernoulli polynomials, thus obtaining formulas for
the constants ξ2k and ξ′2k. We begin with Atkin and Garvan’s recurrence for the crank moment
generating functions in terms of divisor sums, found as equation (4.6) in [7], namely

(2.2) C2k(q) = 2
k∑
j=1

(
2k − 1

2j − 1

)
Φ2j−1(q)C2k−2j(q).

Here we have denoted the j-th divisor function by

Φj(q) :=
∞∑
n=1

σj(n)qn,

where σj(n) :=
∑

d|n d
j is the j-th divisor sum. These functions can be written in terms of the

classical Eisenstein series Ek(q) := 1− 2k
Bk

Φk−1(q), as

Φk−1(q) = −Bk
2k
· (Ek(q)− 1) .

We next follow the arguments in [13] and use the Hardy-Ramanujan circle method, following
the original techniques chronicled in [1, 21, 24]. We assume basic familiarity with these standard
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techniques, and in the following development, we use the fact that the dominant cuspidal contribu-
tion in the circle method occurs at q = 1. This is true because all rational cusps are (essentially)
equivalent, which follows because the Eisenstein series are modular on SL2(Z), and up to a 24-th
root of unity, η(q) is as well. To identify the main asymptotic contribution from the circle method,
we therefore need only use the modular inversion transformation.

Let q := e−2πz with Re(z) > 0, q1 := e−
2π
z , which corresponds to setting τ = iz. To capture the

cusp at q = 1, we need only the transformation laws

Ek(q) = (iz)−kEk(q1) if k > 2,(2.3)

E2(q) = (iz)−2E2(q1) +
6

πz
.

In general, suppose that we wish to estimate the coefficients in an expression of the form

(2.4)
∑
n

a(n)qn = c P (q)g(q1)z
−k + . . . ,

where c is a constant and g(q) has a holomorphic q-series expansion

g(q) = 1 +
∑
n>0

b(n)qn.

Then the asymptotic contribution to a(n) due to the term displayed on the right side of (2.4) is

c · 2π(24n− 1)
k
2
− 3

4 I 3
2
−k(yn).

This immediately implies the following recursive result, which allows us to keep track of asymp-
totic expansions as we successively multiply by Eisenstein series (note that (2.3) means that E2(q)
yields an extra recursive term).

Lemma 2.3. Suppose that G(q) =
∑
c(n)qn = P (q)Ẽ2k(q), where Ẽ2k(q) := E2a1(q) · · ·E2ar(q)

has total weight 2k = 2a1 + · · · + 2ar. Then the coefficients c(n) have an asymptotic expansion of
the form

c(n) = πα(24n− 1)k−3/4I3/2−2k(yn) + α′(24n− 1)k−5/4I5/2−2t(yn) +O
(
nk−2eyn

)
for some constants α and α′. Furthermore, the coefficients of G(q) · E2t(q) =:

∑
c2t(n)qn satisfy

c2t(n) = πα(−1)t(24n− 1)k−3/4+tI3/2−2k−2t(yn)

+ (α′(−1)t + δt=1 · 6α)(24n− 1)k−5/4+tI5/2−2k−2t(yn) +O
(
nk−2+teyn

)
.

We apply this lemma to the crank moments by first “unwinding” (2.2) to obtain the formula

(2.5) C2k(q) = 2P (q) ·
∑

a1+2a2+···+kak=k
αa1,a2,··· ,akΦ1(q)

a1Φ3(q)
a2 · · ·Φ2k−1(q)

ak

for some integer constants α. After rewriting in terms of Eisenstein series, Lemma 2.3 now applies
to each term in (2.5), which implies the existence of the asymptotic expansion in Theorem 2.1.
Furthermore, (2.2) and Lemma 2.3 then also immediately imply the following recurrence:

(2.6) ξ2k = 2

k∑
j=1

(
2k − 1

2j − 1

)
B2j

4j
(−1)j+1ξ2k−2j .
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Similarly, we may deduce the following recurrence for ξ′2k,

ξ′2k =2
k−1∑
j=1

(
2k − 1

2j − 1

)
B2j

4j
(−1)j+1ξ′2k−2j − 2(2k − 1)

B2

4
6 ξ2k−2(2.7)

=2
k−1∑
j=1

(
2k − 1

2j − 1

)
B2j

4j
(−1)j+1ξ′2k−2j −

(2k − 1)

2
ξ2k−2.

We solve both of these recurrences by using the Bernoulli polynomial identity

(2.8)
k∑
j=1

(
2k − 1

2j − 1

)
B2j

4j
B2k−2j(1/2) = −1

2
B2k(1/2).

This is a specialization of the general convolution sum
n∑
j=0

(
n

j

)
Bj(x)Bn−j(y) = −(n− 1)Bn(x+ y) + n(x+ y − 1)Bn−1(x+ y),

which can be found (along with other relevant formulas) in [17]. The fact that Bn(1/2) = 0 for all
odd n implies that our formula (2.8) is equivalent to the case x = 0, y = 1/2. Applying induction
to (2.6) and (2.8) and using the base case ξ0 = 2 gives the claimed formula for ξ2k.

To obtain the formula for ξ′2k, note that
(
2k−1
2j−1

)
= (k−1)(2k−1)

(k−j)(2k−2j−1)
(
2k−3
2j−1

)
. Now the recurrence (2.6)

inductively implies that the claimed formula for ξ′2k is correct, as the right side of (2.7) evaluates to

− 1

2
(2k − 1)(k − 1)

k−1∑
j=1

2

(
2k − 3

2j − 1

)
B2j

4j
(−1)j+1ξ2(k−1)−2j −

(2k − 1)

2
ξ2k−2

=− 1

2
(2k − 1)(k − 1)ξ2(k−1) −

(2k − 1)

2
ξ2k−2 = −1

2
k(2k − 1)ξ2k−2 = ξ′2k.

�

We note for later purposes the identity

(2.9) 2

k−1∑
j=1

(
2k − 1

2j − 1

)
B2j

4j
(−1)j+1ξ′2k−2j =

(
1− 1

k

)
ξ′2k.

3. Asymptotics for products of crank moments

The rank-crank PDE (see equation (4.1)) gives a recurrence for the rank moment generating
functions that involves the triple products

C2α(q)C2β(q)C2γ(q)P (q)−2 =:
∑
n

M2α,2β,2γ(n)qn(3.1)

for α, β, γ ≥ 0. In this section we will deal with the asymptotic evaluation of M2α,2β,2γ(n).

Theorem 3.1. If α+ β + γ = k, then

M2α,2β,2γ(n) = πξ2α,2β,2γ(24n− 1)k−3/4I3/2−2k(yn) + ξ′2α,2β,2γ(24n− 1)k−5/4I3/2−2k+1(yn)

+O
(
nk−7/4 · n−1/4 exp(yn)

)
,
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with ξ2α,2β,2γ := 1
4ξ2αξ2βξ2γ and

ξ′2α,2β,2γ :=
1

4

(
ξ′2αξ2βξ2γ + ξ2αξ

′
2βξ2γ + ξ2αξ2βξ

′
2γ

)
.

We again use Lemma 2.2 to shift the indices for easier comparisons.

Corollary 3.2. The asymptotic expansion of the triple crank product is given by

M2α,2β,2γ(n) = πξ2α,2β,2γ(24n− 1)k−3/4I3/2(yn) + ξ̃2α,2β,2γ(24n− 1)k−5/4I1/2(yn)

+O
(
nk−7/4 · n−1/4 exp(yn)

)
,

where
ξ̃2α,2β,2γ := −3(2k) (2k − 3) ξ2α,2β,2γ + ξ′2α,2β,2γ .

Proof of Theorem 3.1. Using (2.2) for each term in the product of C2αC2βC2γP
−2 as well as a minor

modification of Lemma 2.3 we obtain the recursion

ξ2α,2β,2γ =− 23
∑

1≤j≤α
1≤i≤β
1≤`≤γ

(
2α− 1

2j − 1

)(
2β − 1

2i− 1

)(
2γ − 1

2`− 1

)
B2j

4j

B2i

4i

B2`

4`
(−1)i+j+`ξ2α−2j,2β−2i,2γ−2`.(3.2)

Induction and three applications of the recurrence (2.6) shows that ξ2α,2β,2γ = 1
4ξ2αξ2βξ2γ is the

unique solution to (3.2).
We next turn to ξ′2α,2β,2γ . Following similar arguments as those that led to the recursion for ξ′2k,

we obtain

ξ′2α,2β,2γ =8
∑

1≤j≤α
1≤i≤β
1≤`≤γ

(
2α− 1

2j − 1

)(
2β − 1

2i− 1

)(
2γ − 1

2`− 1

)
B2j

4j

B2i

4i

B2`

4`
(−1)i+j+`+3ξ′2α−2j,2β−2i,2γ−2`

+ 8
∑

1≤i≤β
1≤`≤γ

(2α− 1)

(
2β − 1

2i− 1

)(
2γ − 1

2`− 1

)
6
B2

4

B2i

4i

B2`

4`
(−1)i+`+3ξ2α−2,2β−2i,2γ−2`

+ 8
∑

1≤j≤α
1≤`≤γ

(
2α− 1

2j − 1

)
(2β − 1)

(
2γ − 1

2`− 1

)
6
B2j

4j

B2

4

B2`

4`
(−1)j+`+3ξ2α−2j,2β−2,2γ−2`

+ 8
∑

1≤j≤α
1≤i≤β

(
2α− 1

2j − 1

)(
2β − 1

2i− 1

)
(2γ − 1)6

B2j

4j

B2i

4i

B2

4
(−1)i+j+3ξ2α−2j,2β−2i,2γ−2.

Again using the formula ξ2α,2β,2γ = 1
4ξ2αξ2βξ2γ and (2.6), we may simplify the second line (and

analogously the third and fourth) as

− 2(2α− 1)

16
ξ2α−2

2
∑

1≤i≤β

(
2β − 1

2i− 1

)
B2i

4i
(−1)i+1ξ2β−2i

2
∑

1≤`≤γ

(
2γ − 1

2`− 1

)
B2`

4`
(−1)`+1ξ2γ−2`


= −2(2α− 1)

16
ξ2α−2ξ2βξ2γ =

1

4α
ξ′2αξ2βξ2γ .
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This yields the following recursion for ξ′2α,2β,2γ

ξ′2α,2β,2γ = 8
∑

1≤j≤α
1≤i≤β
1≤`≤γ

(
2α− 1

2j − 1

)(
2β − 1

2i− 1

)(
2γ − 1

2`− 1

)
B2j

4j

B2i

4i

B2`

4`
(−1)i+j+`+3ξ′2α−2j,2β−2i,2γ−2`(3.3)

+
1

4α
ξ′2αξ2βξ2γ +

1

4β
ξ2αξ

′
2βξ2γ +

1

4γ
ξ2αξ2βξ

′
2γ .

Our claimed formula ξ′2α,2β,2γ = 1
4(ξ′2αξ2βξ2γ +ξ2αξ

′
2βξ2γ +ξ2αξ2βξ

′
2γ) solves this recurrence, as using

(2.6) and (2.9) to evaluate the right side of (3.3) gives the expected result:

1

4

(
1− 1

α

)
ξ′2αξ2βξ2γ +

1

4

(
1− 1

β

)
ξ2αξ

′
2βξ2γ +

1

4

(
1− 1

γ

)
ξ2αξ2βξ

′
2γ

+
1

4α
ξ′2αξ2βξ2γ +

1

4β
ξ2αξ

′
2βξ2γ +

1

4γ
ξ2αξ2βξ

′
2γ

=
1

4

(
ξ′2αξ2βξ2γ + ξ2αξ

′
2βξ2γ + ξ2αξ2βξ

′
2γ

)
= ξ′2α,2β,2γ .

�

4. Rank Asymptotics

In this section we prove the asymptotic expansion for N2k(n) given in Theorem 1.2. In order to
relate the rank moments to the crank moments that we have already calculated, we use Atkin and
Garvan’s rank-crank PDE [7], which states that

k−1∑
i=0

(
2k

2i

) ∑
2α+2β+2γ=2k−2i

α,β,γ≥0

(
2k − 2i

2α, 2β, 2γ

)
C2α(q)C2β(q)C2γ(q)P (q)−2 − 3(22k−1 − 1)C2(q)

=
1

2
(2k − 1)(2k − 2)R2k(q) + 6

k−1∑
i=1

(
2k

2i

)
(22i−1 − 1)δq(R2k−2i(q))(4.1)

+
k−1∑
i=1

((
2k

2i+ 2

)
(22i+1 − 1)− 22i

(
2k

2i+ 1

)
+

(
2k

2i

))
R2k−2i(q),

where δq := q ddq . We once more argue inductively in order to find recurrences for λ2k and λ̃2k as
defined in Theorem 1.2.

Proof of Theorem 1.2. The rank-crank PDE and Theorems 1.1 and 3.1 inductively imply that there
is an asymptotic expansion for the rank moments of the form

N2k(n) = πλ2k(24n− 1)k−3/4I3/2−2k(yn) + λ′2k(24n− 1)k−5/4I3/2−2k−1(yn) +O
(
nk−2eyn

)
.

Lemma 2.2 then implies that

N2k(n) = πλ2k(24n− 1)3/4I3/2(yn) + λ̃2k(24n− 1)k−5/4I1/2(yn) +O
(
nk−2eyn

)
,

with λ̃2k := −3(2k)(2k − 3)λ2k + λ′2k.
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The only terms that contribute to the leading order on the crank side of (4.1) are

(4.2)
∑

α+β+γ=k

(
2k

2α, 2β, 2γ

)
ξ2α,2β,2γ

while the only terms contributing to the main term on the rank side of the equation are

(4.3)
(

2k − 1

2

)
λ2k +

(
2k

2

)
1

4
λ2k−2.

We can now show inductively that λ2k−2 = ξ2k−2. Indeed, adding the terms from (4.2) and (4.3)
and using the formula for ξ2α,2β,2γ shows that the claimed equality is equivalent to the triple product
summation∑

α,β,γ

(
2k

2α, 2β, 2γ

)
B2α(1/2)B2β(1/2)B2γ(1/2) =

(
2k − 1

2

)
B2k(1/2)−

(
2k

2

)
1

4
B2k−2(1/2).

Like (2.8), this is also a specialization of a general Bernoulli polynomial identity that can be found
in [17]. As a consequence of the equality between ξ2k and λ2k, we now have

(4.4)
∑

α+β+γ=k

(
2k

2α, 2β, 2γ

)
ξ2α,2β,2γ =

(
2k − 1

2

)
ξ2k +

(
2k

2

)
1

4
ξ2k−2.

We next consider the second leading term. Using similar reasoning as above, we equate the terms
of second highest order from (4.1), obtaining

(4.5)
∑

α+β+γ=k

(
2k

2α, 2β, 2γ

)
ξ̃2α,2β,2γ =

(
2k − 1

2

)
λ̃2k +

(
2k

2

)
1

4
λ̃2k−2.

Expanding the left side of (4.5) gives
(4.6)∑

α+β+γ=k

(
2k

2α, 2β, 2γ

)
ξ̃2α,2β,2γ =

∑
α+β+γ=k

(
2k

2α, 2β, 2γ

)(
−3 · 2k (2k − 3) ξ2α,2β,2γ + ξ′2α,2β,2γ

)
.

The first term of (4.6) can be evaluated using (4.4):

−3 · 2k (2k − 3)
∑

α+β+γ=k

(
2k

2α, 2β, 2γ

)
ξ2α,2β,2γ = −3 · 2k (2k − 3)

((
2k − 1

2

)
ξ2k +

(
2k

2

)
1

4
ξ2k−2

)
= −3

2
(2k)(2k − 1)(2k − 2)(2k − 3)ξ2k −

3

8
(2k)2(2k − 1)(2k − 3)ξ2k−2,(4.7)

and the second term of (4.6) is∑
α+β+γ=k

(
2k

2α, 2β, 2γ

)
ξ′2α,2β,2γ =

1

4

∑
α+β+γ=k

(
2k

2α, 2β, 2γ

)(
ξ′2αξ2βξ2γ + ξ2αξ

′
2βξ2γ + ξ2αξ2βξ

′
2γ

)
=

1

4

∑
α+β+γ=k

(
2k

2α, 2β, 2γ

)(
−1

4
(2α)(2α− 1)ξ2α−2ξ2βξ2γ −

1

4
(2β)(2β − 1)ξ2αξ2β−2ξ2γ

−1

4
(2γ)(2γ − 1)ξ2αξ2βξ2γ−2

)
.(4.8)
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After using the identity
(

2k
2α,2β,2γ

)
(2α)(2α− 1) = 2k(2k − 1)

(
2k−2

2α−2,2β,2γ
)
(with similar analogues for

β and γ) and making a shift of indices, each of the three terms of (4.8) become alike. Using the
definition of ξ2α,2β,2γ this gives a total of

−3

4
(2k)(2k − 1)

∑
α+β+γ=k−1

(
2k − 2

2α, 2β, 2γ

)
ξ2α,2β,2γ(4.9)

= −3

4
(2k)(2k − 1)

((
2k − 3

2

)
ξ2k−2 +

(
2k − 2

2

)
1

4
ξ2k−4

)
= −3

8
(2k)(2k − 1)(2k − 3)(2k − 4)ξ2k−2 −

3

32
(2k)(2k − 1)(2k − 2)(2k − 3)ξ2k−4.

Combining (4.7) and (4.9) gives∑
α+β+γ=k

(
2k

2α, 2β, 2γ

)
ξ̃2α,2β,2γ = −3

2
(2k)(2k − 1)(2k − 2)(2k − 3)ξ2k

− 3

4
(2k)(2k − 1)(2k − 2)(2k − 3)ξ2k−2 −

3

32
(2k)(2k − 1)(2k − 2)(2k − 3)ξ2k−4.

It is now easy to see that the expression

λ̃2k = −3 · 2k(2k − 3)ξ2k −
3

4
2k(2k − 1)ξ2k−2

from the theorem statement is the unique solution to (4.5). �
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