
W -ALGEBRAS, HIGHER RANK FALSE THETA FUNCTIONS, AND

QUANTUM DIMENSIONS

KATHRIN BRINGMANN AND ANTUN MILAS

Abstract. Motivated by appearances of Roger’s false theta functions in the representation theory
of the singlet vertex operator algebra, for each finite-dimensional simple Lie algebra of ADE type,
we introduce higher rank false theta functions as characters of atypical modules of certain W -
algebras and compute asymptotics of irreducible characters which allows us to determine quantum
dimensions of the corresponding modules. In the s`2-case, we recover many results from [10].

1. Introduction

It is well known (due to Frenkel-Kac and Segal) that any simply-laced affine Lie algebra ĝ admits
a homogeneous realization in terms of vertex operators acting on a direct sum of infinitely many
Fock spaces. More precisely, for every coset λ+Q ∈ Q0/Q (Q the root and Q0 the weight lattice)
there is an irreducible highest weight ĝ-module VQ+λ. This construction can be reformulated (due
to Borcherds [8]; see also [23]) in the language of vertex operator algebras. From this point of view,
the module VQ has a vertex operator algebra structure (lattice vertex algebra) while VQ+λ is an
irreducible VQ-module [29]. Under the standard grading, characters of these modules are known
and given by

ch[VQ+λ](τ) =

∑
α∈Q+λ q

||α||2
2

η(τ)rank(Q)
,

where ||α||2 := (α, α) and η(τ) := q
1
24
∏
n≥1(1−qn) is Dedekind’s η-function (q := e2πiτ throughout),

a modular form of weight 1/2. Modular forms have appeared in abundance in the representation
theory of rational vertex operator algebras [29], especially in the theory surrounding the moonshine
phenomena [23].

In the last ten years, a lot of research has been devoted to understanding the so called logarithmic
conformal field theories and related irrational vertex algebras [2, 4, 18, 19, 20, 24, 30, 32], etc.
In these theories, modularity either holds with some modifications, as seen in C2-cofinite vertex
operator algebras (VOAs), or is completely absent as is the case of non C2-cofinite VOAs. An
interesting feature of irrational C2-cofinite vertex algebras is the lack of an affine Lie algebra action.
One reason for this comes from the fact that all known examples of such vertex algebras appear as
proper subalgebras of vertex algebras associated to dilated root lattices

√
pQ, with p ∈ N≥2 (here

p is not necessarily prime!). Although these rootless lattices rarely appear in Lie theory, they do
have relevance in vertex algebra theory.

In many ways this paper is a continuation of [10] (see also [11, 14, 30]) where the authors
thoroughly studied properties of certain false theta functions coming from characters of modules
of the singlet vertex operator algebra. The starting point in this line of work was an observation
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[10, 11] that the classical Roger’s false function∑
n∈Z

sgn(n)q
p
(
n+ j

2p

)2

=
∞∑
n=0

q
p
(
n+ j

2p

)2

−
∞∑
n=0

q
p
(
n+n−j

2p

)2

(1.1)

and other related false theta functions show up as “numerators” of characters of the (1, p)-singlet
W -algebra (see [1]).

In the theory of modular forms, false theta series have occurred in many important works,
including [6, 28, 34, 36]. These are not modular but when passing to the lower half-plane radially
one obtains mock modular forms which are holomorphic parts of so-called harmonic Maass forms
(non-holomorphic modular forms annihilated by the Laplace operator). In particular, this yields
an analytic function in the upper half-plane which drips into the lower half-plane.

It is already known that the (1, p)-singlet algebra is related in a non-trivial way to the Lie algebra
s`2, so this raises the question of whether functions like (1.1) can be defined for other root systems
such that they also give rise to characters of modules. As we previously announced in [30], with
full details given here, this is indeed possible, at least in the simply-laced case.

To explain our construction, we first consider a sequence of embeddings of vertex algebras:

Wcp(g) ↪→W 0(p)Q ↪→W (p)Q ↪→ V√pQ ,

where g is the corresponding simple Lie algebra, Wcp(g) is the affine W -algebra associated to g

[7, 15], and W 0(p)Q and W (p)Q are certain vertex algebras defined below. In the special case of
g = s`2, we recover a more familiar embedding of vertex algebras studied for examples in [2, 10, 11]:

L(cp,1, 0) ↪→W (2, 2p− 1) ↪→W (p) ↪→ V√2pZ ,

where W (2, 2p− 1) is the (1, p)-singlet vertex algebra [1].
It turns out that the most interesting q-series come from considerations of characters of W 0(p)Q-

modules. The vertex algebra W 0(p)Q is not C2-cofinite and as such admits characters of modules
with peculiar properties. In a special case of the vertex algebra W 0(p)Q, we get the following
character formula ∑

α∈Q∩P+

dim(V (α)0)
∑
w∈W

(−1)`(w) q
1
2
||√pw(α+ρ)− 1√

p
ρ||2

η(τ)rank(Q)
, (1.2)

with V (α)0 the zero weight space of the irreducible highest weight g-module V (α), W is the Weyl
group, `(w) is the length of w, and P+ denotes the set of dominant integral weights. The expression
(1.2), after eliminating the η-factor, should be viewed as a higher rank generalization of the classical

false theta functions. Indeed, the sign factor in (1.1) can be understood as (−1)`(w), where w is the
non-unit Weyl group element of s`2. As far as we know, q-series like (1.2) have not been studied
in the literature apart from the rank one case. We believe that they are closely related to certain
limits of colored Jones polynomials of alternating knots colored by representations of g, studied
in [25]. Connection between the (1, p) singlet characters and certain torus knots colored by sl2
representations was already established in [10]. Another, more conceptual, contact between this
line of work and quantum knot (and link) invariants is expected to be obtained by establishing
equivalences of categories of W 0(p)Q-modules and modules for ”unrolled” quantum groups at root
of unity. For the (1, p) singlet algebra, this equivalence was recently studied in [13].

The aim of this paper is to study properties of characters of W (p)Q initiated in [18] and especially
characters of W 0(p)Q-modules such as (1.2). We briefly outline the paper and indicate the main
results. We introduce vertex operator algebras W (p)Q and W 0(p)Q in Section 2, following mostly [4,
18, 30], although similar constructions with screening operators can be traced to affine W -algebras
[22]. In Section 3, we recall modular transformation properties of higher rank theta functions
coming from lattices, while, in Section 4, we discuss characters of certain W (p)Q-modules following
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closely the proposal in [18]. Our main result is Theorem 4.1 below, proving finite-dimensionality
of the SL2(Z)-closure of the space of W (p)Q-characters. We also work out in full detail modular
transformation properties of ch[W (p)A2 ](τ) (see Section 4.3). Section 5 is primarily concerned with
characters of W 0(p)Q-modules and an explicit computation for ch[W 0(p)A2 ](τ). The key aspect of
this paper is in Section 6, where we study asymptotic expansions of characters of W 0(p)Q-modules.
The main result here is Theorem 6.2, which can be restated as follows.

Theorem 1.1. For β ∈ L0, as t→ 0+,

η(it)dim(Q)ch[W 0(p, β)Q](it) ∼
dim

(
V
(
−√pλ

))
p|∆+|

+O
(√

t
)
.

where λ (depending on β) is defined in Section 5.1.

Although our method for computing asymptotic expansion of W 0(p)Q is very general, for brevity
in Section 7 we only compute the full expansion of ch[W 0(p)A2 ](τ). We obtain

Theorem 1.2. Asymptotically, as t→ 0+, we have with p ∈ N≥2,

η(it)2ch[W 0(p)A2 ](it) ∼
∑
N≥0

α(N)(−2πpt)N ,

where α(N) is defined in (7.6) below.

Remark 1. For Q = A1, in [10], the authors obtained an asymptotic expansion of characters. This
asymptotic expansion was then related to Eichler integrals which have a nice (mock transformation)
behavior. We plan to investigate in future research whether the formulas in Theorem 1.2 can be
used to find companions of the characters in the lower half-plane which is (mock) modular.

For regular vertex operator algebras (or more generally, modular tensor categories) a quantum
dimension defines a homomorphism from the Grothendick ring of the category of modules to C. If
we denote by Mj , 0 ≤ j ≤ k, all inequivalent irreducible V -modules, where we pick V = M0, the
quantum dimension of Mj is given by

qdim(Mj) =
Sj,0
S0,0

,

where Sj,k are the entries of the S-matrix. It is expected that this quantity plays an important
role for irrational vertex algebras as well. Thus, in Section 8, based on results of Section 6, we
compute analytic quantum dimensions of certain W 0(p)Q-modules. This quantum dimension is
defined purely analytically as the limit

qdim(M) := lim
t→0+

ch[M ](it)

ch[V ](it)
.

We stress that for regular vertex operator algebra these two definitions agree, at least if lowest
conformal weights of Mj , j 6= 0, are positive. By using the last definition, we show in Section 8
that

Corollary 1.3. For β ∈ L0, whose coset representative in L0/L is λ, we have

qdim
(
W 0(p, β)Q

)
= dimCV

(
−√pλ

)
,

where λ̄ is defined in (4.1).
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2. Vertex operator algebras, W (p)Q and W 0(p)Q

Let (Q, (·, ·)) be a rank n root lattice of ADE type, and Q0 = P its dual (weight) lattice. We
are primarily concerned with dilated root lattices L =

√
pQ and their duals L0, where p ∈ N≥2.

Let αj , 1 ≤ j ≤ n, denote the simple roots of Q, and ∆+ and ∆− the set of positive and negative
roots, respectively. We have ||αj ||2 = (αj , αj) = 2 for all j.

We equip VL with a vertex algebra structure by choosing an appropriate 2-cocycle as in the case
of VQ [4, 29, 31]. For the conformal vector we choose [2, 18, 30, 31]

ω = ω0 +
p− 1

2
√
p

∑
α∈∆+

α(−2)1,

where ω0 denotes the canonical (quadratic) Virasoro generator [29]. Then VL is a conformal vertex
algebra of central charge

rank(Q) + 12(ρ, ρ)

(
2− p− 1

p

)
,

where ρ denotes the half-sum of positive roots. Next, we consider screening operators e
√
pαj

0 , e
−αk√

p

0
(1 ≤ j, k ≤ n) acting among VL and certain VL-modules. It is known that for every j and k the

operators e
√
pαj

0 and e
−αk/

√
p

0 commute with each other, and they both commute with the Virasoro
algebra [4, 18, 31].

The connection to affine W -algebras is achieved via screening operators. Recall that there are
two methods for defining universal affine W -algebras. The affine W -algebra associated to ĝ at level
k 6= −h∨, denoted by Wk(g), is usually defined as the cohomology group obtained via a quantized
BRST complex for the Drinfeld-Sokolov hamiltonian reduction [22]. Cohomology of this complex
is nontrivial only in degree zero [22]. Moreover, it is known that Wk(g) is freely generated by
primary fields as a vertex algebra (thus the name W -algebra), in the sense that it is strongly freely
generated by rank(g) primary fields, not counting the conformal vector. On the other hand, an
important result by B. Feigin and E. Frenkel [22] says that for k generic and g simply-laced, there
is an alternative description of Wk(g) in terms of free fields. We use F0 to denote the rank n
vacuum Fock space, which is also a vertex algebra, and by Fλ Fock modules parametrized by h.
Let ν = k + h∨, where k is generic and consider the following operators [22]:

e
−
αj√
ν

0 : F0 −→ F−
αj√
ν

(1 ≤ j ≤ n).

Then

Wν(g) =
n⋂
j=1

KerF0

(
e
−
αj√
ν

0

)
.
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Moreover, we also have the following important duality

Wν(g) =
n⋂
j=1

KerF0

(
e
√
ναj

0

)
.

For non-generic values, screening operators can still be used to define vertex algebras which we now
describe. For instance, p = k + h∨ ∈ N≥2 is known to be non-generic. So we let

W 0(p)Q :=

n⋂
j=1

KerF0e
−
αj√
p

0 ,

a vertex operator algebra containing Wp(g) as a proper subalgebra [4, 12, 18]. In particular, for
Q = A1, W (p)Q is precisely the (1, p)-singlet algebra discussed in [10, 14]. Because of the integrality
condition, the previous algebra can be maximally extended within the lattice vertex algebra leading
to [2, 12, 18, 32]

W (p)Q :=
n⋂
j=1

KerVLe
−
αj√
p

0 .

Again, if we let Q = A1, this is the well-known triplet vertex operator algebra W (p). Similarly, we
can construct irreducible W (p)Q-modules. The following conjecture was mentioned in [4, 18].

Conjecture 1. The vertex operator algebra W (p)Q is C2-cofinite.

Remark 2. Due to the complicated embedding structure of higher Feigin-Fuchs modules, there are
essentially no results on the representation theory of W 0(p)Q and of W (p)Q, for rank(Q) ≥ 2. Still,
in [18], the authors proposed an interesting geometric method for studying W (p)Q-modules and
their characters. In particular, it is expected that all irreducible representations of W (p)Q can be
understood as subquotients of V√pQ-modules [4, 18, 30]. Since we are only interested in properties

of characters of modules, from now on, we assume that the modules in [18] provide a complete list
of irreducible W (p)Q-modules and characters (this is yet to be proven by using methods of vertex
algebras as in [2]). We also conjecture that all atypical irreducible representations of W 0(p)Q
appear in the decomposition of irreducible W (p)Q-modules. Typical representations are modules
isomorphic to higher rank Fock spaces.

3. Theta functions associated to lattices

This short section deals with higher rank theta functions. All results presented here are already
contained in the literature, but we recall them for the reader’s convenience.

For τ ∈ H, M ∈ Pos(n;R) (positive definite matrices with real entries) and a, b ∈ Cn, we define

Θa,b(τ ;M) :=
∑
r∈Zn

eπiτ(r+a)TM(r+a)+2πi(r+a)T b.

Then

Θ−b,a

(
−1

τ
;M−1

)
= (−iτ)

n
2

√
det(M)e−2πiaT bΘa,b(τ ;M). (3.1)

We also present essentially the same result using different notation. Let (L, ( , )) be a positive
definite integral lattice and L◦ denotes its dual. For g ∈ Q⊗ L, define

ϑL,g(u; τ) :=
∑
α∈L

eπiτ ||α+g||2+2πi(α+g,u),

where u ∈ C⊗ L ∼= Crank(L) and ||γ||2 := (γ, γ). Denoting by A the Gram matrix of L, we have

Θg,u(τ ;A) = ϑL,g(u; τ),
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where n := rank(L). The next result is well-known (see e.g. [26]).

Theorem 3.1. For [g] = g + L ∈ L◦/L, we have

ϑL,g

(
u;−1

τ

)
=

(−iτ)
m
2√

det(A)
eπiu

2
m−1∑
k=0

ζknϑLg ,kr(τu; τ),

where m := o([g]) (order of [g] in L◦/L), r satisfies (r, g) ≡ 1
m (mod 1) and Lg := {α ∈ L : (α, g) ∈

Z}, an intermediate lattice of L and L0.

4. Characters of W (p)Q-modules

4.1. The Weyl character formula. As in Section 2, let L =
√
pQ, where Q is an ADE root

lattice and ρ is the half-sum of positive roots. Also, denote by W the Weyl group. Set

∆ :=
∏
α∈∆−

(1− eα),

the (formal) Weyl denominator. We can also view ∆ as a complex valued function. We in-

troduce complex variables zj and let zα = z
(ω1,α)
1 · · · z(ωn,α)

n , where n = rank(Q). We also let
zj = e2πiuj , uj ∈ C. Then, for z = (z1, ..., zn), we define

∆(z) :=
∏
α∈∆−

(1− zα).

This function should not to be confused with the modular discriminant!
Let w ∈W act on C[h∗], where h∗ is the dual of the Cartan subalgebra, according to w ·eγ = ew(γ)

and similarly for w acting on zγ . Then we have the well known formula

w

 ∏
α∈∆−

(1− eα)

 = eρ−w(ρ)(−1)`(w)
∏
α∈∆−

(1− eα) .

For λ ∈ P+ (dominant integral weight) we denote by χλ the character of the highest weight module.
Recall also the Weyl Character Formula:

χλ(z) =
∑
w∈W

(−1)`(w) zw(λ+ρ)−ρ

∆(z)
.

4.2. Characters of W (p)Q-modules. Next, we discuss W (p)Q-modules (see also Remark 1). As
in [18], we choose λj =

ωj√
p , j = 1, ..., n, to be a basis of L0 and we also fix representative of Q0/Q to

be 0, ω1, ..., ωn for type An, where ωj are the fundamental weights. For Dn, we take 0, ω1, ωn−1, ωn;
for E6 we choose 0, ω1 and ω3; for E7 we take 0 and ω2, and for E8 we choose only 0.

Again, following [18], each coset L0/L has a unique representative λ of the form

λ =
√
pλ̂+

n∑
j=1

(1− sj)λj , (4.1)

where λ̂ is the representative of Q0/Q fixed earlier, and λ =
∑n

j=1(1 − sj)λj such that sj ∈
{1, 2, ..., p}. From now on, elements λ ∈ L0/L are identified with a unique representative of cosets
fixed above.
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Example 1. For Q = A2, there are 3p2 cosets of L0/L. For each λ̂ ∈ {0, ω1, ω2} there are p2

choices of λ, namely:

λ = (1− s1)
ω1√
p

+ (1− s2)
ω2√
p
, s1, s2 ∈ {1, ..., p}.

To each coset representative λ ∈ L0/L as above, we now associate an irreducible W (p)Q-module
denoted by W (p, λ)Q; there are pn|Q0/Q| such modules in total. As mentioned in the introduction,
we omit detailed discussion about modules here. Instead we only focus on their characters (also
known as graded dimensions) and refer the reader to [18]. As it is customary in vertex algebra
theory, the character of a module M is defined as

ch[M ](τ) := trMq
L(0)− c

24 ,

where c is the central charge. But for W (p)Q-modules, it is also convenient to have on disposal
complex variables zj (and uj). These extra variable should come from yet to be constructed action
of the simple Lie algebra g on W (p)Q (for s`2 this action was constructed in [5]). The resulting
expression is called a full character. Then we have the following formulas for full characters of
atypical irreducible W (p)Q-modules proposed in [18]:

ch[W (p, λ)Q](τ, z) =
1

η(τ)rank(Q)

∑
w∈W

∑
α∈Q

(−1)`(w) q
1
2
||√pα+λ+

(√
p− 1√

p

)
ρ||2

zw(α+λ̂)

w(∆(z))

=
1

η(τ)rank(Q)

∑
α∈Q

q
1
2
||√p(α+ρ+λ̂)+λ− 1√

p
ρ||2
(∑
w∈W

(−1)`(w) zw(α+ρ+λ̂)−ρ

∆(z)

)
. (4.2)

Observe that the expression in the parentheses of (4.2) does not necessarily equal the Weyl character

unless α + λ̂ ∈ P+; rather it can be expressed as the Weyl character of different highest weight,
up to a sign. As we shall see momentarily, this formula is very useful for determining modular
properties of ch[W (p, λ)Q](τ, z) after z → 1 (i.e., u→ 0).

Next, we rewrite (4.2) by adjusting the Weyl sum (cf. [18]). Observe that we get a non-zero

contribution in the sum only if α+ ρ+ λ̂ is in the interior of a Weyl chamber. For such α+ ρ+ λ̂,

there is w ∈W such that w(α+ρ+λ̂) is inside the fundamental Weyl chamber. Thus we can replace
the summation over the root lattice as a summation over the Q∩P+ and an extra summation over
the Weyl group. We use this and (4.2) to get

ch[W (p, λ)Q](τ, z) =
1

η(τ)rank(Q)

∑
w∈W

∑
α∈Q

(−1)`(w) q
1
2 ||
√
p(α+ρ+λ̂)+λ− 1√

pρ||
2

zw(α+ρ+λ̂)−ρ

∆(z)

=
1

η(τ)rank(Q)

∑
w∈W

∑
α∈Q∩P+

∑
w′∈W

(−1)`(w) q
1
2 ||
√
pw′(α+ρ+λ̂)+λ− 1√

pρ||
2

zww
′(α+ρ+λ̂)−ρ

∆(z)

=
1

η(τ)rank(Q)

∑
α∈Q∩P+

∑
w′∈W

∑
t∈W

(−1)`(t)+`(w
′) q

1
2 ||
√
pw′(α+ρ+λ̂)+λ− 1√

pρ||
2

zt(α+ρ+λ̂)−ρ

∆(z)

=
1

η(τ)rank(Q)

∑
α∈Q∩P+

∑
w∈W

(−1)`(w)q
1
2 ||
√
pw(α+ρ+λ̂)+λ− 1√

pρ||
2

χλ̂+α(z)

=
∑

α∈Q∩P+

χλ̂+α(z)

(∑
w∈W

(−1)`(w) q
1
2 ||
√
pw(α+ρ+λ̂)+λ− 1√

pρ||
2

η(τ)rank(Q)

)
.
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The sum in the parenthesis is also the character of an affine W -algebra module [15, 18]. After we
take the limit z → 1, we get

ch[W (p, λ)Q](τ) =
∑

α∈Q∩P+

dim
(
V
(
λ̂+ α

))∑
w∈W

(−1)`(w) q
1
2
||√pw(α+ρ+λ̂)+λ− 1√

p
ρ||2

η(τ)rank(Q)

 , (4.3)

where V (γ) denote the finite-dimensional g-module of highest weight γ. The previous formula is
perhaps useful for representation theoretic consideration while equation (4.2) is more suitable for
studying modular properties. If λ = 0, the sum over the Weyl group can be further simplified as

ch[W (p, λ)Q](τ) =
1

η(τ)rank(Q)

∑
α∈Q∩P+

dim
(
V
(
λ̂+ α

))
q

1
2p
||p(α+ρ+λ̂)−ρ||2 ∏

γ∈∆+

(
1− q(γ,α+ρ+λ̂)

)
,

after an application of the Weyl denominator formula.

Remark 3. Observe that, by Weyl’s dimension formula, dim V (γ) depends polynomially on the
labels mj of the highest weight γ = m1ω1 + · · ·+mnωn. The degree of this polynomial is |∆+|.

Next, we are interested in modular transformation properties of W (p)Q-characters. Let us first
consider the A1 case. Here Q = Zα and P = Zω. Two representatives of Q0/Q are 0 and ω. Then

λ̂ is either 0 or ω, and the corresponding 2p representatives of L0/L are given by

λ =
j
√
p
ω,

where j = −(p − 1), ..., 0, and j = 1, ..., p, respectively. Clearly, P+ ∩ Q = Nα = 2Nω and
dim(V (2nω)) = 2n + 1, dim(V ((2n − 1)ω)) = 2n, ρ = ω, and W = {±1}. There are two series of

characters: For −(p− 1) ≤ j ≤ 0 (λ̂ = 0), we have

ch

[
W

(
p,
jω
√
p

)
A1

]
(τ) =

1

η(τ)

∞∑
n=0

(2n+ 1)

(
q
p
(
n+ p−j−1

2p

)2

− qp
(
n+ p+j+1

2p

)2)
, (4.4)

while for 1 ≤ j ≤ p (λ̂ = ω), we have

ch

[
W

(
p,
jω
√
p

)
A1

]
(τ) =

1

η(τ)

∞∑
n=0

2n

(
q
p
(
n+ 2p−j−1

2p

)2

− qp
(
n+ 2p+j+1

2p

)2)
. (4.5)

These formulas are well known character formulas for the triplet vertex algebra modules [19] (see
also [2] and references therein).

It is not hard to see that both families of characters can be written as linear combinations of
θp,j(τ)
η(τ) and

θ′p,j(τ)

η(τ) , where

θp,j(τ) :=
∑
n∈Z

q
1
4p

(2pn+j)2

are Jacobi theta functions and θ′p,j(τ) :=
∑

n∈Z(2pn+j)q(2pn+j)2/(4p) denote their Jacobi derivatives;

see [2, 19] for more details. Consequently, the modular closure of the characters given in (4.4) and
(4.5) is finite-dimensional with a basis given by

θp,`(τ)

η(τ)
, 0 ≤ ` ≤ p,

θ′p,j(τ)

η(τ)
, 1 ≤ j ≤ p− 1, τ

θ′p,k(τ)

η(τ)
, 1 ≤ k ≤ p.

Although we do not have a similar explicit description of the modular closure ofW (p)Q-characters,
we are able to prove a modularity result for all root lattices Q, except possibly E8. For this purpose,
we use results from [33]. Let A ∈ Pos(n;Z) be even and P ∈ C[v1, ..., vn] be a harmonic polynomial

8



with respect to A−1 (as defined in Appendix A, Definition 1) of homogenous degree d. We define
a theta-like function associated to A, P , and λ ∈ A−1Zn by

θA,P,λ(τ) :=
∑

r∈λ+Zn
P (r)q

1
2
r>Ar.

Then the transformations from [33, Section 2] can be summarized as

θA,P,λ(τ + 1) = eπi(λ
>Aλ)θA,P,λ(τ), (4.6)

θA,P,λ

(
−1

τ

)
=

(−i)d(−iτ)
n
2

+d√
det(A)

∑
µ∈A−1Zn/Zn

e2πi(λ>Aµ)θA,P,µ(τ). (4.7)

Theorem 4.1. Let Q be an ADE type root lattice, except possibly E8 (in which case we only
have numerical evidence). Then each character ch[W (p, λ)Q](τ) is a sum of modular forms of
non-negative integral weight. Moreover, the modular closure of ch[W (p, λ)Q](τ), λ ∈ L0/L, is
finite-dimensional.

Proof: We first note that θA,P,µ(τ) transforms the same way as θA,1,µ(τ), except for the additional

multiplicative factor (−iτ)d appearing in (4.7). But θA,1,µ(τ) is an ordinary theta function which
is known to be modular (of a certain level and multiplier), and therefore θA,P,µ(τ) is also modular.

It suffices to show that each irreducible character can be expressed as a linear combination

of
θA,P,µ(τ)
η(τ)n , where the matrix A is fixed and where P belongs to a finite set of homogeneous

harmonic polynomials. Indeed, provided that this holds, by using relations (4.6) and (4.7) we
easily infer that the closure of the given set of characters is contained inside the SL2(Z)-invariant

space spanned by τ j
θA,P,µ(τ)
η(τ)n , where 0 ≤ j ≤ deg(P ), µ ∈ A−1Zn/Zn, and P vary through the

same finite set. This vector space is clearly finite-dimensional. Now we analyze ch[W (p, λ)Q](τ).
By Lemma 6.1, combined with (4.2), we see that with A = pB ∈ Pos(n;Z), where B is the Gram
matrix of Q, the expression η(τ)nch[W (p, λ)Q](τ) can be written as a linear combination of θA,P,µ,
µ ∈ A−1Zn/Zn, and where P are certain polynomials. Next we show that all P that appears in
these linear combinations are harmonic with respect to A−1. For this, it is sufficient to prove that∏
α∈∆+

〈x1α1 + · · · + xnαn + µ̃, α〉 ∈ C[x1, ..., xn] is harmonic with respect to A−1 for any ”shift”

µ̃. This is immediate from Lemma A.3, Theorem A.4, Theorem A.6 and Remark 10 (thus we have
to exclude E8). It remains to show that θA,P,µ, where P is harmonic with respect to A−1, can
be written as a linear combination of θA,P,µ, where P is homogeneous. Clearly, every harmonic
polynomial P can be written as a sum of homogeneous harmonic polynomials and this proves the
previous claim and the theorem.

�

For Q = A1, it was shown in [3] that the relation (L(0)− Lss(0))2 = 0 holds on any logarithmic
W (p)A1-module, where Lss(0) denotes the semisimple part of the Virasoro operator L(0). Existence
of a non-trivial L(0) Jordan block is closely tied to the fact that θ′p,j(τ)/η(τ), modular form of weight
one, appears in the modular closure of irreducible characters. Observe that the proof of Theorem
4.1 implies that all irreducible characters contain θA,P,λ(τ)/η(τ)n where deg(P ) := |∆+|, where ∆+

is the set of positive roots (cf. Remark 3). Based on this observation we make the following

Conjecture 2. We have (L(0) − Lss(0))|∆+|+1 = 0 on any logarithmic W (p)Q-module. In other
words, L(0) admits Jordan blocks of size at most |∆+|+ 1.

4.3. Example: modular transformations for the character of W (p)A2. Here we examine
the Q = A2 case, that is g = s`(3). Let {α1, α2} be simple roots of A2. The entries of the Cartan
matrix are given by: (α1, α1) = (α2, α2) = 2 and (α1, α2) = (α2, α1) = −1. For simplicity, we only
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consider the case λ = λ̂ = 0. We have

dim(V (m1ω1 +m2ω2)) =
(m1 + 1)(m2 + 1)(m1 +m2 + 2)

2
,

and by the Weyl character formula

dim(V (m1ω1 +m2ω2)0) = min{m1,m2}+ 1.

For α = m1α1 +m2α2 , with m1,m2 ∈ Z, we have

lim
z→1

∑
w∈S3

(−1)`(w) zw(α+ρ)−ρ

∆(z)

 =
(2m1 −m2 + 1)(2m2 −m1 + 1)(m1 +m2 + 2)

2
.

We now present two formulas for ch[W (p)A2 ](τ). Formula (4.2), after z → 1, yields, after shifting
mj 7→ mj − 1

ch[W (p)A2 ](τ) =
∑

(m1,m2)∈Z2

(2m1 −m2) (2m2 −m1) (m1 +m2)
q
p

((
m1− 1

p

)2
+
(
m2− 1

p

)2
−
(
m1− 1

p

)(
m2− 1

p

))
2η(τ)2

.

Similarly, relation (4.3), easily gives another expression for ch[W (p)A2 ]:

∞∑
m1,m2=0

m1≡m2 (mod 3)

m1m2(m1 +m2)
q
tp
(
m1− 1

p
,m2− 1

p

)
(1− qm1) (1− qm2) (1− qm1+m2)

2η(τ)2
, where

tp(m1,m2) :=
p

3

(
m2

1 +m2
2 +m1m2

)
. (4.8)

Because we are interested modular properties of ch[W (p)A2 ](τ) we shall focus on the first formula.
If we let

P (m1,m2) := (2m1 −m2)(2m2 −m1)(m1 +m2),

then

c̃h [W (p)A2 ](τ) := 2η(τ)ch[W (p)A2 ](τ) = ΘBp,Pp,λp(τ) with

Bp := p

(
2 −1
−1 2

)
, Pp(m1,m2) := P

(
m1 +

1

p
,m2 +

1

p

)
, λp := −1

p
(1, 1)>.

Then we have

2η(τ)2
∑

(m1,m2)∈Z2

(2m1 −m2) (2m2 −m1) (m1 +m2) q
p

((
m1− 1

p

)2
+
(
m2− 1

p

)2
−
(
m1− 1

p

)(
m2− 1

p

))

=2η(τ)2
∑

(n1,n2)∈
(
− 1
p
,− 1

p

)
+Z2

(
2n1 − n2 +

1

p

)(
2n2 − n1 +

1

p

)(
n1 + n2 +

2

p

)
qp(n

2
1+n2

2−n1n2)

= 2η(τ)

 ∑
n=(n1,n2)∈

(
− 1
p
,− 1

p

)
+Z2

(2n1 − n2) (2n2 − n1) (n1 + n2) q
1
2
nTBpn +

2

p3

∑
n∈
(
− 1
p
,− 1

p

)
+Z2

q
1
2
nTBpn

−3

p

∑
n∈
(
− 1
p
,− 1

p

)
+Z2

(
n2

1 − 4n1n2 + n2
2

)
q

1
2
nTBpn +

3

p2

∑
n∈
(
− 1
p
,− 1

p

)
+Z2

(n1 + n2) q
1
2
nTBpn

 .
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Now each polynomial above is homogeneous and harmonic with respect to B−1
p (use Example 3

and Remark 8) so our character is a linear combination of θP,Bp,λ and thus formula (4.7) can be
applied.

Remark 4. Alternatively, one can use (3) to obtain modular transformation formulas of W (p)A2-
characters.

5. Characters of W 0(p)Q-modules

5.1. Characters as constant terms. Next we discuss irreducible W 0(p)Q-modules. In parallel to
[10, 11], we are primarily interested in atypical irreducibles. Typical irreducibles are isomorphic to
Fock spaces so their structure and character formulas are well-known (see Section 8). Because the
vertex operator algebra W 0(p)Q is a subalgebra of the Fock space, it automatically admits infinitely
many irreducible modules. In particular, infinitely many modules are obtained by restriction from
W (p)Q-modules - those are realized inside the lattice vertex algebra module. This way we obtain
W 0(p)Q-modules parametrized by β ∈ L0 which we denote by W 0(p, β)Q. Again, motivated by
the singlet case, we assume that all such W 0(p)Q-modules are irreducible (i.e., we conjecture that
W (p, λ)Q is completely reducible as W 0(p)Q-module) and that all atypical modules arise this way
(cf. Remark 1). With these assumptions, we can easily compute characters of all atypical by
using the full character ch[W (p, λ)Q](τ, z) as follows. Let β ∈ L0 and β 7→ λ under the natural
map L0 → L0/L, where λ is one of the representatives fixed earlier. Observe that z-powers in

ch[W (p, λ)Q](τ, z) are contained in the set λ̂ + Q ⊂ P . Moreover, because β = λ +
√
pγ, where

γ ∈ Q, we extract the coefficient of zβ
′
, β′ = λ̂+ γ, expressed as a constant term:

ch[W 0(p, β)Q](τ) = CTz

{
z−β

′
ch[W (p, λ)Q](τ, z)

}
. (5.1)

The most prominent case here is β = 0, where λ = λ̂ = 0, which gives the character of the vertex
algebra W 0(p)Q (also discussed in the introduction)

ch[W 0(p)Q](τ) = CTz{ch[W (p)Q](τ, z)} =
∑

α∈Q∩P+

dim(V (α)0)

(∑
w∈W

(−1)`(w) q
1
2
||√pw(α+ρ)− 1√

p
ρ||2

η(τ)rank(Q)

)
,

where V (α)0 denotes the zero weight subspace of V (α). Unfortunately, not much is known about
the dimension of V (α)0 for general g and α (let alone any explicit formulas!).

Example 2. (Q = A1). We illustrate how this setup recovers characters studied in our earlier

work [10]. Following the previous notation adopted for A1, for −(p− 1) ≤ j ≤ 0, λ̂ = 0, k ∈ Z, we
get

ch

[
W 0

(
p,
jω
√
p

+ k
√
pα

)
A1

]
(τ) =

1

η(τ)

∞∑
n≥k

(
q
p
(
n+ p−j−1

2p

)2

− qp
(
n+ p+j+1

2p

)2)
,

while for 1 ≤ j ≤ p, λ̂ = ω, k ∈ Z, we obtain

ch

[
W 0

(
p,
jω
√
p

+ k
√
pα

)
A1

]
(τ) =

1

η(τ)

∞∑
n≥k

(
q
p
(
n+ 2p−j−1

2p

)2

− qp
(
n+ 2p+j+1

2p

)2)
.

In particular, we have

ch[W 0(p)A1 ](τ) =
1

η(τ)

∞∑
n=0

(
q
p
(
n+ p−1

2p

)2

− qp
(
n+ p+1

2p

)2)
.
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Remark 5. Observe that the numerator of ch[W 0(p)A1 ](τ), studied extensively in [10, 11], is closely
related to Roger’s false theta function. Therefore it seems interesting to consider

FQ,p(τ) := η(τ)rank(Q)ch[W 0(p)Q](τ).

From the Lie theoretic point of view, this can be regarded as a “higher rank” generalization of the
classical false theta function. It would be especially interesting to understand these objects from
number theoretic perspective.

5.2. Explicit example: the character of W 0(p)A2. Now we consider the character of W 0(p)A2 .
Observe from the definition

η(τ)2ch[W (p)A2 ](τ, z) =
∑
m,n∈Z

q
p(m+1)2+p(n+1)2−p(m+1)(n+1)−m−n−2+ 1

p(
1− z−1

1

) (
1− z−1

2

) (
1− z−1

1 z−1
2

)
×
(
zm1 z

n
2 − z−m+n−1

1 zn2 − zm1 z−n+m−1
2 + z−n−2

1 z−n+m−1
2 + z−m+n−1

1 z−m−2
2 − z−n−2

1 z−m−2
2

)
=
∑
m,n∈Z

q
p

((
m− 1

p

)2
+
(
n− 1

p

)2
−
(
m− 1

p

)(
n− 1

p

))
(
1− z−1

1

) (
1− z−1

2

) (
1− z−1

1 z−1
2

)
×
(
zm−1

1 zn−1
2 − z−m+n−1

1 zn−1
2 − zm−1

1 z−n+m−1
2 + z−n−1

1 z−n+m−1
2 + z−m+n−1

1 z−m−1
2 − z−n−1

1 z−m−1
2

)
.

To obtain a formula for ch[W 0(p)A2 ], we have to extract the constant term. After a straightforward
computation, we get

Proposition 5.1. We have

ch[W 0(p)A2 ](τ) =
1

η(τ)2

∞∑
m1,m2=1

m1≡m2 (mod 3)

min(m1,m2)qtp(m1− 1
p ,m2− 1

p ) (1− qm1) (1− qm2)
(
1− qm1+m2

)
,

where tp(m1,m2) is defined in (4.8).

6. Asymptotic expansions

In this part, we derive asymptotic expansions of characters ch[W 0(p, β)](τ).

Lemma 6.1. Let λ ∈ P+. Then

lim
z→1

∑
w∈W

(−1)`(w) z
w
(
λ+ρ
p

)
−ρ

∆(z)

 =
1

p|∆+|

∏
α∈∆+

〈λ+ ρ, α〉
〈ρ, α〉

=
1

p|∆+|
dim(V (λ)).

Proof: Since the proof is analogous to the proof of Weyl’s dimension formula, we omit it here. �

Theorem 6.2. Let β ∈ L0, whose coset representative in L0/L is λ. Then, as t→ 0+, we have

η(it)dim(Q)ch[W 0(p, β)Q](it) ∼
dim

(
V
(
−√pλ

))
p|∆+|

+O
(√

t
)
,

where λ =
∑n

j=1(1− sj) ωj√p as in Section 4.2. In particular,

η(it)rank(Q)ch[W 0(p)Q](it) ∼ 1

p|∆+|
+O

(√
t
)
, where

|∆+| :=


n(n+1)

2 if Q = An,
n(n− 1) if Q = Dn,

36 if Q = E6,
63 if Q = E7,
120 if Q = E8.
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Proof: First we choose λ to be a representative in L0/L, as fixed above. Next we rewrite

η(τ)dim(Q)ch[W (p, λ)Q](τ, z) =
∑
β∈Q

∑
w∈W

(−1)`(w)q
1
2
||√pβ+w(λ+α0ρ)||2zβ+w(λ̂+ρ)−ρ

=
∑
β∈Q

∑
w∈W

(−1)`(w)q
p
2
||β||2+ 1

2
||λ+ρα0||2+

√
p(β,ω(λ+ρα0))zβ+w(λ̂+ρ)−ρ

=
∑
w∈W

(−1)`(w)q
1
2
||λ+ρα0||2

∑
β∈Q

eπiτp||β||
2+2πi(β,

√
pτw(λ+ρα0)+u)zw(λ̂+ρ)−ρ

= q
1
2
||λ+ρα0||2

∑
w∈W

(−1)`(w)Θ0,
√
pτw(λ+ρα0)+u(pτ ;AQ)zw(λ̂+ρ)−ρ

= q
1
2
||λ+ρα0||2

∑
w∈W

(−1)`(w) 1√
det(AQ)(−piτ)

n
2

Θ−√pτw(λ+ρα0)−u,0

(
− 1

pτ
;AQ0

)
zw(λ̂+ρ)−ρ, (6.1)

where u = (u1, ..., un), α0 =
√
p − 1√

p , and AQ denotes the determinant of the Gram matrix of

Q. In the last formula we have to exercise caution. As all vectors involved are in Cn, the vector
w(λ + ρα0) has to be written appropriately depending on whether the summation is over Q or
Q0. For this purpose we use || · ||0 if the summation is over Q0. Recall (5.1), where we define
ch[W 0(p, λ)Q](τ) as the constant term of the full characters ch[W (p, λ)Q](τ, z)z−λ. This expression
involves integral powers of z, so we can write

η(τ)dim(Q)ch[W 0(p, λ)Q](τ) = η(τ)dim(Q)

∫
[− 1

2
, 1
2 ]
n

ch[W (p, λ)Q](τ, z)z−λdu.

In each sum Θ−√pτw(λ+ρα0)−u,0(− 1
pτ ;Q0), the zeroth term dominates so we have

q−
1
2
||λ+ρα0||2η(τ)dim(Q)ch[W 0(p, λ)Q](τ)

∼
∑
w∈W

e−πiτ ||λ+ρα0||20
∫
[− 1

2
, 1
2 ]
n
e
− πi
pτ
||√pτw(λ+ρα0)+u||20 z

w(λ̂+ρ)−ρ−λ

∆(z)
du

=
∑
w∈W

e−πiτ ||λ+ρα0||20
∫
[− 1

2
, 1
2 ]
n
e
− πi
pτ (2

√
pτ(w(λ+Qρ),u)+||u||20) z

w(λ̂+ρ)−ρ−λ

∆(z)
du. (6.2)

We next turn the integral in (6.2) into an integral over Rn and show that this only introduces
an exponentially small error. More generally, we prove that for αj ∈ R (j ∈ N, j < n) and
M ∈ Pos(n;R) ∫

(1,∞)j×[− 1
2
, 1
2 ]
n−j

e2πi
∑n
j=1 αjuj−

1
τ
M [u]du (6.3)

is exponentially small. For this, we use the well-known fact that there exist α, β ∈ R+ such that
αIn < M < βIn, where A > B for A,B ∈ Pos(n;R) means there A − B ∈ Pos(n;R). Thus (6.3)
may be bounded against

�
∫

(1,∞)j×[− 1
2
, 1
2 ]
n−j

e
− α

Im(τ)

∑n
j=1 u

2
jdu.

The claim follows since for a ∈ R+,
∫∞
R e

− a
Im(τ)

u2

du is exponentially small.
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Returning to (6.2), we can now write

q−
1
2
||λ+ρα0||2η(τ)dim(Q)ch[W 0(p, λ)Q](τ) ∼

∫
Rn
e
− 2πi√

p
(w(λ+α0ρ),u)−πi||u||

2
0

pτ
zw(λ̂+ρ)−ρ−λ

∆(z)
du

=

∫
Rn
z
−πi||u||

2
0

pτ
−w(λ+α0ρ)√

p
+w(λ̂+ρ)−ρ−λ 1

∆(z)
du =

∫
Rn
z
−πi||u||

2
0

pτ
+w
(
− λ√

p
+ ρ
p

)
−ρ−λ 1

∆(z)
du.

Substituting τ = it and summing the above expression over the Weyl group W , we obtain

F (it) : =

∫
Rn
e
−π||u||

2
0

pt

∑
w∈W (−1)`(w)z

w
(
− λ√

p
+ ρ
p

)
zρ∆(z)

du.

Observe that (by Lemma 6.1), as u→ 0,∑
w∈W (−1)`(w)z

w
(
− λ√

p
+ ρ
p

)
zρ∆(z)

→
dim

(
V
(
−√pλ

))
p|∆+|

.

Next, we consider the u-expansion∑
(−1)`(w)z

w
(
− λ√

p
+ ρ
p

)
−λ

zρ∆(z)
=

∑
(m1,...,mn)∈Nn

α(m1, ...,mn)um1
1 · · ·u

m1
n , (6.4)

with α(0, ..., 0) =
dim(V (−√pλ))

p|∆+|
. Substituting vj = uj

√
2π
tp and using (6.4), we get

F (it) ∼
∑

(m1,...,mn)∈Nn

∫
Rn
e−
||v||20

2

(√
tp

2π

)n+
∑n
k=1mk

α(m1, ...,mn)vm1
1 · · · vm1

n dv

=
dim

(
V
(
−√pλ

))
p|∆+|

√
(2π)n

det(Q0)

(√
tp

2π

)n

+
∑

(m1,...,mn)6=0

∫
Rn
e−
||v||20

2

(√
tp

2π

)n+
∑n
k=1 mk

α(m1, ...,mn)vm1
1 · · · vm1

n dv,

where we used the generalized Gaussian integral formula∫
Rn
e−

1
2

∑n
j=1

∑n
k=1 Cj,kvjvkdv1 · · · dvn =

√
(2π)n

det(C)
,

where C is any symmetric positive definite matrix. Taking into account that the prefactor

e−πt||λ+α0ρ||2+πt||λ+α0ρ||20

does not contribute to the leading asymptotics, along with the formula (6.1), we get

η(it)rank(Q)ch[W 0(p, λ)Q](it)

∼
dim

(
V
(
−√pλ

))
p|∆+|

(√
tp

2π

)n√
(2π)n

det(AQ0)

1

(
√
tp)n

√
det(AQ)

+O
(√

t
)

=
dim

(
V
(
−√pλ

))
p|∆+|

+O
(√

t
)
,

as desired. Observe that for general λ ∈ L0, the leading asymptotic only depends on its coset
representative, so the proof follows. �
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Remark 6. In general, the coefficients α(m1, ...,mn) are difficult to compute explicitly for all λ.

However for λ̂ = 0 the numerator in the Weyl character formula admits a product form so it is
possible to get a more explicit asymptotic expansion. We do this in the next section for Q = A2.

7. Explicit example: the full asymptotic expansion of η(τ)2ch[W 0(p)A2 ](τ)

Observe that our method in Section 6 can in theory be used to compute a full asymptotic
expansion. In this section we prove Theorem 1.2 from the introduction.

Proof of Theorem 1.2: As in the general case we may write

f(τ) = η(τ)2CTzch[W 0(p)A2 ](τ, z) = η(τ)2

∫
[− 1

2
, 1
2 ]

2
ch[W 0(p)A2 ](τ, z)du1du2

with zj := e2πiuj . Define

G (u, v; τ) :=
∑
m,n∈Z

qp(m
2+n2−mn)−m−ne2πi(mu+nv).

Then

f(τ) =

∫
[− 1

2
, 1
2 ]

2
(G (u1, u2; τ)− G (−u1, u1 + u2; τ)− G (u1 + u2,−u2; τ) + G (u2,−u1 − u2; τ)

+G (−u1 − u2, u1; τ)− G (−u2,−u1; τ))
z−1

1 z−1
2 q

1
p(

1− z−1
1

) (
1− z−1

2

) (
1− z−1

1 z−1
2

)du1du2. (7.1)

An application of (3.1) yields

G (u, v; τ) = Θ0,(u−τv−τ)

(
2pτ ;

(
1 −1

2
−1

2 1

))
=

1√
3p (−iτ)

Θ(τ−uτ−v),0

(
− 1

2pτ
;
4

3

(
1 1

2
1
2 1

))
.

Now

Θ(τ−uτ−v),0

(
− 1

2pτ
;
4

3

(
1 1

2
1
2 1

))
= e
− 2πiτ

p

∑
n,m∈Z

e
− 2πi

3pτ ((n−u)2+(m−v)2+(n−u)(m−v))e
− 2πi

p
((n−u)+m−v)

.

We get exponentially small terms unless n = u, m = v. In particular in all cases that occur only
the n = m = 0 term contributes. Thus we may approximate the integrand in (7.1) by

− z1z2

(1− z1) (1− z2) (1− z1z2)
e
− 2πi

3pτ (u2
1+u2

2+u1u2)

×
(
e

2πi
p

(u1+u2) − e
2πi
p
u2 − e

2πi
p
u1 + e

− 2πi
p
u2 + e

− 2πi
p
u1 − e−

2πi
p

(u1+u2)
) 1√

3p(−iτ)
.

(7.2)

Moreover, as before we introduce an exponentially small error if in (7.1) we integrate over R2. To
compute the remaining integral, we set

f(u, v, w) := −
e
πi(u+v+w)+πi

(u+v+w)
p

(
1− e−

2πiu
p

)(
1− e−

2πiv
p

)(
1− e−

2πiw
p

)
(1− e2πiu) (1− e2πiv) (1− e2πiw)

.

Note that f has only removable singularities in all variables and we may hence write

f(u, v, w) =:
∑

n1,n2,n3≥0

α (n1, n2, n3)un1vn2wn3 . (7.3)
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Note that in particular α(0, 0, 0) = 1/p3. We then obtain, inserting (7.2) and (7.3) in (7.1),

f(it) ∼ 1√
3pt

∫
R2

f (u1, u2, u1 + u2) e−
2π
3pt (u

2
1+u2

2+u1u2)du1du2

=
1√
3pt

∑
n1,n2,n3≥0

α (n1, n2, n3)

∫
R2

un1
1 un2

2 (u1 + u2)
n3 e−

2π
3pt (u

2
1+u2

2+u1u2)du1du2

=
1√
3pt

∑
n1,n2,n3≥0

α (n1, n2, n3)

(√
3pt

2π

)n1+n2+n3+2 ∫
R2

e−(u2
1+u2

2+u1u2)un1
1 un2

2 (u1 + u2)
n3 du1du2,

where in the last equation we made the change of variables uj 7→ uj

√
3pt
2π . To finish the proof we

are left to compute α(n1, n2, n3) and the remaining integral.
To determine α(n1, n2, n3), recall that

e
πiu+πiu

p

(
1− e−

2πiu
p

)
1− e2πiu

=
∑
n≥0

(
Bn

(
1

2
− 1

2p

)
−Bn

(
1

2
+

1

2p

))
(2πiu)n−1

n!
, (7.4)

with Bn(x) the n-th Bernoulli polynomial. Since the left hand side is an even function, it follows
that n in the sum is odd. Moreover, noting that Bn(1− x) = (−1)nBn(x), gives that (7.4) equals

2
∑
n≥0

B2n+1

(
1
2 −

1
2p

)
(2n+ 1)!

(2πiu)2n.

Thus α(n1, n2, n3) = 0 unless n1, n2, and n3 are even in which case we obtain

α (2n1, 2n2, 2n3) = −8
B2n1+1

(
1
2 −

1
2p

)
(2n1 + 1)!

B2n2+1

(
1
2 −

1
2p

)
(2n2 + 1)!

B2n3+1

(
1
2 −

1
2p

)
(2n3 + 1)!

(2πi)2n1+2n2+2n3 .

To finish the proof, define

β (n1, n2, n3) :=

∫
R2

u2n1
1 u2n2

2 (u1 + u2)2n3 e−(u2
1+u2

2+u1u2)du1du2. (7.5)

We can evaluate (7.5) as follows: we set u1 = t1 + t2√
3
, u2 = −t1 + t2√

3
and

β(n1, n2, n3) =

(
2√
3

)2n3+1 ∫
R2

(
t1 +

t2√
3

)2n1
(
t1 −

t2√
3

)2n2

t2n3
2 e−t

2
1−t22dt1dt2

=
22n3+1

3
1
2

+n1+n2+n3

2n1∑
r=0

2n2∑
j=0

(
2n1

r

)(
2n2

j

)
3r+j

∫
R2

tr+j1 (−1)jt2n1+2n2+2n3−r−j
2 e−t

2
1−t22dt1dt2

=
22n3+1

3
1
2

+n1+n2+n3

n1+n2∑
k=0

2k∑
j=0

(
2n1

2k − j

)(
2n2

j

)
(−1)j3k

∫
R2

t2k1 t
2n1+2n2+2n3−2k
2 e−t

2
1−t22dt1dt2

=
22n3+1

3
1
2

+n1+n2+n3

n1+n2∑
k=0

2k∑
j=0

(
2n1

2k − j

)(
2n2

j

)
(−1)j3kΓ

(
k +

1

2

)
Γ

(
n1 + n2 + n3 − k +

1

2

)
,
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where we used the substitution r + j = 2k to eliminate summation indices for which the Gaussian
integral is vanishing. This gives

f(it) ∼ − 4

π

∑
n1,n2,n3≥0

22n3+1(−2πpt)n1+n2+n3

B2n1+1

(
1
2 −

1
2p

)
(2n1 + 1)!

B2n2+1

(
1
2 −

1
2p

)
(2n2 + 1)!

B2n3+1

(
1
2 −

1
2p

)
(2n3 + 1)

×
n1+n2∑
k=0

2k∑
j=0

(
2n1

2k − j

)(
2n2

j

)
(−1)j3kΓ

(
k +

1

2

)
Γ

(
n1 + n2 + n3 − k +

1

2

)
.

The claim follows, setting

α(N) := − 4

π

∑
n1,n2,n3≥0
N=n1+n2+n3

22n3+1
B2n1+1

(
1
2 −

1
2p

)
(2n1 + 1)!

B2n2+1

(
1
2 −

1
2p

)
(2n2 + 1)!

B2n3+1

(
1
2 −

1
2p

)
(2n3 + 1)!

×
n1+n2∑
k=0

2k∑
j=0

(
2n1

2k − j

)(
2n2

j

)
(−1)j3kΓ

(
k +

1

2

)
Γ

(
n1 + n2 + n3 − k +

1

2

)
. (7.6)

�

Remark 7. Alternatively one could use a 2-dimensional version of the Euler-McLaurin summation
formula as, for example, stated in [35]. However, this requires splitting the function of interest into
many summands to which one may apply Euler-McLaurin which makes the calculation much more
complicated than the use of Jacobi transformation properties.

8. (Analytic) quantum dimensions of W 0(p)Q-modules

As we previously noted (cf. Remark 1), presently there is no complete classification of irreducible
W 0(p)Q-modules for rank(Q) ≥ 2. Nevertheless, there are strong indications that irreducible
W 0(p)Q-modules fall into two categories: typical and atypical.

(i) Typical modules are just rank n Fock spaces Fλ, which are irreducible as W 0(p)Q-modules.
Typical characters are therefore given by

ch[Fλ](τ) =
q
||λ−α0ρ||

2

2

η(τ)n
,

where λ /∈ L0 (see [12]).
(ii) Atypical modules, discussed above, form a discrete family parametrized by β ∈ L0, and

their characters are
ch[W 0(p, β)Q](τ).

Next we consider asymptotic (or quantum) dimensions of irreducible modules

Theorem 8.1. (i) For β as in Theorem 6.2, we have

qdim
(
W 0(p, β)Q

)
= dimCV

(
−√pλ

)
.

(ii) For any typical module Fλ, we have

qdim(Fλ) = p|∆+|.

Proof: It follows directly from Theorem 6.2 and the definition of analytic q-dimension

qdim[M ] = lim
t→0

ch[M ](it)

ch[V ](it)
,

where M is a module for the vertex operator algebra V . �
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Observe that dimC(V ((p− 1)ρ) = p|∆+|. On the other hand, because of −λ = (s1 − 1)ω1 + · · ·+
(sn − 1)ωn, where sj ∈ {1, ..., p}, we always have

dimCV
(
−√pλ

)
≤ p∆+ .

Therefore we conclude that typical modules have the largest quantum dimension among irreducible
modules (see also [10]).

Remark 8. Certain regularized characters of W 0(p)Q-modules including their regularized quantum
dimensions are studied in a recent paper [12] (see also [11]).

Appendix A. Harmonicity of certain polynomials

In this part we prove harmonicity of certain polynomials needed for the proof of modularity of
characters in Theorem 4.1.

A.1. Some harmonic polynomials of type A. Consider the rank n root lattice of type A,
Q = ⊕nj=1Zαj , whose Cartan matrix An = (〈αj , αk〉)nj,k=1 is given by

An :=


2 −1 0 ... 0 0
−1 2 −1 ... 0 0
0 −1 2 ... 0 0
... ... ... .... 2 −1
0 0 0 ... −1 2

 . (A.1)

ThenA−1
n is the Cartan matrix of the dual (or weight) lattice P = ⊕nj=1Zωj such that 〈ωj , αk〉 = δj,k.

Clearly, A−1
n := (ajk), where ajk := 〈ωj , ωk〉.

Denote by ∇2 the standard (diagonal) Laplacian on Rn and let ∇2
B be the Laplace-Beltrami

operator for B ∈ Mat(n,R), that is

∇2
B :=

(
∂

∂x

)T
B
∂

∂x
=

n∑
j,k=1

bjk∂
2
jk; ∂2

jk :=
∂2

∂xj∂xk
.

Definition 1. We say that polynomial f(x1, ..., xn) is harmonic with respect to B (resp. harmonic)
if ∇2

B(f) = 0 (resp. ∇2(f) = 0).

Remark 9. Note that f is harmonic with respect to B if and only if it is harmonic with respect to
λB for some λ ∈ R×.

The following result follows easily, using basic facts from Calculus and Linear Algebra.

Lemma A.1. Consider the linear change of variable x = By, where B is an invertible matrix,
C ∈ Mat(n,R), x = (x1, ..., xn), and y = (y1, ..., yn). Then ∇2

C(f(x)) = ∇2
(B−1)TB−1C

(f∗(y)), where

f∗(y) = f(B(y)). In particular, ∇2(f(x)) = ∇2
(B−1)TB−1(f∗(y)).

The next result is well-known (see [27, Theorem 5.1.8]).

Proposition A.2. The discriminant δ(x1, ..., xn) :=
∏
j<k(xj − xk) is harmonic.

Lemma A.3. Suppose that t ∈ R and let f(x1, ..., xn) be harmonic with respect to B. Then

f(x1 + a1t, , ..., xj + ajt, ..., xn + ant)

is also harmonic with respect to B for all aj ∈ R. In particular,∏
j<k

(xj − xk + t(j − k))

is harmonic.
18



Proof: By using Taylor’s Theorem, we see that

exp

 n∑
j=1

taj∂xj

 f(x1, ..., xn) = f(x1 + a1t, ..., xj + ajt, ..., xn + ant).

The proof now follows by observing that any pair of partial differential operators with constant
coefficients commute with each other, in particular

exp

(
n∑
i=1

taj∂xj

)
◦ ∇2 = ∇2 ◦ exp

 n∑
j=1

taj∂xj

 .

�

Recall the set of positive roots of Q:

∆+ = {αj , j = 1, ..., n} ∪ {αj + · · ·+ αk : 1 ≤ j < k ≤ n} and ρ =
n∑
j=1

ωj .

Next we introduce several families of polynomial with respect to two bases of Rn. For λ =
x1α1 + · · ·+ xnαn, we let

δQ(x1, ..., xn) :=
∏
α∈∆+

(λ+ ρ, α), δ̃Q(x1, ..., xn) :=
∏
α∈∆+

(λ, α).

Similarly, for µ = x1ω1 + · · ·xnωn, we set

δP (x1, ..., xn) :=
∏
α∈∆+

(µ+ ρ, α), δ̃P (x1, ..., xn) :=
∏
α∈∆+

(µ, α).

The subscript Q (resp. P ) indicates that we use the α-basis (resp. ω-basis) in the paramatrization
of λ (resp. µ).

Example 3. With Q = A2, we have

δQ(x1, x2) = (2x1 − x2 + 1)(2x2 − x1 + 1)(x1 + x2 + 2),

δ̃Q(x1, x2) = (2x1 − x2)(2x2 − x1)(x1 + x2),

δP (x1, x2) = (x1 + 1)(x2 + 1)(x1 + x2 + 2),

δ̃P (x1, x2) = x1x2(x1 + x2).

From µ = x1ω1 + · · ·+ xnωn, we have

δ̃P (x1, x2, ..., xn) =
n∏
k=1

xk
∏

1≤j<`≤n
(xj + · · ·x`).

Similarly,

δP (x1, x2, ..., xn) =
n∏
k=1

(xk + 1)
∏

1≤j<`≤n
(xj + · · ·+ x` + `− j + 1).

with An as in (A.1), we have

Theorem A.4. The functions δ̃P and δP are harmonic with respect to An. The functions δ̃Q and
δQ are harmonic with respect to A−1

n .
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Proof: We apply Proposition A.2 for the discriminant with n+ 1 variables:

∇2 (δ (x1, ..., xn+1)) =
n+1∑
j=1

∂2
jjδ(x1, ..., xn+1) = 0.

We then make a change of variables:

y1 := x1 − x2, . . . , yn := xn − xn+1, yn+1 := xn+1.

With respect to new variables, δ does not depend on yn+1 and

δ∗(y1, ..., yn+1) =
n∏
j=1

y`
∏

1≤j<k≤n
(yj + · · ·+ yk) = δ̃P (y1, ..., yn).

The transition between the y and x variables is controlled by the (n+ 1)× (n+ 1) matrix

A =


1 0 0 ... 0
−1 1 0 ... 0
0 −1 1 ... 0
... ... ... ... ...
0 0 ... −1 1

 .

Note that we have

ATA =


2 −1 0 ... 0
−1 2 −1 ... 0
0 −1 2 ... ...
... ... ... ... ...
0 0 ... ... 1

 .

Moreover observe that the principal n×n minor of ATA is precisely the Cartan matrix of type An.
By using Lemma A.1, with B−1 = A, we get

0 = ∇2 (δ(x)) = ∇2
ATA (δ∗(y)) .

Although ATA matrix is of size n + 1, δ∗(y) does not involve the yn+1 variable, thus only the
summation over the principal minor of An is relevant for the laplacian. Consequently,

∇2
An

(
δ̃P (y)

)
= 0

as desired. The An-harmonicity of δP now easily follows from Lemma A.3

Next we consider δQ(x) and δ̃Q(x). Observe that they are related to δP (x) and δ̃P (x), respec-
tively, under a change of basis. More precisely, if we let y = Anx then

δ̃P (x) = δ̃Q(y).

Clearly, An = ATn , so (A−1
n )T = A−1

n . Another application of Lemma A.1 results in

0 = ∇2
An

(
δ̃P

)
= ∇2

A−1
n A−1

n An

(
δ̃Q

)
= ∇2

A−1
n

(
δ̃Q

)
as desired.

�
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A.2. Some harmonic polynomials of D-type. To parametrize the roots of Dn, it is convenient
to use the orthogonal basis εj , j = 1, ..., n. In this basis positive roots are given by

∆+ = {εj − εk : 1 ≤ j < k ≤ n} ∪ {εj + εk : j < k}.

Simple roots are αj = εj − εj+1, j = 1, ..., n−1 and αn = εn−1 + εn. With this ordering the Cartan
matrix is

Dn =



2 −1 0 ... 0 0 0
−1 2 −1 ... 0 0 0
0 −1 2 ... 0 0 0
... ... ... ... ... ... ...
0 0 0 ... 2 −1 −1
0 0 0 ... −1 2 0
0 0 0 ... −1 0 2


.

The next result is taken from [27, Section 5.1.3].

Proposition A.5. The function ∏
j<k

(
x2
j − x2

k

)
is harmonic with respect to Dn.

As before we consider

δ̃Q :=
∏
α∈∆+

〈λ, α〉, δQ =
∏
α∈∆+

〈λ+ ρ, α〉

Similarly, we define δ̃P and δP .

Example 4. Let Q = D4, then

δQ = (2x1 − x2)(2x2 − x1 − x3 − x4)(2x3 − x2)(2x4 − x2)(x1 + x2 − x3 − x4)(x2 + x3 − x4 − x1)

×(x1 + x3 − x4)x2(x1 + x3 + x4 − x2)(x1 + x4 − x3)(x3 + x4 − x1)(x2 + x4 − x1 − x3).

Our next result is analogous to Theorem A.4, now for the D-type.

Theorem A.6. The function δ̃Q is harmonic with respect to D−1
n and δ̃P is harmonic with respect

to Dn.

Proof: For the proof, we use Proposition A.5 and the change-of-variables matrix

D =


1 0 0 ... 0
−1 1 0 ... 0
0 −1 1 ... 0
... ... ... ... ...
0 0 ... −1 1
0 0 ... 1 1

 .

We then easily see that

DTD = Dn.

Together with Lemma A.1 this yields that δ̃P is harmonic with respect to Dn. Another change of

variables (as in Theorem A.4) easily implies that δ̃Q is harmonic with respect to D−1
n . �
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A.3. Towards harmonic polynomials of type E.

Remark 10. For Q = E6, E7 and E8, we have to consider,

p6(x1, ..., x6) = ∇2
E−1

6
δQ(x1, ..., x6),

p7(x1, ..., x7) = ∇2
E−1

7
δQ(x1, ...., x7),

p8(x1, ..., x8) = ∇2
E−1

8
δQ(x1, ...., x8).

By using MAPLE, we computed pj , for j = 6, 7, 8. We were able to show that p6 = p7 = 0. But
we could not simplify these polynomials to the standard form due to a very high degree for E8.
Even so, we were able to evaluate p8 for many randomly chosen xj-values and all these calculations
returned zero. Thus, we can conclude with a high certainty that p8 is indeed zero.
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[20] B. Feigin, A. Găınutdinov, A. Semikhatov, and I. Tipunin, Logarithmic extensions of minimal models: char-
acters and modular transformations. Nuclear Phys. B 757 (2006), 303–343.

[21] A. Folsom, K. Ono, and R. Rhoades, Mock theta functions and quantum modular forms, Forum of Mathe-
matics, Π 1 (2013) e2, 27 pages.

[22] E. Frenkel and D. Ben-Zvi, Vertex algebras and algebraic curves, Mathematical Surveys and Monographs, 88,
American Mathematical Society, Providence, RI, 2001.

[23] I. Frenkel, J. Lepowsky, and A. Meurman, Vertex Operator Algebras and the Monster, Pure and Applied
Math., Vol. 134, Academic Press, 1988.

22



[24] J. Fuchs, S. Hwang, A. Semikhatov, and I. Tipunin, Nonsemisimple Fusion Algebras and the Verlinde Formula,
Comm. Math. Phys. 247 (2004), no. 3, 713–742.

[25] S. Garoufalidis and T. Vuong, A stability conjecture for the colored Jones polynomial, preprint 2013.
[26] T. Gannon, Lattices and Theta Functions, PhD Thesis, McGill,1991.
[27] R. Goodman and N. Wallach, Symmetry, Representations and Invariants, Vol. 66. Dordrecht: Springer, 2009.
[28] R. Lawrence and D. Zagier, Modular forms and quantum invariants of 3-manifolds. Asian Journal of Math-

ematics 3 (1999), 93-108.
[29] J. Lepowsky and H. Li, Introduction to Vertex Operator Algebras and Their Representations, Birkhauser,

Boston, 2003.
[30] A.Milas, Characters of modules of irrational vertex algebras, Contributions in Mathematical and Computa-

tional Sciences (Proceedings of the Conference on Vertex Algebras and Automorphic Forms), Heidelberg,
2011, 8 (2014), 1-29.

[31] A.Milas and M. Penn, Lattice vertex algebras and combinatorial bases: general case and W-algebras, New
York Journal of Mathematics 18, (2012) 621-650.

[32] A. Semikhatov, Virasoro central charges for Nichols algebras, Mathematical Lectures from Peking University
Bai, C.; Fuchs, J.; Huang, Y.-Z.; Kong, L.; Runkel, I.; Schweigert, C. (Eds.) 2014, IX 67-92.
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