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1. Introduction and statement of results

The goal of this paper is to improve existing bounds for Fourier coefficients of higher genus
Siegel modular forms of small weight.

To recall what is known for genus 1, let ∆(τ) := q
∏∞

n=1(1 − qn)24 (q := e2πiτ ) be the
classical ∆-function and denote by τ(n) its Fourier coefficients. The Ramanujan conjecture
states that, for p prime,

|τ(p)| ≤ 2p
11
2 .

This conjecture has been generalized for general, positive integral weight modular forms.
The so-called Ramanujan-Petersson conjecture states that if f(τ) =

∑∞
n=1 a(n)qn is a weight

k cusp form on a congruence subgroup, then, as n→∞,

(1.1) a(n)�ε,f n
k−1
2

+ε (ε > 0).

The estimate (1.1) follows from Deligne’s proof of the Weil conjectures [7, 8], using highly
complicated methods from algebraic geometry.

There are many related conjectures for more complicated types of automorphic forms. In
this paper, we consider the case of Siegel modular form of genus g > 1. For this, let F be a
cusp form of weight k ∈ N with respect to the Siegel modular group Γg := Spg(Z) ⊂ GL2g(Z)
with Fourier coefficients a(T ), where T is a positive definite symmetric half-integral g × g
matrix. Then a conjecture of Resnikoff and Saldaña [16] says that

a(T )�ε,F det(T )
k
2
− (g+1)

4
+ε (ε > 0).

For g = 1 this is exactly the Ramanujan-Petersson conjecture. For higher genus g, however,
there are counterexamples coming from lifts (cf. [13]).

For k > g + 1, the best known estimate is

a(T )�ε,F det(T )
k
2
−cg+ε (ε > 0),(1.2)

where

cg :=


13
36

if g = 2 [13],
1
4

if g = 3 [3],

1
2g

+
(

1− 1
g

)
αg if g > 3 [2].
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Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC
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Here

(1.3) α−1
g := 4(g − 1) + 4

[
g − 1

2

]
+

2

g + 2
.

In [4] and [5] it was shown that (1.2) still holds for k = g + 1 and k = g, respectively.
Moreover, for (g + 3)/2 < k < g, we have [5]

(1.4) a(T )�ε,F det(T )
k
2
−(1− 1

g )αg+ε.

In this paper we improve (1.4) and obtain

Theorem 1.1. We have for g/2 + 1 < k < g

a(T )�ε,F det(T )
k
2

+ g−k
2g(g−2)

− 1
2g
−(1− 1

g )αg+ε.

Remark. Theorem 1.1 is indeed an improvement since

g − k
2g(g − 2)

− 1

2g
< 0.

Our proof follows the idea of [2] using a Jacobi decomposition of Siegel modular forms.
Our main achievement is an improved bound for Kloosterman sums.

The paper is organized as follows. In Section 2 we recall basic facts about Jacobi forms
and their relation to Siegel modular forms. In Section 3 we bound higher dimensional
Kloosterman sums. Section 4 is devoted estimating coefficients of Poincaré series, in Section 5
we then conclude our main theorem.
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2. Preliminaries

2.1. Basic facts on Jacobi forms. Here we recall some basic facts about Jacobi cusp forms;
for details we refer the reader to [9] and [19]. The Jacobi group ΓJg := SL2(Z) n (Zg × Zg)
acts on H× Cg in the usual way by (( a bc d ) ∈ SL2(Z), (λ, µ) ∈ Zg)((

a b
c d

)
, (λ, µ)

)
◦ (τ, z) :=

(
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
.

Note that throughout vectors are viewed as columns unless noted otherwise. Let k ∈ N, m
be a positive definite symmetric half-integral g × g matrix, γ = (( a bc d ) , (λ, µ)) ∈ ΓJg , and
φ : H× Cg → C. Then we define the following Jacobi slash action

φ|k,mγ(τ, z) := (cτ + d)−ke
(
−c(cτ + d)−1m[z + λτ + µ] +m[λ]τ + 2λTmz

)
φ(γ ◦ (τ, z)),

where e(w) := e2πiw (∀w ∈ C) , and where A[B] := BTAB for matrices A and B of
compatible sizes.
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A holomorphic function φ : H×Cg → C is called a Jacobi cusp form of weight k and index
m with respect to ΓJg , if, for all γ ∈ ΓJg , we have φ|k,mγ = φ, and φ has a Fourier expansion
of the form

φ(τ, z) =
∑
D>0

c(n, r)e
(
nτ + rT z

)
,

where D := det
(

2n rT
r 2m

)
with n ∈ N and r ∈ Zg. We denote by Jcusp

k,m the vector space of
Jacobi cusp forms.

The space Jcusp
k,m is a finite dimensional Hilbert space with the Petersson scalar product

〈φ, ψ〉 :=

ˆ
ΓJg \H×Cg

φ(τ, z)ψ(τ, z) exp
(
−4πm[y] · v−1

)
vkdV J

g ,

where dV J
g := v−g−2dudvdxdy, τ = u+ iv, and z = x+ iy.

2.2. Jacobi Poincaré series. We next recall certain Jacobi Poincaré series, as considered
in [2]. For n ∈ Z, r ∈ Zg, and m a positive definite symmetric half-integral g × g matrix
such that 4n > m−1[r], define a Poincaré series of exponential type by

(2.1) Pk,m;(n,r)(τ, z) :=
∑

γ∈ΓJg,∞

∖
ΓJg

en,r
∣∣∣∣
k,m

γ(τ, z),

where en,r(τ, z) := e2πi(nτ+rT z) and ΓJg,∞ := {(( 1 n
0 1 ), (0, µ))|n ∈ Z, µ ∈ Zg} is the stabilizer

group of en,r. For k > g + 2, Pk,m;(n,r) ∈ Jcusp
k,m and the Petersson coefficient formula holds

(φ ∈ Jcusp
k,m with Fourier coefficients cφ),

(2.2)
〈
φ, Pk,m;(n,r)

〉
= λk,m,Dcφ(n, r),

where
λk,m,D := 2−

g
2 Γ
(
k − g

2
− 1
)

(2π)−k+ g
2

+1 det(2m)k−
g+3
2 D−k+ g

2
+1.

For k ≤ g + 2 the Poincaré series (2.1) diverge. However there is a way to analytically
continue them, using the so-called Hecke trick. We denote the corresponding functions again
by Pk,m;(n,r). We have [2, 4, 5]:

Proposition 2.1. For k > g/2 + 2, the functions Pk,m;(n,r) are elements of Jcusp
k,m . We have

the Fourier expansions

Pk,m;(n,r)(τ, z) =
∑

n′∈Z,r′∈Zg
D′>0

g±k,m;(n,r)(n
′, r′)e

(
n′τ + r′T z

)
,

where D′ := det
(

2n′ r′T

r′ 2m

)
and

g±k,m;(n,r)(n
′, r′) := gk,m;(n,r)(n

′, r′) + (−1)kgk,m;(n,r)(n
′,−r′)

with

(2.3) gk,m;(n,r)(n
′, r′) := δm(n, r, n′, r′) + 2πik det(2m)−

1
2

(
D′

D

) k
2
− g

4
− 1

2

×
∑
c≥1

e2c

(
rTm−1r′

)
Hm,c(n, r, n

′, r′)Jk− g
2
−1

(
2π
√
DD′

det(2m)c

)
c−

g
2
−1.
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Here ec(x) := e
2πix
c ,

δm(n, r, n′, r′) :=

{
1 if D′ = D and r′ − r ∈ 2mZg,
0 otherwise

and the Kloosterman sums

Hm,c(n, r, n
′, r′) :=

∑
λ (mod c)
d (mod c)∗

ec
(
(m[λ] + rTλ+ n)d+ n′d+ r′Tλ

)
,

where by λ (mod c), we mean that all components run (mod c) and d (mod c)∗ sums only
over d (mod c) which are coprime to c. Moreover formula (2.2) holds.

Remark. Note that in [2] the Kloosterman sums have a slightly different normalization.
Proposition 2.1 gives that for k > g/2 + 2 the Pk,m;(n,r) are a generating system of Jcusp

k,m .
We easily obtain, just using the Cauchy-Schwarz inequality

Lemma 2.2. For k > g/2 + 2 and φ ∈ Jcusp
k,m with Fourier coefficients cφ(n, r), we have

|cφ(n, r)| �k

∣∣bn,r (Pk,m;(n,r)

)∣∣ 12 D
k
2
− g

4
− 1

2

det(2m)
k
2
− 1

4
(g+3)
‖φ‖,

where bn,r(Pk,m;(n,r)) denotes the (n, r)th Fourier coefficient of the Poincaré series Pk,m;(n,r).

Thus, to get bounds for the Fourier coefficients of Jacobi forms, one only has to bound
the Fourier coefficients of the Poincaré series which are explicitly given in Proposition 2.1.
However, we also bound coefficients of Siegel modular forms, which requires estimating ‖φ‖.
The connection between Siegel modular forms and Jacobi forms is described in the next
subsection.

2.3. Relation to Siegel modular forms. Let Hg be the usual Siegel upper half space and
write Z ∈ Hg as Z =

(
τ zT

z τ ′

)
with τ ∈ H, z ∈ Cg−1, and τ ′ ∈ Hg−1. Then F ∈ Sk(Γg), the

space of Siegel cusp forms of weight k for Γg, has a so-called Fourier Jacobi expansion of the
form

F (Z) =
∑
m>0

φm(τ, z)e2πi tr(mτ ′),

where tr denotes the trace of a matrix and where m runs through all positive definite sym-
metric half-integral (g − 1)× (g − 1) matrices. It is well-known, that the coefficients of φm
are Jacobi cusp forms. So bounds for the Fourier coefficients of Siegel modular forms follow
from the understanding of the coefficients of Jacobi forms.

3. Bounding Kloosterman sums

A first step in bounding Fourier expansions of Poincaré series is to estimate certain higher-
dimensional Kloosterman sums which occur when restricting the Fourier coefficients of Jacobi
Poincaré series to the diagonal (n′, r′) = (n, r). To be more precise, we set

H±m,c(n, r) := Hm,c(n, r, n,±r).
To bound these, we require well-known evaluations of (generalized) Gauss sums

G(a, b; c) :=
∑

n (mod c)

ec
(
an2 + bn

)
.
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Lemma 3.1. Let p be prime, a, b ∈ Z, ν ∈ N, and α := ordp(a).

(1) For α ≥ ν, we have

G (a, b; pν) =

{
pν if b ≡ 0 (mod pν),

0 otherwise.

(2) For 0 ≤ α < ν, G(a, b; pν) = 0 unless b ≡ 0 (mod pα) in which case we have the following
evaluations:

(i) If p 6= 2 and b ≡ 0 (mod pα), then

G (a, b; pν) = p
α+ν
2 εpν−α

(
a/pα

pν−α

)
epν+α

(
4a/pα

)
,

where ` denotes the inverse of ` (mod pν+a) and εj = 1 or i depending on whether
j ≡ 1 (mod 4) or j ≡ 3 (mod 4), respectively.

(ii) If p = 2 and b ≡ 0 (mod pα), then G(a, b; pν) equals
2ν if α = ν − 1 and b 6≡ 0 (mod 2ν),

2
ν+α
2

(
−2ν−α

a/2α

)
ε a

2α
(1 + i)e2ν+α+2

(
−b2a/2α

)
if b ≡ 0 (mod 2α+1) and ν ≡ α (mod 2),

0 otherwise,

where ` denotes the inverse of ` (mod 2ν+α+2).

We are now ready to bound the higher-dimensional Kloosterman sums.

Lemma 3.2. We have

H±m,c(n, r)� 2ω(c) (D, c) c
g+1
2 det(2m)

1
2 ,

where ω(c) denotes the number of prime divisors of c.

Proof: Our proof closely follows the one in [2]. There it was shown on page 507 that, for
c = c1c2 with (c1, c2) = 1,

H±m,c(n, r) = H±c1m,c2(nc1, r)H
±
c2m,c1

(nc2, r),

where c1 and c2 are inverses of c1 and c2 modulo c2 and c1, respectively. Thus we may assume
that c = pν with p prime and ν ∈ N and for simplicity we for now restrict to p 6= 2. The
modifications required for p = 2 follow along the same lines as in [2].

Since a non-degenerate binary quadratic form over Zp (p 6= 2) is diagonalizable, we may
assume that m = diag(m1, . . . ,mg) is a diagonal matrix. Set µj := ordp(mj) (1 ≤ j ≤ g).
We assume without loss of generality that ν ≤ µj for 1 ≤ j ≤ ` and ν > µj for `+1 ≤ j ≤ g.
Write r = (r1, . . . , rg). From (18) of [2], we conclude that

H±m,pν (n, r) =
∑

d (mod pν)∗

epν
(
n
(
d+ d

)) g∏
j=1

∑
λj (mod pν)

epν
((
mjλ

2
j + rjλj

)
d± rjλj

)
.

The sum on λj equals G(mj, rj(d ± 1); pν) and we may use Lemma 3.1 to evaluate it. For
1 ≤ j ≤ `, we have

G
(
mj, rj

(
d± 1

)
; pν
)

=

{
pν if rj

(
d± 1

)
≡ 0 (mod pν),

0 if rj
(
d± 1

)
6≡ 0 (mod pν).
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For `+ 1 ≤ j ≤ g, the Gauss sum equals{
p
ν+µj

2 εpν−µj
(
mj/p

µj

pν−µj

)
epν+µj

(
−r2

j

(
d± 1

)2
4
mj
pµj

)
if rj

(
d± 1

)
≡ 0 (mod pνj),

0 if rj
(
d± 1

)
6≡ 0 (mod pνj).

Thus H±m,pν (n, r) becomes
(3.1)

pν`
∑

d (mod pν)

rj(d±1)≡0 (mod pν)(1≤j≤`)
rj(d±1)≡0 (mod pµj )(`+1≤j≤g)

g∏
j=`+1

εpν−µj

(
mj/p

νj

pν−µj

)
p
ν+µj

2 epν+µj

(
−r2

j

(
d± 1

)2
4
mj

pµj

)
.

We now consider whether pν | D or not.
If pν | D, then we have (D, pν) = pν . We bound (3.1) trivially, yielding∣∣H±m,pν (n, r)∣∣ ≤ pν` · pν · p

ν
2

(g−`)p
1
2

∑g
j=`+1 µj = (D, pν)p

νg
2

+ ν`
2

+ 1
2

∑g
j=`+1 µj .

Now
p
νg
2

+ ν
2 = c

g+1
2 , p

ν`
2

+ 1
2

∑g
j=`+1 µj ≤ p

1
2

∑g
j=1 µj ≤ det(2m)

1
2 , p−

ν
2 ≤ 1,

giving the claim in this case.
If pν - D, then we use that

(3.2) D =
1

2
det(2m)

(
4n−m−1[r]

)
,

which follows from the Jacobi decomposition. This gives that pν divides at most one of the
mj. There are two cases to distinguish depending on whether pν divides one of the mj or
none.

We first assume ν > µj for 1 ≤ j ≤ g. In (27) of [2] it was shown that∣∣H±m,c(n, r)∣∣ ≤ 2p
ν(g+1)

2 (D, pν) ≤ 2c
g+1
2 (D, pν) .

This implies the claim in this case.
Finally we consider the case that pν divides exactly one mj and we may assume without

loss of generality that µg ≥ ν. Let κ := max{0, ν − ρg, µ1 − ρ1, · · · , µg−1 − ρg−1}, where
ρj = ord(rj)(1 ≤ j ≤ g) and let λ := ordp(D). It is shown in the first displayed formula on
page 509 of [2] that

(3.3)
∣∣H±m,c(n, r)∣∣ ≤ p2ν−κ

g−1∏
j=1

p
1
2

(ν+µj) = p
ν(g+1)

2
+ν−κp

1
2

∑g−1
j=1 µj .

We next analyze (3.2). Since m−1 = diag(m−1
1 , . . . ,m−1

g ), we obtain, since pν |mg,

D = 2g+1n

g∏
j=1

mj − 2g−1

g∑
j=1

r2
j

g∏
`=1
`6=j

mj ≡ −2g−1r2
g

g−1∏
j=1

mj (mod pν).

Thus, since λ < ν,

λ =

g−1∑
j=1

µj + 2ρg.
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Moreover, from the definition of κ, we obtain that κ ≥ ν − ρg. Thus, by (3.3),∣∣H±m,c(n, r)∣∣ ≤ p
ν
2

(g+1)+ 1
2

∑g−1
j=1 µj+ρg = p

ν
2

(g+1)+λ
2 = c

g+1
2 (D,C)

1
2 ≤ c

g+1
2 (D, c).

This finishes the proof. �

4. Bounding coefficients of Poincaré series

In this section, we estimate the Fourier coefficients bn,r of Pk,m;(n,r). This is of independent
interest for obtaining bounds for Fourier coefficients of Jacobi forms.

Theorem 4.1. Assume that k ∈ N satisfies (g + 3)/2 < k < g. Then, with notation as
above,

bn,r
(
Pk,m;(n,r)

)
�

(
1 +

D
g
2

+ε

det(2m)
g+1
2

(
1 +Dk−g−1 det(2m)−k+g+1+ 1

g−1
(−k+g+1)+ε

))
.

Proof: We use the explicit representation of bn,r given in Proposition 2.1. Recall that n′ = n
and r′ = r and thus D′ = D. The first term in (2.3) yields the first term in the bound in
Theorem 4.1. Thus, we have to bound

fm(n, r) :=
∑
c≥1

∣∣H±m,c(n, r)∣∣ Jk− g2−1

(
2πD

det(2m)c

)
c−

g
2
−1.

We may rewrite

fm(n, r) =
∑
d|D

∑
c≥1

(c,Dd )=1

(cd)−
g
2
−1
∣∣H±m,dc(n, r)∣∣ Jk− g2−1

(
A

c

)
,

where A = Ad := 2πD
d det(2m)

. To bound the inner sum, we split it into three pieces: a part with

c ≤ A, a contribution from A ≤ c ≤ B, and a piece with c ≥ B, with B to be determined
later. Note that the range of any of these sums is allowed to be empty. We require the
bounds for Kloosterman sums from Section 3 as well as the following estimates∣∣H±m,c(n, r)∣∣� cg+ε(D, c),(4.1)

J`(t)�` min
{
t−

1
2 , t`
}
.(4.2)

The bound (4.1) follows from Lemma 2 of [2] whereas (4.2) is standard.
To bound the part with c ≤ A, we use (4.1) with dc instead of c and the first estimate in

(4.2). This gives the contribution for the sum on c

A−
1
2d

g
2

+ε
∑

1≤c≤A

c
g
2
− 1

2
+ε � A

g
2

+εd
g
2

+ε �
(

D

det(2m)

) g
2

+ε

.

Upon multiplying by det(2m)−
1
2 , this yields the second summand in the bound in Theo-

rem 4.1.
Next we estimate the part with A ≤ c ≤ B. For this, we use (4.1) and the second estimate

in (4.2). This gives the contribution, using that k < g,

Ak−
g
2
−1d

g
2

+ε
∑

A≤c≤B

c−k+g+ε � Ak−
g
2
−1d

g
2

+εB−k+g+1+ε.
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Finally, we estimate the piece with c ≥ B. For this, we use Lemma 3.2 and the second
estimate in (4.2). This gives the bound

Ak−
g
2
−1d

1
2 det(2m)

1
2

∑
c≥B

2ω(c)c
g+1
2
−k � B

g+3
2
−k+εAk−

g
2
−1d

1
2 det(2m)

1
2

since k > (g + 3)/2.
Now, to minimize the error, we choose B such that the second and third error agree (up

to ε exponents). One can show that this is the case for

B = d−1 det(2m)
1
g−1 .

Plugging back in gives the claim after multiplying by det(2m)−
1
2 . �

5. Proof of theorem 1.1

In this section we use the previous bounds with g 7→ g − 1 and φ = φm, where φm comes
from the Jacobi coefficients of a Siegel modular form. We recall the following bound from
Proposition 2 of [2].

Lemma 5.1. If φm is the mth Fourier-Jacobi coefficient of a Siegel modular form F , then

||φm|| �ε,F det(2m)
k
2
−αg+ε (ε > 0),

where αg is defined in (1.3).

We are now ready to prove Theorem 1.1

Proof of Theorem 1.1: By Lemma 2.2 and Lemma 5.1,

a(T )�
∣∣bn,r (Pk,m;(n,r)

)∣∣ 12 D k
2
− g

4
− 1

4 det(2m)
g
4

+ 1
2
−αg+ε.

Theorem 4.1 then yields

a(T )�
(

det(2m)−
g
2 f(m,D)

) 1
2
D

k
2
− g

4
− 1

4 det(2m)
g
4

+ 1
2
−αg+ε,

where

f(m,D) := det(2m)
g
2 +D

g−1
2

+ε
(

1 +Dk−g det(2m)−k+g+ 1
g−2

(−k+g)+ε
)
.

Define
mg−1(T ) := min {T [U ]|g−1 | U ∈ GLg(Z)} ,

where T [U ]|g−1 denotes the determinant of the leading (g − 1)-rowed submatrix of T [U ].
Since both sides of the bound in Theorem 1.1 are invariant under replacing T by T [U ]

(U ∈ GLg(Z)), we may assume that T =
(

n rT /2
r/2 m

)
with det(m) = mg−1(T ). Now, by

reduction theory,

det(m) = mg−1(T )� D1− 1
g .

It is easy to see that the powers of det(m) in f(m,D) are all non-negative. So we may

replace det(m) by D1− 1
g in this expression. One can then show that the last term in f(m,D)

is dominant. This gives

a(T )� det(2m)
1
2
−αg+εD

k
2
− 1

2
+ g−k

2g(g−2)
+ε.

This yields the claim of the theorem since 1/2− αg > 0. �
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