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Abstract
We show that the image of repeated differentiation on weak cusp forms is 
precisely the subspace which is orthogonal to the space of weakly holomorphic 
modular forms. This gives a new interpretation of weakly holomorphic Hecke 
eigenforms.
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1.  Introduction and statement of results

Hecke operators play a central role in the study of modular forms. The classical theory of new-
forms and modular L-functions relies on the fact that spaces of cusp forms are finite-dimen-
sional and can be diagonalized with respect to the Hecke algebra. Although spaces of weakly 
holomorphic modular forms are not finite-dimensional, it turns out that Hecke operators still 
play an important role and there is a natural subspace whose elements can be considered as 
trivial. Then a natural Hecke structure can be described.

For κ ∈ Z, denote by M!
2κ the space of weight 2κ weakly holomorphic modular forms (i.e. 

those meromorphic modular forms whose only possible pole occurs at i∞) with respect to 
the full modular group SL2(Z). Motivated by applications coming from the theory of p-adic 
modular forms, Guerzhoy [12] observed that even though the space M!

2k  (k ∈ N) is infinite-
dimensional and the Hecke operators Tm (defined in (2.5)) increase the order of the pole, there 
is a meaningful Hecke theory on this space. Emulating the usual definition of Hecke eigen-
forms (i.e. for every m ∈ N there exists λm ∈ C such that f |Tm = λmf ), Guerzhoy defined a 
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weakly holomorphic Hecke eigenform to be any f ∈ M!
2k\J  (J  is a specific subspace of M!

2k  
which is stable under the Hecke algebra) which satisfies

f |Tm ≡ λmf (mod J ).

Here and throughout, for a vector space S  and a subspace J ⊂ S , for f , g ∈ S the congruence 
f ≡ g (mod J ) means that f − g ∈ J . In [12], Guerzhoy chose J = D2k−1(M!

2−2k), where 

D := 1
2πi

∂
∂z. To understand Guerzhoy’s motivation, recall that Bruinier, Ono, and Rhoades [10] 

showed that D2k−1 is an injective map from the space of so-called harmonic Maass forms (non-
holomorphic generalizations of modular forms) into the space M!

2k  and determined its image. 
Guerzhoy realized that the image of the distinguished subspace M!

2−2k was a natural object 
to factor out by. However, it was later determined that J = D2k−1(S!

2−2k) is a better choice 
(see [7, 14]), where S!

2κ is the space of weak cusp forms of weight 2κ ∈ 2Z, i.e. those weakly 
holomorphic modular forms with vanishing constant term. Note that D2k−1 and Tm essentially 
commute (see (2.4)) and S!

2−2k is preserved by Tm, so D2k−1(S!
2−2k)|Tm ⊆ D2k−1

(
S!

2−2k

)
, and 

hence D2k−1(S!
2−2k) is stable under the Hecke operators. Thus a weakly holomorphic Hecke 

eigenform is any f ∈ M!
2k \ D2k−1(S!

2−2k) for which there exist λm ∈ C satisfying (for all 
m ∈ N)

f |Tm ≡ λm f
(
mod D2k−1(S!

2−2k

))
.� (1.1)

Functions f satisfying (1.1) are not eigenfunctions of Tm in the usual sense. However a reason-
able interpretation is to consider [ f ] := f + D2k−1(S!

2−2k) as an element of the quotient space 
M!

2k/D2k−1(S!
2−2k). Functions f satisfying (1.1) may then be viewed as eigenvectors [ f ] of the 

Hecke operators in that factor space. As is usual, we exclude [0] = D2k−1(S!
2−2k) in the defini-

tion of eigenvector.
Viewed in this light, the definition of weakly holomorphic Hecke eigenforms is perhaps 

not very enlightening at first glance. If one simply defines ‘eigenforms’ as elements of some 
quotient space, then one can replace D2k−1(S!

2−2k) with any space J  that is preserved under 
the action of the Hecke operators. It is hence natural to ask why D2k−1(S!

2−2k) is the correct 
subspace. There are a few answers to this question. The initial perspective taken in [12] was 
a p-adic one, because for f ∈ D2k−1(S!

2−2k) with integral coefficients the ( pmn)th coefficients 
become divisible by higher powers of p as m gets larger. Elements of D2k−1(S!

2−2k) have van-
ishing period polynomials [7] and there is a recent cohomological interpretation as a space of 
coboundaries announced by Funke. Moreover certain regularized critical L-values are zero for 
elements in this space (see [6, theorem 2.5]).

In this paper, we give another reason for the choice J = D2k−1(S!
2−2k) by viewing these 

Hecke eigenforms in the framework of a regularized inner product 〈, 〉, defined in [4] for 
arbitrary weakly holomorphic modular forms. Note that if f ∈ M2k is a classical holomorphic 
Hecke eigenform, then for each m ∈ N there exists λm ∈ C, for which

〈 f |Tm, g〉 = λm〈 f , g〉� (1.2)

for all g ∈ M2k . Indeed, since the inner product is non-degenerate on M2k  (see [18, section 5]), 
(1.2) is equivalent to the usual definition of Hecke eigenforms on M2k .

One may hence treat (1.2) as an alternative definition of Hecke eigenforms. Both from this 
perspective and from the perspective of investigating the inner product, it is very natural to 
factor out by the space

M!,⊥
2k :=

{
f ∈ M!

2k : 〈 f , g〉 = 0 for all g ∈ M!
2k

}
� (1.3)

of weakly holomorphic forms which are orthogonal to all of M!
2k .
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The main point of this paper is to give another motivation of the definition in [12] by prov-
ing that the space D2k−1(S!

2−2k) is the ‘degenerate part’ of M!
2k  in the sense that it is orthogo-

nal to all of M!
2k , from which one also conversely concludes that M!,⊥

2k  is a very large subspace.

Theorem 1.1.  A function f ∈ M!
2k is in M!,⊥

2k  if and only if f ∈ D2k−1(S!
2−2k).

As alluded to above, theorem 1.1 yields another characterization of weakly holomorphic 
Hecke eigenforms.

Corollary 1.2.  A function f ∈ M!
2k is a weakly holomorphic Hecke eigenform if and only if 

for every m ∈ N there exists λm satisfying (1.2) for all g ∈ M!
2k .

Remarks. 

	(1)	As shown in [4, theorem 1.3], the inner product is Hermitian on M!
2k . Hence if f is a 

weakly holomorphic Hecke eigenform, then (1.2) implies that for all g ∈ M!
2k

〈g, f |Tm〉 = λm 〈g, f 〉 .

		 Moreover, by lemma 2.1 below, the Hecke operators are also Hermitian. Thus, taking 
g = f , we see that λm ∈ R or 〈 f , f 〉 = 0.

	(2)	The regularized inner product plays an important role in both mathematics and physics, 
due to the fact that Borcherds used this regularization to construct theta lifts of weakly 
holomorphic modular forms on orthogonal groups. For example, such lifts recently 
occurred in Angelantonj, Florakis, and Pioline’s investigation [1] of BPS amplitudes 
with momentum insertions (see [1, 3.23]). The same authors evaluate higher-dimensional 
analogues of these lifts in their continued study of one-loop integrals in [2, section 2.2].

	(3)	The regularized inner product that Borcherds used was based on a regularization by 
physicists Harvey and Moore [13] and the regularization considered in this paper agrees 
with Harvey and Moore’s regularization whenever theirs exists. Moreover, weakly 
holomorphic modular forms and mock modular forms appear in moonshine (such as the 
j-function occurring in McKay–Thompson’s Monstrous Moonshine) and the theory of 
quantum black holes (see [11]). Due to these connections, it may be of interest to physi-
cists to understand the structure of the inner product better; specifically, we discuss next 
whether the space of such functions has some kind of Hilbert space structure. As seen in 
theorem 1.1, M!

2k  contains a large degenerate subspace D2k−1(S!
2−2k), and thus the space 

is itself not a Hilbert space. However, combining theorem 1.1 with [7, theorem 1.2], there 
is an isomorphism

M!
2k

/
M!,⊥

2k = M!
2k

/
D2k−1(S!

2−2k

) ∼= M2k ⊕ M2k.

		 In particular, a natural subspace is isomorphic to two copies of S2k. Since S2k is a finite-
dimensional Hilbert space under the classical Petersson inner product, there is a naturally 
occurring Hilbert space of twice the dimension of S2k, and the weakly holomorphic Hecke 
eigenforms form an orthogonal basis of this space. It may hence be natural to investigate 
physical properties arising from weakly holomorphic modular forms occurring within 
this subspace.

The paper is organized as follows. In section 2, we introduce a family of non-holomorphic 
modular forms known as harmonic Maass forms which play an important role in the proof of 
theorem 1.1 and then we explain how one can define regularized inner products. In section 3, 
we prove theorem 1.1 and corollary 1.2.
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2.  Preliminaries

2.1.  Harmonic Maass forms

We begin by defining harmonic Maass forms, which were first introduced by Bruinier–Funke 
[9].

Definition.  For κ ∈ Z, a harmonic Maass form of weight 2κ is a function F : H → C, 
which is real analytic on H and satisfies the following conditions:

	(1)	For every M =

(
a b
c d

)
∈ SL2(Z), we have

F
(

az + b
cz + d

)
= (cz + d)2κF(z).

	(2)	We have ∆2κ(F) = 0, where ∆2κ is the weight 2κ hyperbolic Laplace operator 
(z = x + iy)

∆2κ := −y2
(

∂2

∂x2 +
∂2

∂y2

)
+ 2κiy

(
∂

∂x
+ i

∂

∂y

)
.

	(3)	The function F grows at most linear exponentially at i∞.

A weight 2κ harmonic Maass form F has a Fourier expansion of the type (cF(n, y) ∈ C)

F(z) =
∑
n∈Z

cF(n, y)e2πinz.� (2.1)

If F is weakly holomorphic, then cF(n, y) = cF(n) ∈ C is independent of y. More generally, 
one may use condition (2) above to determine the dependence on y and conclude that (2.1) 
naturally decomposes into holomorphic and non-holomorphic parts. Namely, for a harmonic 
Maass form F of weight 2 − 2k < 0,

F(z) = F+(z) + F−(z)� (2.2)

where, for some (unique) c±F (n) ∈ C, we have

F+(z) =
∑

n�−∞
c+F (n)e

2πinz,

F−(z) = c−F (0)y2k−1 +
∑
n�∞

n�=0

c−F (n)Γ(2k − 1,−4πny)e2πinz.

Here the incomplete gamma function is given by Γ(α, w) :=
∫∞

w e−ttα−1dt (for Re(α) > 0 
and w ∈ C). We call F+ its holomorphic part of F and F− the non-holomorphic part.

We let Hmg
2κ  be the space of weight 2κ harmonic Maass forms. The operators 

ξ2−2k := 2iy2−2k ∂
∂z  and D2k−1, defined in the introduction, map Hmg

2−2k to M!
2k , and we let 

H2−2k be the subspace of Hmg
2−2k consisting of forms which map to cusp forms under ξ2−2k. 

These differential operators also act naturally on the Fourier expansion (2.2). In particular, as 
collected in [5, theorems 5.5 and 5.9],

K Bringmann and B Kane﻿J. Phys. A: Math. Theor. 51 (2018) 044001
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ξ2−2k(F(z)) = (2k − 1)c−F (0)− (4π)2k−1
∑

n�−∞
n�=0

n2k−1c−F (−n)e2πinz,

D2k−1(F(z)) = − (2k − 1)!
(4π)2k−1 c−F (0) +

∑
n�−∞

n2k−1c+F (n)e
2πinz.

Recall that the operators D2k−1 and ξ2−2k are Hecke-equivariant (see [5, 7.4 and (7.5)]), i.e. 
for any harmonic Maass form F

ξ2−2k (F|2−2kTm) = m1−2kξ2−2k(F)|2kTm,� (2.3)

D2k−1 (F|2−2kTm) = m1−2kD2k−1(F)|2kTm.� (2.4)

Here for κ ∈ Z, the Hecke operators Tm : Hmg
2κ → Hmg

2κ  are given on the expansion (2.1) by

F(z)|2κTm :=
∑
n∈Z

∑
d|(m,n)

d2κ−1cF

(
mn
d2 ,

d2y
m

)
e2πinz.� (2.5)

2.2.  Regularized inner products

For two cusp forms f , g ∈ S2k , Petersson’s classical inner product is defined by

〈 f , g〉 :=
∫

SL2(Z)\H
f (z)g(z)y2k dxdy

y2 .� (2.6)

This was extended to an inner product over all of M!
2k  in a series of steps. The first such 

attempt to do so appears to be by Petersson himself [17], which was later rediscovered and 
extended by Harvey–Moore [13] and Borcherds [3] as we describe below. Setting

FT :=
{

z ∈ H : |z| � 1, y � T , −1
2
� x �

1
2

}
,

the first regularized inner product is defined by

〈 f , g〉 := lim
T→∞

∫

FT

f (z)g(z)y2k dxdy
y2 .� (2.7)

Borcherds extended this regularization by multiplying the integrand by y−s and taking the 
constant term of the Laurent expansion around s = 0 of the analytic continuation in s. The 
regularization (2.7) coincides with (2.6) whenever (2.6) converges. Unfortunately, the regular-
ization (2.7) and even Borcherds’s extension also do not always exist. In particular, one can-
not use them to define a meaningful norm for weakly holomorphic forms. This problem was 
overcome to obtain a regularized inner product for arbitrary f , g ∈ M!

2k by Diamantis, Ehlen, 
and the first author [4]. The idea is simple. One multiplies the integrands with a function that 
forces convergence and then analytically continues.

For this, observe that for Re(w) � 0, the integral

I( f , g; w, s) :=
∫

F
f (z)g(z)y2k−se−wy dxdy

y2

converges and is analytic, while formally plugging in w = 0 = s yields Petersson’s clas-
sical inner product (2.6). For every ϕ ∈ (π/2, 3π/2) \ {π} it has an analytic continuation 
Iϕ( f , g; w, s) to Uϕ × C with Uϕ ⊂ C a certain open set containing 0. Then define

K Bringmann and B Kane﻿J. Phys. A: Math. Theor. 51 (2018) 044001
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〈 f , g〉ϕ := CTs=0Iϕ( f , g; 0, s)− i
∑
n>0

cf (−n)cg(−n)Im (E2−2k,ϕ(−4πn)) ,

where CTs=0F(s) denotes the constant term of an analytic function F, cF are defined as in (2.1), 
and Er,ϕ is the generalized exponential integral (see [15, 8.19.3]) defined with branch cut on 
the ray {xeiϕ : x ∈ R+}. In [4] it is shown that for f , g ∈ M!

2k, 〈 f , g〉 exists and is independent 
of the choice of ϕ. Furthermore, it equals the regularization (2.7) whenever (2.7) exists.

The following lemma describes that the inner product from [4] commutes with the Hecke 
algebra.

Lemma 2.1.  For k ∈ N, the Hecke operators are Hermitian on M!
2k .

Proof.  We split the proof into three cases. First we assume that f ∈ S!
2k  and g ∈ M!

2k , then 
we use the fact that the inner product is Hermitian (see [4, theorem 1.3]) for the case that 
f ∈ M!

2k and g ∈ S!
2k, and finally we consider f = g = E2k; these cover all cases by linearity.

Following [7, 1.15], one defines, for f , g ∈ M!
2k,

{ f , g}0 :=
∑

n∈Z\{0}

cf (−n)cg(n)
n2k−1 .

The ratio cg(n)/n2k−1 can also be interpreted as the nth coefficient of the holomorphic part 
of any harmonic Maass form G for which D2k−1(G) = g. This yields a connection with the 
Bruinier–Funke pairing (see [9] for the original definition restricted to certain subspaces)

{ f , G} :=
∑
n∈Z

cf (−n)c+G (n)

between f ∈ M!
2k and G ∈ Hmg

2−2k.

We first assume that f ∈ S!
2k  and g ∈ M!

2k . In this case

{ f , g}0 = { f , G}.� (2.8)

This is related to the inner product by [4, theorem 4.1]; namely,

{ f , G} = 〈 f , ξ2−2k(G)〉 .� (2.9)

Setting h := ξ2−2k(G), we combine (2.9) with (2.8) and use the fact that the Hecke operators 
are Hermitian with respect to 〈·, ·〉0 to obtain

〈 f |2kTm, h〉 = { f |2kTm, G} = { f |2kTm, g}0 = { f , g|2kTm}0 .

Next, by (2.4), we have

D2k−1(G|2−2kTm) = m1−2kD2k−1(G)|2kTm = m1−2kg|2kTm.

Plugging this into (2.8) and using (2.9), yields

{ f , g|2kTm}0 = m2k−1 { f , G|2−2kTm} = m2k−1 〈 f , ξ2−2k (G|2−2kTm)〉 .

We finally use (2.3) to obtain

m2k−1 〈 f , ξ2−2k (G|2−2kTm)〉 = 〈 f , h|2kTm〉 .

K Bringmann and B Kane﻿J. Phys. A: Math. Theor. 51 (2018) 044001
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Altogether, we have therefore shown that

〈 f |2kTm, h〉 = 〈 f , h|2kTm〉 .� (2.10)

Since ξ2−2k is surjective on M!
2k , we obtain the claim for arbitrary f ∈ S!

2k  and h ∈ M!
2k .

Next suppose that f ∈ M!
2k and g ∈ S!

2k. Since the inner product is Hermitian (see [4,  
theorem 1.3]), by (2.10) we have

〈 f |2kTm, g〉 = 〈g, f |2kTm〉 = 〈g|2kTm, f 〉 = 〈 f , g|2kTm〉 .

Finally, for f = E2k = g, we obtain the result directly from the fact that both f and g are Hecke 
eigenforms with the same real eigenvalues. � □ 

3.  Degeneracy and proofs of theorem 1.1 and corollary 1.2

In this section, we show that the space M!,⊥
2k  defined in (1.3) coincides with the space 

D2k−1(S!
2−2k) which appears in the definition of Hecke eigenforms for weakly holomorphic 

modular forms. In [4, corollary 4.5], the space M!,⊥
2k , defined in (1.3), was explicitly deter-

mined. Theorem 1.1 rewrites this in a form which is useful for Hecke eigenforms. In order 
to prove theorem 1.1, we also require the following useful lemma about the flipping operator

Fκ (F(z)) := − y−κ

(−κ)!
R−κ
κ (F(z)),

where

R�
κ := Rκ+2�−2 ◦ · · · ◦ Rκ

is the repeated raising operator with the raising operator defined by

Rκ := 2i
∂

∂z
+

κ

y
.

The following lemma follows from the calculation in the proof of [10, theorem 1.1] and  
[10, remark 7]; it may be found in this form in [5, proposition 5.14].

Lemma 3.1.  If F ∈ Hmg
2−2k , then the operator F2−2k satisfies

ξ2−2k(F2−2k(F)) =
(4π)2k−1

(2k − 2)!
D2k−1(F),� (3.1)

D2k−1(F2−2k(F)) =
(2k − 2)!
(4π)2k−1 ξ2−2k(F).� (3.2)

Furthermore, F2−2k ◦ F2−2k(F) = F .

We now use lemma 3.1 to prove theorem 1.1.

Proof of theorem 1.1.  By [4, corollary 4.5], f ∈ M!
2k is orthogonal to M!

2k  if and only if 
there exists F ∈ Hmg

2−2k  for which F+ = 0 and ξ2−2k(F) = f . By (3.2), we have

f = ξ2−2k(F) =
(4π)2k−1

(2k − 2)!
D2k−1(F2−2k(F)) .� (3.3)

K Bringmann and B Kane﻿J. Phys. A: Math. Theor. 51 (2018) 044001
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Note that F+ = 0 is equivalent to D2k−1(F) = 0 and c+F (0) = 0. Since D2k−1(F) = 0, (3.1) 
implies that

ξ2−2k(F2−2k(F)) =
(4π)2k−1

(2k − 2)!
D2k−1(F) = 0.

We conclude that F2−2k(F) ∈ M!
2−2k  because this is the kernel of ξ2−2k. Thus by (3.3), we 

have f ∈ D2k−1(M!
2−2k). Moreover, [8, displayed formula before lemma 3.1] states that (note 

that in this paper the flipping operator is renormalized)

c+F2−2k(F)(0) = −c+F (0) = 0.

Thus F+ = 0 is equivalent to f ∈ D2k−1(S!
2−2k), which is the claim.� □ 

We conclude the paper by using theorem 1.1 to show that one may obtain an alternative 
characterization of weakly holomorphic Hecke eigenforms by requiring (1.2) to hold for all 
g ∈ M!

2k  instead of (1.1).

Proof of corollary 1.2.  By theorem 1.1, (1.1) is equivalent to

f |Tm ≡ λmf
(
mod M!,⊥

2k

)
.

Hence f is a weakly holomorphic Hecke eigenform if and only if for every m there exists 
λm ∈ C such that h := f |Tm − λmf ∈ M!,⊥

2k . Linearity of the regularized inner product implies 
that for every g ∈ M!

2k ,

〈 f |Tm, g〉 = 〈λm f + h, g〉 = λm 〈 f , g〉+ 〈h, g〉 ,

which satisfies (1.2) for every g ∈ M!
2k  if and only if h ∈ M!,⊥

2k .� □ 

ORCID iDs

Ben Kane  https://orcid.org/0000-0003-4074-7662

References

	 [1]	 Angelantonj C, Florakis I and Pioline B 2012 One loop BPS amplitudes as BPS-state sums J. High 
Energy Phys. JHEP06(2012)070

	 [2]	 Angelantonj C, Florakis I and Pioline B 2015 Threshold corrections, generalized prepotentials and 
Eichler integrals Nucl. Phys. B 897 781–820

	 [3]	 Borcherds  R 1998 Automorphic forms with singularities on Grassmannians Inventiones Math. 
132 491–562

	 [4]	 Bringmann  K, Diamantis  N and Ehlen  S Regularized inner products and errors of modularity 
Int. Math. Res. Not. (in press)

	 [5]	 Bringmann K, Folsom A, Ono K and Rolen L 2018 Harmonic Maass Forms and Mock Modular 
Forms: Theory and Applications (vol 64) (Providence, RI: Colloquium Publications) p 391 (in 
press)

	 [6]	 Bringmann K, Fricke K and Kent Z 2014 Special L-values and periods of weakly holomorphic 
modular forms Proc. Am. Math. Soc. 142 3425–39

K Bringmann and B Kane﻿J. Phys. A: Math. Theor. 51 (2018) 044001

https://orcid.org/0000-0003-4074-7662
https://orcid.org/0000-0003-4074-7662
https://doi.org/10.1007/JHEP06(2012)070
https://doi.org/10.1007/JHEP06(2012)070
https://doi.org/10.1016/j.nuclphysb.2015.06.009
https://doi.org/10.1016/j.nuclphysb.2015.06.009
https://doi.org/10.1016/j.nuclphysb.2015.06.009
https://doi.org/10.1007/s002220050232
https://doi.org/10.1007/s002220050232
https://doi.org/10.1007/s002220050232
https://doi.org/10.1090/S0002-9939-2014-12092-2
https://doi.org/10.1090/S0002-9939-2014-12092-2
https://doi.org/10.1090/S0002-9939-2014-12092-2


9

	 [7]	 Bringmann K, Guerzhoy P, Kent Z and Ono K 2013 Eichler–Shimura theory for mock modular 
forms Math. Ann. 355 1085–121

	 [8]	 Bringmann K, Kane B and Rhoades R 2013 Duality and differential operators for harmonic Maass 
forms Dev. Math. 28 85–106

	 [9]	 Bruinier J and Funke J 2004 On two geometric theta lifts Duke Math. J. 125 45–90
	[10]	 Bruinier J, Ono K and Rhoades R 2008 Differential operators for harmonic weak Maass forms and 

the vanishing of Hecke eigenvalues Math. Ann. 342 673–93
	[11]	 Dabholkar A, Murthy S and Zagier D Quantum black holes, wall crossing, and mock modular 

forms Cambridge Monographs Math. Phys. (in press)
	[12]	 Guerzhoy  P 2008 Hecke operators for weakly holomorphic modular forms and supersingular 

congruences Proc. Am. Math. Soc. 136 3051–9
	[13]	 Harvey J and Moore G 1996 Algebras, BPS states, and strings Nucl. Phys. B 463 315–68
	[14]	 Kent Z 2011 Periods of Eisenstein series and some applications Proc. Am. Math. Soc. 139 3789–94
	[15]	 NIST Digital Library of Mathematical Functions http://dlmf.nist.gov/’ release 1.0.16 of 2017-09-

18. Online companion to [16]
	[16]	 Olver  F, Lozier  D, Boisvert  R and Clark  C 2010 NIST Handbook of Mathematical Functions  

(New York: Cambridge University Press) (print companion to [15])
	[17]	 Petersson H 1954 Über automorphe Orthogonalfunktionen und die Konstruktion der automorphen 

Formen von positiver reeller dimension Math. Ann. 127 33–81
	[18]	 Zagier D 1982 The Rankin–Selberg method for automorphic functions which are not of rapid decay 

J. Fac. Sci. Tokyo 28 415–38

K Bringmann and B Kane﻿J. Phys. A: Math. Theor. 51 (2018) 044001

https://doi.org/10.1007/s00208-012-0816-y
https://doi.org/10.1007/s00208-012-0816-y
https://doi.org/10.1007/s00208-012-0816-y
https://doi.org/10.1007/978-1-4614-4075-8_6
https://doi.org/10.1007/978-1-4614-4075-8_6
https://doi.org/10.1007/978-1-4614-4075-8_6
https://doi.org/10.1215/S0012-7094-04-12513-8
https://doi.org/10.1215/S0012-7094-04-12513-8
https://doi.org/10.1215/S0012-7094-04-12513-8
https://doi.org/10.1007/s00208-008-0252-1
https://doi.org/10.1007/s00208-008-0252-1
https://doi.org/10.1007/s00208-008-0252-1
https://doi.org/10.1090/S0002-9939-08-09277-0
https://doi.org/10.1090/S0002-9939-08-09277-0
https://doi.org/10.1090/S0002-9939-08-09277-0
https://doi.org/10.1016/0550-3213(95)00605-2
https://doi.org/10.1016/0550-3213(95)00605-2
https://doi.org/10.1016/0550-3213(95)00605-2
https://doi.org/10.1090/S0002-9939-2011-10770-6
https://doi.org/10.1090/S0002-9939-2011-10770-6
https://doi.org/10.1090/S0002-9939-2011-10770-6
http://dlmf.nist.gov/﻿’﻿
https://doi.org/10.1007/BF01361110
https://doi.org/10.1007/BF01361110
https://doi.org/10.1007/BF01361110

