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BIASES AMONG CLASSES OF RANK-CRANK PARTITIONS (mod11)

KATHRIN BRINGMANN AND BADRI VISHAL PANDEY

ABSTRACT. In this paper, we prove inequalities for ranks, cranks, and partitions among
different classes modulo 11. These were conjectured by Borozenets.

1. INTRODUCTION AND STATEMENT OF RESULTS

We start by recalling Ramanujan’s famous congruences for the partition function p(n).
He proved in [11] that for n € Ny,

p(bn+4) =0 (mod5), p(Tn+5)=0 (mod7), p(lln+6)=0 (modll). (1.1)

To combinatorically explain the first two congruences, Dyson [8] introduced the rank of a
partition A. This is given by

rank(\) := largest part of A — number of part of .

Dyson also conjectured the existence of another partition statistic that would explain all
of the three congruences, which he called “crank”. Garvan discovered the so-called vector
crank in [9], which was subsequently reformulated by Andrews and Garvan as the partition
statistic crank [2]. This successfully completed the search for combinatorial decompositions
of the three congruences in (1.1). If o(\) denotes the number of ones in A, and p(A) is the
number of parts strictly larger than o(\), then the crank is defined as

largest part of A if o(\) =0,

crank(\) := {M()\) —o()\) if o(\) > 0.

Let M(m,n) (resp. N(m,n)) denote the number of partitions of n with crank (resp.
rank) m. Moreover denote by M(a,c;n) (resp. N(a,c;n)) the number of partitions of
n with crank (resp. rank) congruent to a (modc). There are many inequalities known
about ranks and cranks. For example Andrews and Lewis [3] proved several inequalities
and conjectured the following:

M(0,3;3n) > M(1,3:3n),  M(0,3;3n+1) < M(1,3;3n + 1),
M(0,3;3n+2) < M(1,3;3n+2) wunless n € {1,4,5},
N(0,3;n) < N(1,3;n) ifn=0,2 (mod3),
N(0,3;n) > N(1,3,n) ifn=1 (mod3).
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The inequalities for the crank have been shown by Kane [10] and the ones for the rank by
the first author [5]. Since then there has been many studies of such inequalities (see e.g.
6, 7).

Recently, Borozenets [4] considered rank and crank statistic modulo 11, where he proved
many inequalities among different classes of rank and crank modulo 11 as well as conjec-
tured some new inequalities among them. The goal of this paper is to prove the following
conjectures made in [4]. To state them, throughout, for sequences a = {a(n)}>2, and
b = {b(n)}>,, we use the notation a <y b (resp. a < b) to mean that a(n) < b(n)
for n > N (resp. n > 0). For 0 < j,d < 11, define N,4(n) := N(j,11;11n + d),
M;4(n) == M(j,11;11n + d), and pg(n) := p(11ln + d).

Conjecture 1.1 (Conjecture 6.15 of [4]). We have the following inequalities

Po
11
P
11
P2
11

N5o < Nyo <o Ngg <M< < Moo <1 Noo < Ny <3 Nop,

Ns1 < Nyy < N3y <y My < My,

IN

<My <4 Noy < Nijg < Ny,

N5o < Nyg < N3y < Mo

IN

< Mo <4 Nag < Nyg <3 Nypo,

N5z < Nyz < N33 < M3 < % < Mp3 < Nas <y Nig <y Noyg3,
Nsa <3 Nyg < N3y <3 My < % < Moa <y Noy < Nig <3 Nou,
Nss < Nys <1 Ngs < Mys < % < Mys < Nas < Nys < Ny,

N5 <1 Nyg < N3 < % < Nog < Nig <1 Nog,

Ns7 < Ny7 < N3z < Moy < % < M7 < Nyy <y Niz < Ny,

Nsg < Nyg < N3g < Moyg <3 % <3 Mg < Nog < Nyg <3 Nog,
N5g < Nyg < N3g <y Myg < % < Mg < Nyg < Nyg <o Nyo,

P1o

N510 < Nyo < Nzjog <y M3 < T < Mop10 < Najo < Nijo <z No 0.

In this paper we prove this conjecture.
Theorem 1.2. Conjecture 1.1 is true.

The paper is organized as follows: In Section 2 we state generating functions for our
combinatorial objects. In Section 3 (resp. Section 4) we determine the asymptotic behavior
of the crank (resp. rank) with an explicit error term. Section 5 is devoted to the proof of
Theorem 1.2.

ACKNOWLEDGMENTS

The authors have received funding from the European Research Council (ERC) under

the European Union’s Horizon 2020 research and innovation programme (grant agreement
2



No. 101001179). The authors would like to thank Caner Nazaroglu for helpful discussions
and great suggestions on Mathematica implementation.

2. GENERATING FUNCTIONS

In this section, using orthogonality of the roots of unity, we write the generating function
for the crank (resp. rank) in an arithmetic progression in terms of the crank (resp. rank)
function specialized at roots of unity. We consider the generating functions

= 2 Mm,m¢"q" = (Ca;q)

= Z N(m7 n)gmqn =

where (a;q), = H;L:_é

units (¢, :=e¢ ), we have

ZMacn

and

ZNacn

(4 @)oo
oo (CT1430)

n>0
meEZ

o¢] ,n2

q
; (Cq: D)oo (CT1g39) o,

n>0
meEZ

(1 —aq’), a € C, n € NgU {oc}. Using orthogonality of roots of

Zp n)q" + — ZC‘”C

Zp n)q" + — ZC YR (

Now assume that c¢ is odd. Noting that

C (¢ 75 q)

we may write

ZMacn
ZNacn

To prove Theorem 1.2, let

CW(n) .= M(a,11;n) —
C([f; ey(n) = N(ay, 11;n) —
Cc[i e (M) = M(a1,11;n) —

=C(La),  R(C59) =R(¢Gq),

c—1

Zp n)q +—§:COS<2WCQ‘7) C(¢q),

) R(ca).

Zp n)g" + = Zcos(

P o)

2l(n) .= N(a, 11:
11 Y CCL (n) (a'? ’/n' 11 Y
N(as,11;n),  CY . (n) := N(ay,11;n) — M(az, 11;n),
M (ag,11;n).



Write

Jj= Jj=
5 .
2 2ra 2ma
3 1] 2]
‘[”]m(”):ﬁ;(cos( 11 )_C ( 11 )) i)

2 & 2mayj 2masj
[5] _ “ iy 2 _
Cotl an (1) T g (cos ( T ) cos ( T )) A;(n).

j=1
3. APPROXIMATING CRANKS

The goal of this section is to approximate M (j,11;n) with an explicit error. For h,k
coprime, let i’ be a solution to hh' = —1 (mod k) if k is odd and to hh/ = —1 (mod 2k) if
k is even. For ¢ | k, define the Kloosterman sum

. ) . mJ Wh ke _mig?kh) omi oy
Bj7c’k(n, m) = (—]_)Jk-i—l sSin (7) Z w€ 2 ek (nh+ h)’
h (mod k) S\
where the sum runs over all h modulo k that are coprime to k and we have (see [1, equation
(5.2.4)])

h
(_Th) 6—7ri(%(k—l)+l—l2(k—%)(Qh—h'-‘thh’)) if kis Odd,
Here (-) denotes the Kronecker symbol. Moreover, let dg := 1 if a statement S is true and

0g := 0 otherwise.

Lemma 3.1. We have, for 1 < j <5,

M(j, 11;n) = M; () + sin (ﬂ) M),

(—_k) o~ (5 @—hk—h)+15 (k=5) (2h=R+R2D)) e b odd,
Whk =

11
where
43 7/24n — 1\ [iB%;1,(—n,0) s
M;(n) = \/ﬁsmh ( 66 ) ( ]71171\/1ﬁ + 2sin (ﬁ) 0j=1 (mod11) | »

and where 5}»1] (n) may be bound against

184 3 <7T\/24n —1

nt sinh
132
4

ﬁ”@\ < &(n) =

] < ) + 7749107 + 1324.9n8 + 36620.2.
11v3



3.1. The asymptotic formula. From Theorem 1.1 of [12] it is not hard to conclude that,
for € > 0, we have

Ain(n) = 4V/3i Z Bjna(=n,0) k —n,0) sinh <7T7V24n_1) (3.1)
i VoI —1 - 6k '
11k

) M Z Djqik (_nu m;fll,k,o) sinh (@) + 0 (n%),
NI Vk 06K

1<k<\/n
114k
jk=+1 (mod11)

. +
with M ko € 7, and

Djcx(n,m) := (=1)7*+¢ Z o kezzz (o)
h (mod k)*

where 1 < ¢ < 10 is the unique solution to ¢ = kj (mod11).

3.2. The main term. The term k& = 11 from the first sum and the term k& = 1 (if it
occurs) from the second sum in (3.1) have the same size, and their sum is equal to

43 Bj11(=n,0) m/24n —1
NeITE i sinh (766 )
8v/3 sin (%)

i 24n — 1

/24N — 1)
66 )

+ .
=1 (modll)Dj,ll,l (—n, mj,ll,l,O) sinh (

The main term in Lemma 3.1 follows by evaluating
D11 (—7% m;f11,1,0) = (_1)j+€ =L

3.3. Error bounds. In this subsection we absorb the remaining terms into the error
term. We first bound the contribution from the first term in (3.1) with & > 22. This can
be estimated against

43 (7‘(‘])
ALy Ly
24n —1 1 22<k<f\/_
11]k

4f 3 sin ( ) sinh (”Vﬁz‘g ) Vi
<
- v24n — 1sin 11) 22<;\F

11|k
- 88111(11)71% ‘h<7n/24n—1)
sinh | ————— |,
T 11324 — 1 132

) (7‘(‘\/2471 — 1)
sinh ek

L
(%)

4+/3 sin (7{—]) sinh (’”24"_1> 9 .

132 3
n4

v/24n — 1sin (11) 33
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(3.2)

where, in the penultimate step, we use that
S k<2l
3c
1<k<yn
clk
The contribution from the second sum in (3.1) with & > 2 can be bound against, using
(3.2) with ¢ =1,
8v/3sin (I V2dn —1 16 sin V24n — 1
I ) (WERL) S Vi< o) )t (V2T
V24n =1 ey V3v2dn —1 132
To make the error term in (3.1) explicit we follow the proof of [12] (which follows the
proof of [5]) using the notation in there. From [12] the error that is obtained by bounding
the non-principal part of 3; is
1
| Serr| < 2¢2™ 3 sm( ) (02 + 2 (1 + cos (11) ca(1+ 02 Z k3 Z T
1<k</n 1<h<k [sin (53) |
11k ged(h,k)=1
where
00 o 7rm(m+1)
DO e —ZP
We bound
6—7'('
< — M= ————.
1—e mz::l (1 — e‘“)
Moreover, using that p(n) < exp(my/%), we estimate
p(n)e ™ < e”@_”" <e T for n > 3.
Thus we get
0 TS
e <p(l)e ™ +p2)e T+ Y e F =T 42 4 (3.3)
= 1—e2

Moreover, we have

_3 1
2 Y )

1<k<n 1<h<k

_11_\1@\/_ ged(h,k)=1

using that
Vn 1
1 1 1 T 1 \/ﬁ 2n4
k72 =112 — <1172 idr = 117224/ Y= =
2 2 /0 o 11 11
1<k<y/n 1<k<Yn
6
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Thus, we get

|Sure| < 200.25in (%) ni.

We next estimate the contribution from the non-principal part in 5. From [12] this
may be bound against

|Ter| < 16 f(11) sin (%) ni, (3.5)
where e
1 mTop(C 1
£(0) = e O (1 ) e e + L,
— e c
where . ' '
do(c) i= — + — — —
(9= 53+ 51~ 2
and thus do(11) = z5;. Moreover we have
= e L(?H) ol o3
37‘rm
€3 = T—TTm ™ e 37\
m:21—e 1—6 mz:; (1_6—7r)<1_6—37>

Plugging these bounds into (3.5) we obtain
ITo| < 36928.5 sin (%) nt.

Next the error obtained by symmetrizing the first main contribution may be bound
again, using (3.4),

[1 ] 27r—|—1ll 2 iil
‘Sm‘“m(n)e AT, 2 ]

11

0<h<k<y/n
ged (h,k)=1
11|k
< 2sin ™ 2™t 1z 1 3n < 898.1sin ™ ni
11 sm( ) 11 11 '

The error obtained by symmetrizing the second main term contribution may be estimated

against
) 7j e 7j
} < 32¢*™ sin (11) mnz S 39464.1 sin <ﬁ) n4+.

Next we have the errors obtained by integrating against the smaller arc

4 (% + 2%> sin (%) (1 4 log(5))e*™+12 7 2
ns < 1324.9sin 1

7-‘-2
r(1-%)
4 5 ] 627r60+27r ) 7Tj
8<§+24)Sln(11) m §366202SIH ﬁ .
7
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err
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Combining gives that overall error can be bound against

7rj 8n1 m24n — 1 16n1 . (m/24An—1
sin smh + sinh { ———
11v/3/24n — 132 V3240 — 1 132

1+9200.2n4 + 36928.5n4 + 898.1ni + 39464.1ni + 1324.9n5 + 36620.2) .

Simplifying gives the claim.

4. APPROXIMATING RANKS
The goal of this section is to show the following approximation of B;(n).
Lemma 4.1. We have, for 1 < j <5,
8+/3 sin (%)

Biln) = —5=—=

66 11

5m/24n — 1) +sin (71({) 5[2}(71),

0j=1 (mod11) Sinh <

where 5}2] may be bound against

10.74n7 N /24 — 1
— SIIl _—
V2n — 1 132

4.1. The asymptotic formula. Using Theorem 1.1 of [5] it is not hard to show that

)5[2](71)‘ < &(n) =

j ) + 18092.8n1 + 40707.2n7 .

4\/_2 jllk‘ ) . 7T\/247’L—1
Bj(n) = N 1<kz<f sinh (T) (4.1)
11)k

M Z Dj’ll’k(_n’ mj’n’k’o) sinh (w) + O (n€>
V24n — 1 Vk 66k '

1<k<\/n
111k
jk=+1 (mod11)

Here m; 110 € Z, and for ¢ | k, we have

. 7T] Wh,k _ 3mij2kh 2mi /
Bjcr(n,m) := (—1)"*sin e e ek (nhimh)
15Cs ) IS sin (W]h ) )
h (mod k)*

and
Dj.r(n,m) = (_1)jk+£ Z o, kezgz (nh-mh! )’
h (mod k)*
where, just like in the case of cranks, 1 < ¢ < 10 is the unique solution to jk = ¢ (mod 11).

4.2. The dominant term. The main contribution in Lemma 4.1 comes from the term

k =1, which only occurs if / =1 and thus j = 1.
8



4.3. Error bounds. As in the case of the crank, we first bound the first sum in (4.1)
against

. (mj\ 3
Z | B, 11k —n,0)] mh(m/%n— 1) - 1.5sin ($2) nt Sinh<7r\/24n— 1)
\/2471— \hem 6k T V24n -1 66 ’
11k

using again (3.2).
Similarly, the contribution from k # 1 from the second sum can be bound against

16 sin (32) n% il <5m/24n — 1)
132 ‘

V324 —

We now look at the O-terms and make these explicit. We follow the proof and the
notation of [5]. We bound the Kloosterman sums trivially. The contribution from Sy may
be estimated against

. 7Tj 1 2 \/ﬁ 27rk T ﬁ)g
|52|§sm(ﬁ) Z }Sm mh)‘k +1)\f Z|a

0<h<k<y/n r=1

2¢>™\/n sin (11) (e (=) 1
(L\/_J+1)Sln(11);| " 1§§\/ﬁk%.
1]k

To bound the sum on k, we use (3.4). For the sum on r, we require the estimate from

Section 5 of [5]
> " la(r)|e™™ < 0.06.

r>1
Combining gives that
2-0.06sin (32) - 2
11sin (11)

77 7
S| < ™ 3int < 47.3sin (—j) ni.

11

We next bound the non-principal part from ), against

i ﬂ —2 n 27r ”__ e 1ok 1122
wn(f) T S 2

0<h<k<n r>1
ged(h,k)=1
114k

where b(r) is defined via

2,11)¢ 302
27rzhlsa 3mih fl2k1 +67‘rih,la+ T ol Cl) ;CZ ’ EC 2mimph/ _ _ mir
e cep cer T 12kz g N ah',—,c;q1 | =: E b(re * e 1k, (4.3)
C1

9



where s(¢, c) is defined in (1.9) of [5]. We first show that
S Jb(r)]e 290 < 2.8,
r>1

By taking k =1,¢ =1, =0 in (4.3) we have, for ¢ € R,

s(£,11)¢ 3[

q_ﬁ+T_2 112 \V O £ 11: q Zb r)q24 112

r>0
By definition
N(0,¢,11;q)
_ ; Z (—1)mg 2 (3m+1)+ms(£,11)+ 55 B Z 2 (3m+1)—ms(£,11)— 25
2(# 900 \ 750 1—gmti m>1 1—gm i
Thus, we have
b(r) g o S
> b(r)lg
r>0
a m(3m+l)+ms(z 11) m(3m+1)
q q 2 ’ g 2
=P z (@)
2 e A m>1
where P(q) := (q;;)m = >0 P(n)q". We bound the first sum, for 0 < ¢ <1,
m(3m+1) +m8(€ 11) 1

(4.4)

2).

s(€,11)

> < |
>0 (1 _ qli) (1 _ q§+s(z,11)>

For the second sum, we estimate

mEMED s (e,11) 2—s(£,11)

q

+

Z ! < £ ¢ 7 ’
m>1 i 1—g'"m (1 — q2‘ﬁ) (1 — g2 ))

Thus, for ¢ = ¢~ and using the bound (3.3), we get

D 1b(r)le™ i < o (3

r>0

s(2, 11)2 302

1
W)ﬁ (1+6—W+26—27r+

Y



We now see that this contribution is maximized for ¢ = 1 (in which case s(¢,11) = 0) and
in this case can be bound against < 2.8. This gives (4.4).
Thus (4.2) may be estimated by

4sin (%) 2y/n 2 ( ) 5 ( ) 1
——r 7. 28 — < 4sin 2eT . 2.8 oni < 8567.9sin 1,
[Vn] +1 1<kz<\f\/g 11 11

bounding the sum on k against
\/ﬁ 1 1
/ x”2dr = 2n4. (4.5)
0

Next the contribution from S}5 gives (Si3 yields a contribution of exactly the same size)

o (T 1 2 VI EE( k) ek
sl <sin () % AT e e

0<h<k<y/n
11k
ged(h,k)=1
_ 2sin (§) i v oL 2sin () €770 2 4 cossin <ﬂ> ni
sin () 131@3\/6\/% sin (7 11 1

11k

where we use (3.4) to estimate the sum on k. Next the corresponding contribution from
>, may be bound against

sin ﬂ #\/ﬁe%ﬂ("_ﬁ)e%k
(%) T s ’

0<h<k<\/n
ged(h,k)=1
11k
r>0
611,k,»>0

where 0., is defined in (1.13) of [5]. We determine for which values d1; 5, > 0, namely
jk = £1 (mod1l), r = 0, and 1140 = in both cases. Thus we bound the above
against, using (4.5),

‘ 1 ‘
2sin <%) €2 70n 2 Z i S < 4sin <71T‘{) nie? i t2T < 2261.1sin <71T‘{> ni,

1<k<y/n
11tk
jk=+£1 (mod11)

25
2904

On the smaller arcs we have the same estimates as on S;; and we obtain a contribution
of the sine.
Finally >3 may be bounded against

. 2
. ™) 1
e (E) ¥ Y
0<h<k<ym v=0
ged(h,k)=1




where z := £ + k®i and where the Mordell integral I, 14 ,(2) is defined in [5]. We next

bound the Mordell integrals, making Lemma 3.1 of [5] explicit as (H; . is defined in [5])
k / k2 (m’u i )

sy i P - P (AL
o 7r|z|§ R » k 6k

dt

1
22111 5,0(2)

= b [y cosh (%2 — § — 1) e
mlz|2 Jr sinh (T% — I — ¢ 4 W) ginh (T — T ¢ — 7))
Now, for a,b € R,
2|al .
Ty T _ N2 £ if |a|] > 1,
h{————1t]| < cosh(t h b|*><¢ 6
cos ( i )‘ < cosh(t), |sinh(a + ib)|” > {sin(b)2 if o] < 1.

Thus, using that Re(1) > g

1 k t2
Z§Ij7117kvy(2)‘ S I (6/ e 327r COSh( ) 2\t|dt
2 |t>1

7|z|2
+/ — e Ej cosh(t) — dt)
<t [sin (B — & 4+ T) | [sin (3¢ — & — T

< kl <0.21 +— MO 64 — ) .
EE [sin (B — g + 5| [sin (% — & — )|
Now note that o £ &4 ¢ Z. Thus we bound
T T L (222 22T s i () sin (L )
AT Tk T M\ E Ter 11 " 66k 66k 11

a0 (77)
> 66 2 sin :
using that for 0 < < 7, sin(x) sin(x + ;) > xsin(57). This gives that
48>

|22

k
| |;(0 21 4 47.73k) <
zl2

1
2211 k0 (2)| <

Using |2| > £ we obtain

mlern (i) 2 1) Earter

0§h<k§f
ged(h,k)=
o A 48sin (5) sin (5) yine” S kP < 40707.2sin (ﬂ) ni.
- [vn] +1 1< 1

Combining gives as error
12



)\ Va1 " 66 V32 — 1 132

+47.3n3 + 8567.9n4 + 3 - 898.1n1 + 3 - 2261.1n4 + 40707. 2n3) .

(7] 150t | (m/2dn—1 16 s . (bmy/2dn—1
sin h{ ——— | + ntsinh [ ———

Simplifying gives the claim.
5. PROOF OF THEOREM 1.2
We are now ready to prove Theorem 1.2.

5.1. C[[ll](n). We need to show that

M, 4(n) — pui(n) {> 0 if (a,d) € Sy,

11 <0 if (a,d) € S,
where

Sy = {(070>7 (17 1>7 (272>7 (073>7 (074>7 (075)7 (177)7 (178>7 (179)7 (07 10)}7
Sy :=4(1,0),(2,1),(0,2),(1,3),(1,4),(2,5),(0,7),(0,8),(0,9), (3,10) }.

For (j,d) € {(0,8), (1,8)}, we need to additionally assume that n > 41. To show the claim,

we require
5 , :
21aj >0 if (a,d) € &y,
2 —= ] A
2 o8 ( 11 ) () {< 0 if (a,d) € Ss,
where n = d (mod 11). A computer check gives that the claim holds for n < 1779 (up to

the above mentioned exceptions).
For n > 1780, we use Lemma 3.1 so that the left-hand side equals

5
\/%L_is_lsinh (“ 2dn— )( Z 2”’ B;nn( n,0)+4sin(1i)cos(2’m)>

+2 Z sin (32) cos ( 2”?) 5}1](71).

A numerical check gives that for (a,d) € Sy, the first summand is positive and for (a,d) €
8o, it is negative.
Let for (CL, d) c 81 U 82

5 .
2mag . s 2ma
Gaa(n) == 4V3 <—1 Zcos (T) Bj 1y 11 (=11n — d,0) + 4 sin <11) cos (T)) .

We compute

Z'B;'k,n,n(_ma 0)
13



e oS ?’{ m— 5 + 10 oS i—’r 2m—|—5£+7
:2(—1)15111(1_{) _ ( Em(]) ))_ ( <Sm(57rj) >)

11 11

_ cos (22 (3m — 25+ 2)) o (%_ﬂ <4m - 3£ + 2)) cos (22 (5m + j2 + 4))

sin (41“1]) sin (31’? ) sin (21”13)
A computer check gives that for n > 1780, we have
2\/24(11n + d) — 1& (11n + d) o [sin () cos (B5)| _ |
max :
. (m/24(11n+d)—1) (a,d)€S1US ga,d( )
sinh — %6

This gives the claim.
5.2. C[[lz](n). We need to show that

Pll(n)
11

N3g(n) < < Nag(n)

<:>2Zcos( ) (11n+6) < 0, 2Zcos( ) (11n+6) >0 (n =6 (mod11)).

A computer check gives that this is true for n < 45.
For n > 46, we use Lemma 4.1. This gives for the sums of interest (a € {2, 3})

2COS<2m) V3sin (%) 1Sinh<57r\/24(11n—|—6) 1)

11 /) \/24(11n + 6) 66
° 2mayj T
: (2]
+2 11n +
E cos( 11 )sm(ll)g (11n 4 6).

2T
11

So the sign of the main term is dictated by cos(2£%) which is positive for a = 2 and negative

for a = 3 as desired.
To finish the claim, one can show that for n > 46,

2E(11n + 6) Z;’ 1 |cos (242 | sin (32)

8\/_s1n 7w/ 24(11n+6)—1
2 }cos 27”’ } “ sinh Sy 24(1nt6) 71
\/24(11n+6)— 66

53. ¥, (n). We need to show that

Ns.q(n) < Nya(n) < Njq(n), Ny a(n) < Nig(n) < Nog(n).

If (d,a1,a2) € {(3,1,2),(5,3,4),(6,4,5),(6,0,1),(7,0,1)}, then we need to additionally
assume that n > 11, if (d, a1, a2) € {(0,3,4),(3,0,1), (9 , 1)}, then we require n > 22, and
14

< 1.




if (d,a1,a2) € {(0,0,1),(2,0,1),(4,3,4),(4,0,1),(8,0,1),(10,0,1)}, then we let n > 33.
The claim follows if we prove that

Naa(n) — Nagp1.a(n) >0 for 0 <a < 4.

Thus we need
5 . .
3] 21ay 2r(a+1)j
Conr1(1ln+d) > 0= 2 ;:1 (COS ( 5 ) — Cos (T B;(11n+d) > 0.

A computer check gives that this is true for n < 46 (up to the above mentioned exception).
For n > 47, we again use Lemma 4.1. The overall difference is

83 : 57 27a 27 (a+1) : T
BT sinh (@\/24(1171 +d) — 1) 2 (cos (22¢) — cos (T)) sin ()

5
+2 Z ’cos (24) — cos (W) ‘ sin (%) 5][-2}(11n +d).
j=1

11 11 '

To finish the claim, we show that, for 0 < a < 4, and n > 47,
2&(11n +d) Z? ) }cos (242) — cos <2W(‘f{l)j) ‘ sin ()

83 : 5w : s 2ma 27 (a+1)
it sinh (E\/Qél(lln +d) — 1) +2sin (&) (COS (222) — cos ( T ))

54. ckl,, (n). We need to show that

Now

< 1.

>0 if (al,ag,d) € Sl,

]\4,11 - Naz ]
a(n) a(n) {< 0 if (a1, az,d) €Sy,

where

{(]‘? 37 O)? 07 37 1)7 (07 37 2)? (17 3? 3)7 (17 37 4)? (2? 37 5)7 (O? 3? 7)? (07 37 8)?
(0,3,9),(3,3,10)},
{(O? 27 O)? 17 27 1)7 (27 27 2)? (07 2? 3)7 (07 27 4)? (O? 27 5)7 (]‘? 2? 7)? (17 27 8)?

(1,2,9),(0,2,10)}.
If (a1,a9,d) € {(0,2,0),(0,3,1),(1,2,1),(2,2,2),(1,3,4),(0,2,4),(0,3,9),(3,3,10) }, then
we need to additionally assume that n > 12. A computer check shows that the claim holds
for n < 44 (up to the above mentioned exception).

We next turn to n > 45. Note that from the asymptotics above the main term from the

rank is dominant. Thus main term contributes

1 2
6v3 sinh (2—2 V24(11n 4 d) — 1) sin (1) cos ( 7m2> :

V24(1ln+d) — 1 11 11

Sli
SQZ

o~~~ —~

15



Note that as determines whether we are in S; or Sy. Since

4 o6
cos <ﬁ) > 0, cos (ﬁ) < 0,

the above expresssion is positive if a; = 2 and negative if ay = 3.
Using Lemmas 3.1 and 4.1 the error term is bounded by
2raxg \| . (7]
cos sin [ —=
11 11

: 5
2maig \ | .
cos( 11 )‘Sl (11)+252(11n+d
j=1
27m2j
|M;(11n + d)|.

5
26, (1n+d) >
j=1

11

5
2 g Ccos
j=1

We estimate

5

2

J=1

8v/3sinh <—V“"+d) )

27m2j) '
cos M;(11n+d
< | I V24(11n +d) — 1

2magj . (T <7r>
cos( )‘sm(ll)—i-QSm 11

The maximum is obtained for a; = 3 and this can be bound against

374 1sinh <”—V24(””+d"1)

5

11
X max
a2€{2,3} (sm I Z

jzl

oo (22)])

66

V24(1ln+d) — 1

2mazg \| . (7)
Cos ST
11 11

is obtained for a; = 3. It can be bound against 4.58. Finally

Similarly
5

2 max
a2€{2,3} £
Jj=1

5

5 2rarg\| . (7]
max COS SIin | —
— 11 11

0<a, <3 4
i

is obtained for a; = 0 and is bound in this case by 7. Thus the error can be estimated
against

66

374.1sinh <—”V 24(””*‘“‘1)

7€ (11n + d) + 4.58E(11n + d) +

16

V24(1ln+d) — 1



A computer calculation shows that for ay € {2,3} and n > 45
374.1sinh (7“\/m )

66

TE (110 + d) + 458 (11 + d) + —— P

\/24(1161\7{?1—@—1 sinh (2_2\/24(1171 +d) - 1) sin ({7) |cos (472) |

5.5. C[[{?M(n). We need to show that for all n € Ny
Mo(n) < Maq(n).
This follows by Corollary 4.1 (4) of [12].

< 1.
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