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Jacobi forms
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†

We define one-parameter “massive” deformations of Maass forms
and Jacobi forms. This is inspired by descriptions of plane gravi-
tational waves in string theory. Examples include massive Green’s
functions (that we write in terms of Kronecker–Eisenstein series)
and massive modular graph functions.
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1. Introduction and statement of results

This note introduces a class of deformations of some classical objects (Maass
forms and real-analytic Jacobi forms), that naturally arise in string theory
and in condensed-matter theory. It has been known for a long time that

string amplitudes from surfaces (worldsheets) in flat spacetime transform
“nicely” with respect to the mapping class group of the surface. For exam-
ple, torus chiral blocks produce so-called vector-valued modular forms for

the full modular group SL2(Z). The plane (gravitational) wave is a natural
one-parameter deformation of flat spacetime. Any spacetime reduces to this
type of spacetime in a specific limit [19]. This should lead to one-parameter

deformations of e.g. (vector-valued) modular forms, which is of indepen-
dent interest in mathematics. Similarly, in [22], it was discussed how the
statistical mechanics of theories at a critical point can allow interesting one-
parameter deformations away from criticality. All the above work in physics

raises the question on how special these deformations are and whether one
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can develop a mathematical theory of these deformations that is somehow
parallel to that of modular or automorphic forms.

The precursor to our classes of functions are some open string ampli-
tudes which Bergman, Gaberdiel, and Green [5] computed in the plane wave
background. For example, for t ∈ R+ and m ∈ R, define

Fm(t) := e−2πcmt
(
1− e−2πmt

) 1

2

∏
n≥1

(
1− e−2πt

√
m2+n2

)
,(1)

where

cm :=
1

(2π)2

∑
�≥1

∫ ∞

0
e−�2x−π2m2

x dx .

The authors of [5] established in Appendix A the following inversion formula:

(2) Fm(t) = Fmt

(
1
t

)
.

Moreover, they showed that limm→0 cm = 1
24 and hence we may view Fm(t)√

2πtm

as a one-parameter deformation of theDedekind eta function given by η(τ) :=

q
1

24

∏
n≥1(1 − qn) (q := e2πiτ ), i.e., we obtain limm→0

Fm(t)√
2πmt

= η(it). Here,

m represents spacetime curvature, thus m → 0 is the flat-space limit and
this is called a massive deformation.

It is remarkable that such a complicated-looking deformation of the
Dedekind eta function preserves the inversion property of η. According to
string theory, this occurs because the space of complex structures (up to
equivalence) on an annulus is naturally parametrized by t ∈ R+ modulo the
inversion t �→ 1

t . This suggests that to get deformations of modular forms
which retain modularity with respect to the full modular group SL2(Z),
one should look at closed string (torus) amplitudes in the plane wave back-
ground. Some of these were computed by e.g. Takayanagi [26]; we list those
amplitudes, and then repackage them in Section 2 into our prototypical ex-
ample E1,μ(z; τ). Our paper originated with the challenge of finding a natural
mathematical interpretation for these torus amplitudes. In Section 3.1, by
studying the special properties of E1,μ(z; τ), we define the new classes of
functions.
• Amassive Maass form is a smooth function fμ(τ) on (τ, μ) ∈ H×R+ which,
for each fixed μ, transforms like a modular form, has at most polynomial
growth towards the cusps, and is annihilated by some differential operator,
given in (11).
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• A massive Maass–Jacobi form is a smooth function φμ(z; τ) on (z, τ, μ) ∈
C × H × R+ which, for each fixed μ and z, transforms like a Jacobi form,
has at most polynomial growth towards the cusps, and which is annihilated

by two differential operators, defined in (12) and (13).

In Section 3.2 we construct families of examples, and and study them in
Section 4. Recently there has been extensive work in the physics literature
on related topics, some of which we review in Section 5.

2. String theory torus amplitudes revisited

2.1. The plane wave torus amplitudes

According to string theory, the functions Fm given in (1) live on the moduli
space of the cylinder, which is why it respects modular inversion but not

translation. To find something closer to a modular form, we instead consider
closed string amplitudes on a torus.

One of the most basic objects in physics is the one-loop partition func-
tion. This can be computed by functional determinants, as reviewed for
example in Section 13.4.1 of [10]. We begin with the partition function of a

fermion (with twisted boundary conditions) in a plane gravitational wave,
as in equation (2.37) of [25]

(3) Zα,β,m (τ)

:= e−8πcα,mτ2
∏
n∈Z

∏
±

(
1− e−2πτ2

√
m2+(n±α)2+2πi(n±α)τ1±2πiβ

)
,

with α, β ∈ R and

cα,m :=
1

(2π)2

∑
�≥1

cos(2π�α)

∫ ∞

0
e−�2x−π2m2

x dx=
m

2π

∑
�≥1

cos(2π�α)
K1 (2π�m)

�
.

Here and throughout the paper we write τ := τ1 + iτ2 with τ1 ∈ R and τ2 ∈
R+. TheK-Bessel function enters through (see 10.32.10 of [18]), Arg(w) < π

4

(4) Kν(w) :=
1
2

(
w
2

)ν ∫ ∞

0
exp

(
−x− w2

4x

)
x−ν−1dx.

In the literature, Zα,β,m(τ) is often written as Zα,β,m(τ, τ) to emphasize its
non-holomorphicity. Note that Zα,β,m(τ) only depends on α, β modulo one.
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In Appendix A of [26], Zα,β,m(τ) was shown to obey

(5) Zα,β,m(τ + 1) = Zα,α+β,m(τ) , Zα,β,m

(
− 1

τ

)
= Zβ,−α, m

|τ|
(τ) .

This modular covariance is quite remarkable, given the unfamiliar square
root in the exponent of (3), but it is required by string theory. Computing
that limm→0 cα,m = α2

4 − α
4 + 1

24 , we find that

lim
m→0

Zα,β,m(τ) = e−2πα2τ2

∣∣∣∣ϑ1(ατ + β; τ)

η(τ)

∣∣∣∣
2

,(6)

where for z ∈ C the Jacobi theta function is defined as

ϑ1(z; τ) := −2q
1

8 sin(πz)

∞∏
n=1

(1− qn)(1− e2πizqn)(1− e−2πizqn).

In [25], Zα,β,m(τ) was called a massive theta function; we, however, do not
use this name since it is not holomorphic even in the limit (6).

2.2. Reformulation of the torus amplitudes

In the inversion formula in (5), it is inconvenient that the parameter m
is rescaled; for this reason, the deformation parameter that we use in this
paper is the SL2(Z)-invariant quantity μ := m2|τ |. In physics terms, if m2

is the mass and |τ | is the area, then μ is dimensionless. The invariant mass
parameter μ was not used in the early literature on strings in pp-waves.
It was formally introduced in [9] when writing a generating function for
modular graph functions, but there was no connection to the plane wave
amplitudes.

Just as Jacobi theta functions with characteristics can be recast as Jacobi
forms, (6) suggests that we can interpret Zα,β,m(τ) as a function Zμ(z; τ) in
z = ατ+β for μ fixed. Then the aforementioned periodicity in α, β, together
with (5), implies that for each fixed μ, Zμ(z; τ) transforms under SL2(Z)×Z2

like a Jacobi form of index and weight zero.
This raises the question what other basic property Zμ(z; τ) possesses.

The final ingredient in our repackaging is that the logarithm of a parti-
tion function of a free theory can be a Green’s function. The Green’s func-
tions G(x, y) of a differential operator L are the solutions to an inhomo-
geneous (partial) differential equation L(x)G(x, y) = δ(x − y), where δ(x)
is the Dirac delta distribution; more on this is explained below equation
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(9). At least formally, a solution to the differential equation L(f) = g is
then f(x) =

∫
G(x, y)g(y)dy. In quantum field theory (or string theory) the

Green’s function for the Laplace equation (or Weyl equation, or whatever
the equation of motion for the system is) plays a central role e.g. to calcu-
late Feynman diagram integrals. Thus we may hope that Log(Zμ) satisfies a
simple differential equation (of course it continues to transform with index
and weight zero). Putting all of this together, define

E1,μ(z; τ) := −Log
(
Z−α,β,

√
μ

|τ|
(τ)

)
.

Comparing (6) with (33) then gives that1

(7) lim
μ→0+

E1,μ(z; τ) = E1(z; τ) ,

with the Kronecker–Eisenstein series

(8) E1(z; τ) :=
τ2
π

∑
(r,�)∈Z2\{(0,0)}

e
2πi

τ2
Im((rτ+�)z)

|rτ + �|2 .

Note that E1(z; τ) is up to a factor the Green’s function of the Laplace
equation on the torus (see e.g. [21, Chapter 7.2])

(9) ∂z∂z(E1(z; τ)) = −2πδ[2](z; τ) +
π

τ2
,

where, for a variable w, we set ∂w := ∂
∂w . Here, the Dirac delta distribution

δ[2](z; τ) is associated to the linear functional on the space of smooth func-
tions on the torus C/(Zτ + Z) sending such a function f(z) to f(0) ∈ C.
We formally write this linear functional as the integral operator given by∫ ∫

P f(z)δ[2](z; τ) d2z where P is a fundamental domain on C. Since the left-
hand side integrates to zero on a compact space, the constant term π

τ2
on the

right-hand side of (9) is needed to cancel the integral
∫∫

P δ[2](z; τ) d2z = 1.
Incidentally, if we allow for quasiperiodicity w as in E1(w, z; τ) in (30), then
the constant term π

τ2
in (9) is absent, unless w ∈ Qτ +Q.

To summarize, in this subsection we repackage the string torus ampli-
tudes as E1,μ(z; τ), which can be thought of as a deformed non-holomorphic

1Here we are starting from the partition function of a fermion. If we would
instead start from the partition function of a boson in equation (2.37) of [25], then
we would arrive at a different sign.
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Jacobi form of weight and index zero, and more precisely as a massive de-
formation of the torus Green’s function of the Laplace equation. We identify
in the next section what differential equation E1,μ(z; τ) satisfies.

Using (33) we rewrite (6) as

lim
μ→0+

E1,μ(z; τ) = E1(z; τ) = −2 log

∣∣∣∣ϑ1(z; τ)

η(τ)

∣∣∣∣+ 2πz22
τ2

,

where z = z1+iz2. Since ϑ1(z; τ) vanishes at the lattice points z ∈ Zτ+Z, we
see that E1 has logarithmic singularities at lattice points. These logarithmic
singularities are crucial in mathematical physics, when E1(z; τ) is used as a
Green’s function: it is precisely what is required to obtain δ[2] in (9) above;
readers unfamiliar with this may want to consult the textbook Problem 2.1
in [21] with the solution in [11].

3. Massive Jacobi forms

3.1. The definitions

We note that holomorphy is much more restrictive than modularity. To be
more precise, it is easy to construct functions which are non-holomorphic
but modular-invariant. For example letting g(z) be any smooth function on
the sphere and J(τ) the SL2(Z)-Hauptmodul, the composition g(J(τ)) is
smooth, modular-invariant, and bounded at the cusps. Of course, the way
to proceed is to replace the conditions like ∂τ = 0 by higher order differential
equations invariant under the appropriate Lie group.

We first consider functions fμ(τ) on H × R+. The group SL2(R) acts
on H as usual and fixes R+. The weight k hyperbolic Laplace operator for
SL2(R) is defined as

(10) Δτ,k := −τ22
(
∂2
τ1 + ∂2

τ2

)
+ ikτ2(∂τ1 + i∂τ2) = −4τ22 ∂τ∂τ + 2ikτ2∂τ .

We say that a function g has polynomial growth towards i∞ if

g(τ) = O (τa2 ) as τ2 → ∞

for some a > 0. Decay towards the other cusps is defined similarly.

Definition 1. A massive Maass form of weight k is a smooth function
fμ(τ) on (τ, μ) ∈ H × R+ that transforms like a modular form of weight k
for some Fuchsian group, satisfies

(11) Δτ,k(fμ)(τ) =
(
g2(μ)∂

2
μ + g1(μ)∂μ + g0(μ)

)
fμ(τ)
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for certain smooth functions gj : R+ → C, and for each fixed μ ∈ R+, has
polynomial growth towards the cusps. If fμ is a massive Maass form, and
f(τ) := limμ→0+ fμ(τ) exists for all τ ∈ H, then we say fμ is a massive
deformation of f .

Any (holomorphic) modular form f(τ) has massive deformations, e.g.
f(τ) + aμ for a ∈ C. In Theorem 3.6 below, we give massive Maass forms
Es,μ(0; τ) of weight zero which, for any s ∈ C with Re(s) > 1, are massive
deformations of the Kronecker–Eisenstein series Es(0; τ) defined in (32).

Note that adding λfμ to the right-side of (11) is unnecessary as it could
be absorbed into g0. Also, observe that we can remove the first order term
g1(μ)∂μ in (3.2) by making the change of variable μ = g(ν), provided that we
find a solution to the auxiliary ordinary differential equation g1(g(ν))g

′(ν)−
g2(g(ν))g

′′(ν) = 0.

If fμ(τ) is a massive deformation of a Maass form f(τ), then for any
smooth function g(μ) on R+ with limμ→0+ g(μ) = 1, g(μ)fμ(τ) is another
massive deformation of f(τ), though with different gj(μ). Thus if there is
one massive deformation of a given Maass form, then there are many.

Next consider functions φμ(z; τ) on C × H × R+. The Jacobi group
SL2(R)×R2 acts on C×H as usual and fixes R+. In particular, restricted to

A = [
(
a
c
b
d

)
, (λ, μ)] ∈ SL2(Z)×Z2, the weight k index m slash operator is

φ|k,mA(z; τ) := (cτ + d)−k exp

(
2πim

(
−c

(z + λτ + μ)2

cτ + d
+ λ2τ + 2λz

))

× φ

(
z + λτ + μ

cτ + d
;
aτ + b

cτ + d

)
.

The Laplacian here is

Δz,k,m := 2τ2∂z∂z + 8πiατ2m∂z − 2πim.

The Casimir operator of order three is given by

Ck,m := −4τ2z2
(
∂z∂

2
z + ∂2

z∂z
)
− 4τ22

(
∂τ∂

2
z + ∂τ∂

2
z

)
+ 2ikτ2

(
∂z∂z + ∂2

z

)
+ 4πim

(
8τ22 ∂τ∂

2
τ − 2z22∂

2
z + 8τ2z2∂τ∂z − 2i (2k − 1) τ2∂τ + 2kiz2∂z

)
.

This operator was introduced into the context of Maass–Jacobi forms in [20].
There are several definitions of those forms in the literature, one example is
given in [6].
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Definition 2. A massive Maass–Jacobi form is a smooth function φμ(z; τ)
on (z, τ, μ) ∈ C×H×R+ that transforms like a Jacobi form of weight k and
index m for some discrete subgroup of SL2(R)×R2, satisfies both

Ck,m (φμ) (z; τ) =λφμ(z; τ),(12)

Δz,k,m(φμ)(z; τ) = −
(
G2(μ)∂

2
μ +G1(μ)∂μ +G0(μ)

)
φμ(z; τ)(13)

for certain smooth functions G0, G1, and G2 ∈ C∞(R+) , and has polynomial
growth for each fixed z and μ. (The minus sign on the right is to facilitate
comparison with Section 5.) If φμ is a massive Maass–Jacobi form, and
φ(z; τ) := limμ→0+ φμ(z; τ) exists for all z ∈ C and τ ∈ H, then we say that
φμ is a massive deformation of φ.

Note that a massive Maass–Jacobi form is, among other things, a one-
parameter family of Maass–Jacobi forms. For example, we prove in Corollary
3.5 that E1,μ(z; τ) is a massive Maass–Jacobi form of weight and index zero,
for SL2(Z)×Z2, for which λ = G1(μ) = G0(μ) = 0 is a possible choice. We
generalize this example significantly in Theorem 3.4: e.g. in Corollary 3.5 we
give a massive deformation Es,μ(z; τ) of Es(z; τ) for all s ∈ C with Re(s) > 1.

Lemma 3.1. Choose any smooth functions g, ϕ ∈ C∞(R+) such that both
g and ϕ′ never vanish and ϕ maps R+ onto R+.

(a) Suppose that fμ(τ) is a massive Maass form of weight k, for some
discrete subgroup G of SL2(R). Then Fμ(τ) := g(μ)fϕ(μ)(τ) is also a
massive Maass form of weight k for G.

(b) Suppose that φμ(z; τ) is a massive Maass–Jacobi form of weight k and
indexm, for some discrete subgroup Γ of SL2(R)×R2. Then Φμ(z; τ) :=
g(μ)φϕ(μ)(z; τ) is also a massive Maass–Jacobi form of weight k and
index m for Γ.

Proof. (a) Clearly Fμ satisfies the same transformation law with respect to
G as fμ, and also has the same limiting behavior towards the cusps. To see
that (11) holds, with different functions g0, g1, and g2, we directly compute

Δτ,k(Fμ)(τ) =
g(μ)

ϕ′(μ)2

(
g2(ϕ(μ))∂

2
μ +

(
−ϕ

′′
(μ)g2(ϕ(μ)) + g1(ϕ(μ))ϕ

′
(μ)

))
∂μ

+g0(ϕ(μ))ϕ
′
(μ)2.

The proof of (b) is similar.

Lemma 3.1 makes the following definitions natural.
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Definition 3. For functions g(μ), ϕ(μ), fμ(τ), Fμ(τ), φμ(z; τ), and Φμ(z; τ)
as in Lemma 3.1, we call fμ(τ) and Fμ(τ) equivalent as massive Maass forms,
and φμ(z; τ) and Φμ(z; τ) equivalent as massive Maass–Jacobi forms.

It is easy to verify that the equivalences defined above indeed yield equiv-
alence relations.

Note that the above objects are truly doubly periodic for μ = 0. It is,
however, also of interest to allow for quasiperiodicity, which appears as a
parameter w in Section 4.3 below. This can be relevant for vector-valued
modular forms.

3.2. Examples

We first note the well-known fact that the Kronecker–Eisenstein series
E1(z; τ) is a Maass–Jacobi form of weight and index zero, as we now re-
view.

Proposition 3.2. For z /∈ Zτ + Z, we have

C0,0 (E1(z; τ)) = 0.

Proof. Write C0,0 = C0,0;1 + C0,0;2 with

(14) C0,0;1 := −4τ2z2
(
∂z∂

2
z + ∂2

z∂z
)
, C0,0;2 := −4τ22

(
∂τ∂

2
z + ∂τ∂

2
z

)
.

For Re(s) sufficiently large, the double sum representation of Es(z; τ) in (32)
converges absolutely even after differentiation. We act on each summand,
that we denote by Es,r,�(z; τ), to obtain that

τ2C0,0;1(Es,r,�)(z; τ) = 8π3iz2|rτ + �|2rEs,r,�(z; τ),

τ2C0,0;2(Es,r,�)(z; τ) = −8π3iz2|rτ + �|2rEs,r,�(z; τ)

so the contributions from the two pieces of C0,0 cancel termwise. The claim
then follows via analytic continuation to s = 1.

To determine the action of the operator C0,0 on the deformed E1,μ(z; τ),
it would be convenient to have a similar double sum representation as for
Es(z; τ) in (32). For this purpose, recall the Bessel function defined in (4).
Note that Kν(x) obeys the differential equation

(15) x2f ′′(x) + xf ′(x)−
(
x2 + ν2

)
f(x).

For ν ∈ R+, Kν has the asymptotic behavior Kν(x) ∼
√

π
2xe

−x as x → ∞,

and Kν(x) ∼ 1
2Γ(ν)(

x
2 )

−ν as x → 0+.
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Proposition 3.3. We have

E1,μ(z; τ) = 2
√
μτ2

∑
(r,�)∈Z2\{(0,0)}

K1

(
2π

√
μ
τ2
|rτ + �|

)
|rτ + �| e

2πi

τ2
Im((rτ+�)z)

.

In particular E1,0(z; τ) = E1(z; τ).

We defer the proof of Proposition 3.3 to Section 4 and rather first con-
sider a generalization. Proposition 3.3 suggests the following generalization.
To state it, we let S denote the space of all functions h ∈ C∞(R+), which
are O(e−ax) as x → ∞, for some a > 0, and O(x−b) as x → 0, for some
b > 0. For example, Kν ∈ S for each ν ∈ R+. Define

(16) Eh,μ,[a,b,c,d,L](z; τ)

:=
μd

τ c2

∑
(r,�)∈Z2\{(0,0)}

|rτ + �|2c h
(
μa

τ b2
|rτ + �|2b

)
e

2πi

τ2
LIm((rτ+�)z)

.

Then for any h ∈ S, a ∈ R, b ∈ R+, and L ∈ Z, the double-sum in
Eh,μ,[a,b,c,d,L](z; τ) converges absolutely to a smooth function in C×H×R+.
By Lemma 3.1, Eh,μ,[a,b,c,d,L](z; τ) is a massive Maass–Jacobi form if and only
if Eh,μ,[1,b,c,0,L](z; τ) is.
Theorem 3.4. Choose any a ∈ R+, b ∈ R+, L ∈ Z, and any smooth
function h ∈ S satisfying the differential equation

(17) x2 h′′(x) + γxh′(x) +
(
κ− νx

1

a

)
h(x) = 0

for some constants γ, κ, ν ∈ R, ν �= 0. Then

Eh,μ,[a,b,L](z; τ) := Eh,μ,[1,a,b,0,L](z; τ)

=
∑

(r,�)∈Z2\{(0,0)}

|rτ + �|2b
τ b2

h

(
μ|rτ + �|2a

τa2

)
e

2πi

τ2
LIm((rτ+�)z)

is a massive Maass–Jacobi form of weight and index zero.

Proof. First note that any Eh,μ,[a,b,c,d,L](z; τ) transforms like a Jacobi form
of weight and of index zero. To verify the cusp condition in Definition 2, it
suffices to consider τ → i∞ thanks to invariance under SL2(Z), and each
term in (18) exponentially decays to 0 because h ∈ S, except the r = 0
terms, that have at most polynomial growth.
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Because h decays rapidly as x → ∞, we can verify the partial differential
equation (13) term-by-term. Dropping the dependence on a, b, L, and h from
the notation, we define

fμ,r,�(τ) :=
|rτ + �|2b

τ b2
h

(
μ|rτ + �|2a

τa2

)

and keep Er,�,L(z; τ) := e
2πi

τ2
LIm((rτ+�)z)

as a separate factor. We obtain, with
C0,0;1 and C0,0;2 as defined in (14)

C0,0;1(fμ,r,�Er,�,L)(z; τ) = 8L3π3iαr|rτ + �|2fμ,r,�(τ)Er,�,L(z; τ) ,

C0,0;2(fμ,r,�Er,�,L)(z; τ) =− 4L2π2
(
(rτ + �)2∂τ (fμ,r,�)(τ)

+(rτ + �)2∂τ (fμ,r,�(τ))
)
Er,�,L(z; τ)

− 8π3rαiL3|rτ + �|2fμ,r,�(τ)Er,�,L(z; τ) .

Since ((rτ + �)2∂τ +(rτ + �)2∂τ )F ( |rτ+�|2
τ2

) vanishes for any smooth function
F , we have that C0,0;2(fμ,r,�Er,�,L) = −C0,0;1(fμ,r,�Er,�,L). Hence (12) holds.

Turning to (13), we obtain that

Δz,0,0 (fμ,r,�Er,�,L) (z; τ) = −2π2L2μ− b+1
a Xμ(τ)

b+1
a h(Xμ(τ))Er,�,L(z; τ),

where Xμ(τ) := μ|rτ+�|2a
τa
2

. We also compute, for any functions Gj(μ) as
above,

(
G2(μ)∂

2
μ +G1(μ)∂μ +G0(μ)

)
fμ,r,�(τ)

= G2(μ)μ
−2− b

aXμ(τ)
b
a+2h′′(Xμ(τ)) +G1(μ)μ

−1− b
aXμ(τ)

b
a+1h′(Xμ(τ))

+G0(μ)μ
− b
aXμ(τ)

b
ah(Xμ(τ)).

ChoosingG0(μ) := L2 2π2κ
ν μ− 1

a ,G1(μ) := L2 2π2γ
ν μ1− 1

a ,G2(μ) := L2 2π2

ν μ2− 1
a

and using (17), we obtain that (13) holds termwise.

Remark. We see from the proof of Theorem 3.4 that the parameters γ, κ, ν ∈
R, ν �= 0 in (17) can be used to “tune” the ordinary differential equation (17).
This means that if applications demand a certain partial differential operator
in μ in (13), i.e., certain functions G0(μ), G1(μ), and G2(μ), the ordinary
differential equation (17) adjusts accordingly. An explicit example is given

in Section 25. By the change of variables x �→ ( w
2b
√
ν
)2b and h �→ x

1−γ

2 H, the
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differential equation (17) for h(x) transforms to the Bessel equation (15) for

H with ν2 = b2((γ − 1)2 − 4κ). However, this change of variables may not

be admissible in certain applications, for example it generically changes the

massless limit, so we treat (17) as a generalization of (15). If one elects to

extend Definition 3 to allow further powers of ∂μ on the right-side of (13),

then Theorem 3.4 is extended to include families for which the corresponding

(17) is not a Bessel-type equation. For example, if g3(μ)∂
3
μ is included in (13),

then the proof of Theorem 3.4 yields massive Maass–Jacobi forms for certain

functions h(x) satisfying

x3h′′′(x) + �x2 h′′(x) + γxh′(x) +
(
κ− νx

1

a

)
h(x) = 0

for �, γ, κ, ν ∈ R.

From Theorem 3.4, it is natural to generalize Proposition 3.3 as in the

following corollary. For this, we set

Es,μ(z; τ) := 2
∑

(r,�)∈Z2\{(0,0)}

( √
μτ2

|rτ + �|

)s

Ks

(
2π

√
μ

τ2
|rτ + �|

)
e2πi(rβ−�α).

Corollary 3.5. For any s ∈ C with Re(s) > 0, the function Es,μ(z; τ) is a

massive Maass–Jacobi form for SL2(Z)×Z2, of weight and index zero. For

μ → 0+ we have Es,μ(z; τ) → Es(z; τ).

Proof. We find that Es,μ(z; τ) = 2 E2Ks(2πx),μ,[
1

2
, 1
2
,−s

2
, s
2
,1](z; τ), and therefore,

by Theorem 3.4, Es,μ(z; τ) is a massive Maass–Jacobi form for SL2(Z)×Z2,

of weight and index zero. Taking the limit as μ → 0+ and comparing with

(32) below, we obtain Es(z; τ) as desired.

It is interesting that we get massive deformations for Es, even though

Δz,0,0(Es) is proportional to Es−1, and not to Es (see (36)). What makes

this possible are the Gj(μ) in (13).

Theorem 3.6. For any h ∈ S, and any a, c, d ∈ R and b ∈ R+, with a �= 0,

the function Eh,μ[a,b,c,d,0](0; τ) is a massive Maass form of weight zero for

SL2(Z).

Proof. Theorem 3.4 yields that each Eh,μ,[a,b,c,d,L](0; τ) transforms like a

weight zero modular form for SL2(Z) and satisfies the cusp condition, so

all that remains is to verify (11). By Lemma 3.1, it suffices to take a = 1
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and d = 0. Writing fμ,r,�(τ) :=
|rτ+�|2c

τc
2

h(μ|rτ+�|2b
τb
2

), we compute

Δτ,0 (fμ,r,�) (τ) = −b2μ2 |rτ + �|4b+2c

τ2b+c
2

h′′(Xμ(τ))

−
(
b2 + 2bc+ b

)
μ
|rτ + �|2b+2c

τ b+c
2

h′(Xμ(τ))−
(
c2 + c

) |rτ + �|2c
τ c2

h(Xμ(τ))

with Xμ(τ) :=
μ
τb
2
|rτ + �|2b. Note that this can also be written as

Δτ,0 (fμ,r,�) (τ) = −μ− c

bXμ(τ)
c

b

(
b2Xμ(τ)

2h′′ (Xμ(τ))

+b(b+ 2c+ 1)Xμ(τ)h
′ (Xμ(τ)) + c(c+ 1)h (Xμ(τ))

)
.

Similarly to the proof of Theorem 3.4, we use this explicit expression for

Δτ,0 (fμ,r,�) (τ) to obtain that (11) is satsified with g2(μ) := −b2μ2, g1(μ) :=

−
(
b2 + 2bc+ b

)
μ, and g0(μ) := −c2 − c; note that there is no condition on

h in this case.

The examples of massive Maass forms in Theorem 3.6 are often defor-

mations of Maass forms. For example, if h(x) = 2Ks(2πx) for s ∈ C with

Re(s) > 1, then Es(0; τ) = Eh,μ,[ 1
2
, 1
2
,−s

2
, s
2
,0](0; τ) is a massive deformation of

Es(0; τ), as in Corollary 3.5.

4. Fourier coefficients of E1,μ(z; τ ) and the proof of
Proposition 3.3

4.1. Proof of Proposition 3.3

We are now ready to compute the Fourier expansion of E1,μ(z; τ). Note that

in the massless case μ = 0, calculating the Fourier expansion of E1,μ(z; τ)
is equivalent to proving Kronecker’s second limit formula, as expressed in

Appendix A; in physics, this is the Fourier expansion of the Green’s function

of the Laplace equation on the torus, see Problem 7.3 in [21].

Proof of Proposition 3.3. Taking the logarithm of equation (3) and re-

calling that E1,μ(z; τ) is defined with −α gives

E1,μ(z; τ) = 8πcα,μτ2+
∑
n∈Z

∑
±

Log

(
1− e

−2πτ2
√

μ

τ2
+(n±α)2+2πi(n±α)τ1∓2πiβ

)
.
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Using Poisson summation, the (�, r)-th (�, r ∈ Z) Fourier coefficient of

the second term equals

∫ 1

0

∫ 1

0
e−2πi(�α−rβ)

∑
n∈Z

∑
±

Log

(
1− e

−2πτ2
√

μ

τ2
+(n±α)2+2πi(n±α)τ1∓2πiβ

)
dαdβ

=
∑

n∈Z,j≥1,±

1

j

∫ 1

0
e
2πi(−�α+(n±α)jτ1)−2πjτ2

√
μ

τ2
+(n±α)2

dα

∫ 1

0
e2πi(−r∓j)βdβ,

(18)

inserting the series expansion of the logarithm. The integral on β now van-

ishes unless j = ∓r in which case it equals 1. Since j ≥ 1 we have no solution

if r = 0. We thus assume for the remaining calculation that r �= 0. We obtain

that ∓ = sgn(r) and j = |r|, thus (18) equals

(19)
1

|r|
∑
n∈Z

∫ 1

0
e
2πi(−�α+(n−sgn(r)α)|r|τ1)−2π|r|τ2

√
μ

τ2
+(n−sgn(r)α)2

dα.

Noting that e−2πi�α is invariant under α �→ α+ sgn(r)n, (19) becomes

(20)
1

|r|

∫
R

e
−2πi(�+rτ1)α−2π|r|τ2

√
μ

τ2
+α2

dα.

We next use (26) on page 16 of [2], which states that for A,B ∈ C with

Re(A),Re(B) > 0

∫ ∞

0
e−B

√
x2+A2

cos(xy)dx =
AB√
y2 +B2

K1

(
A
√

y2 +B2
)
.

Thus (20) becomes

2
√
μτ2

1

|rτ + �|K1

(
2π

√
μ
τ2
|rτ + �|

)
.

This yields

E1,μ(z; τ) = 8πcα,μτ2 + 2
√
μ2τ2

∑
r∈Z\{0}

�∈Z

K1

(
2π

√
μ
τ2
|rτ + �|

)
|rτ + �| e2πi(rβ−�α).
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Plugging in the definition of cα,μ then gives the claimed Fourier expansion.
The cα,μ term furnishes the r = 0 terms that exhibit the expected polynomial
growth towards the cusp i∞.

The limit in Proposition 3.3 is clear using that limx→0 xK1(x) = 1.

4.2. The Mellin transform

The Mellin transform of Jacobi-form-like objects (or, vector-valued modu-
lar forms) is interesting to consider since it can produce the corresponding
Dirichlet series, or automorphic L-functions. Let us briefly review this, and
then apply it to our massive Jacobi forms. The Mellin transform (see 2.5.1
of [18]) of a locally integrable function f is a Laplace-like transform

M(f)(s) :=

∫ ∞

0
f(x)xs−1dx

that is analytic in some strip a < Re(s) < b, with its inverse (see 2.5.2 of
[18]) obtained by integration along a vertical line shifted by any constant c
in the strip a < c < b,

f(x) =
1

2πi

∫ c+i∞

c−i∞
M(f)(s)x−sds .

Let us consider the Mellin transform of E1,μ(z; τ) with respect to μ and
call the Mellin-dual variable s. We have

Proposition 4.1. For s ∈ C with Re(s) > 0, the Mellin transform of μ �→
E1,μ(z; τ) equals

M (E1,.(z; τ)) (s) =
Γ(s)

πs
Es+1(0, z; τ).

Proof. Plugging in Proposition 3.3 gives that the Mellin transform of μ �→
E1,μ(z; τ) is

∫ ∞

0
E1,μ(z; τ)μs−1dμ =

∫ ∞

0
2
√
μτ2

∑
(r,�)∈Z2\{(0,0)}

K1

(
2π

√
μ
τ2
|rτ + �|

)
|rτ + �| e2πi(rβ−�α)μs−1dμ.

Since the sum converges absolutely for μ > 0 (10.25.3 of [18] gives the
exponential decay K1(x) ∼

√
π
2xe

−x for x → ∞), we may interchange sum-
mation and integration. We now compute, making the change of variables
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x = 2π
√

μ
τ2
|rτ + �|

∫ ∞

0
K1

(
2π

√
μ
τ2
|rτ + �|

)
μs−1

2dμ = 2

(
τ2

4π2|rτ + �|2
)s+

1
2
∫ ∞

0
K1(x)x

2sdx.

Now 10.43.19 of [18] states that for a, b ∈ C with Re(a) < Re(b) we have∫ ∞

0
Ka(x)x

b−1dx = 2b−2Γ
(
b−a
2

)
Γ
(
a+b
2

)
.

From this it not hard to conclude the claim.

Note that as long as Re(a) < Re(b), it is straightforward to generalize
Proposition 4.1 to other Es,μ(z; τ) than E1,μ(z; τ). It is surprising that an
integral transform of the massive (μ > 0) Kronecker–Eisenstein series pro-
duces the massless (μ = 0) Kronecker–Eisenstein series. This means that we
can take the inverse Mellin transform of the classical Kronecker–Eisenstein
series to obtain our main example, namely

E1,μ(z; τ) =
1

2πi

∫ c+i∞

c−i∞
(πμ)−sΓ(s)Es+1(0; z; τ)ds,(21)

where as in Subsection 4.2, c lies in the region of convergence, here the posi-
tive real axis. In Appendix A of [26], it was proven that E1,μ(z; τ) transforms
like a Jacobi form of weight and index zero. Equation (21) gives a reproof of
this fact using the modular invariance of the undeformed Es+1(0; z; τ) (see
e.g. Section 4 of [23]), since μ is invariant.

Proposition 4.1 and its inverse equation (21) may be useful in the fol-
lowing sense. There is a vast literature in string theory where integrals over
sums of products of Kronecker–Eisenstein series were performed. Particu-
larly relevant examples here include [7, 13, 16, 24]. In the last few years, this
long-standing theme in string theory has been put in mathematical terms as
modular graph functions [8], we give an example of this in Section 5.1. Propo-
sition 4.1 and equation (21) open up the possibility to generalize some of
that vast literature on massless objects (μ = 0, flat space) to mass-deformed
objects (μ �= 0, as in the plane gravitational wave) simply by representing
them as inverse Mellin transforms of the well-studied massless objects.

4.3. An alternative formal representation

The goal of this subsection is to introduce an additional parameter w =
Aτ + B in E1,μ, making it quasiperiodic in z in the sense of equation (30).
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To be more precise a function f(w, z; τ) : C2×H → C is called quasiperiodic
in z if

(22) f(w, z + 1; τ) = e2πiAf(w, z; τ) , f(w, z + τ ; τ) = e−2πiBf(w, z; τ).

For this, we take (21) as starting point and use (34) to introduce a nonzero
first argument Es+1(w, z; τ). This turns out to provide a representation of
the massive Kronecker–Eisenstein series as a power series in μ. For this define

E1,μ(w, z; τ) :=
∫ c+i∞

c−i∞
(πμ)−sΓ(s)Es+1(w, z; τ)ds.

Proposition 4.2. We have

(23) E1,μ(w, z; τ) = e
2πi

τ2
Im(wz)

∑
n≥0

(−πμ)n

n!
En(z, w; τ)

with Es+1(w, z; τ) defined in (34). In particular E1,μ(w, z; τ) is quasiperiodic
in z.

Proof. For z /∈ Zτ + Z, the integral representation in equation (34) extends
Es(w, z; τ) to all s. We integrate along the vertical path of integration in
the inverse Mellin transform (21) and close the contour along a semicircle
at infinity around s → −∞. Using the functional equation (35), we receive
contributions from residues at the poles2 of Γ(s) at s = −n for n ≥ 0,

producing e
2πi

τ2
Im(wz) (−1)n

n! μnEn(z, w; τ) as residue.

Note that if we try to use the double sum representation from equation
(8) to perform the sum on r and � before the inverse Mellin transform (21),
the double sum representation does not converge for Re(s) < 0, where we
pick up the residues of Γ(s). That is not a problem as long as we use the
analytic continuation (34).

Note that the power series in μ in (23) has no mixed μn log(μ) terms,
unlike Proposition 3.3 when the Bessel function is expanded in μ.

We can now use this expansion in μ to connect to existing results in the
literature, in particular [9]. For this purpose, we assume that μ < 1

2 , and

2This uses that Es(w, z; τ) for large positive s does not ruin the exponential
decay due to the Gamma function for large negative s. For example, for w = 0, the
author of [23] showed on p. 23, that En(z, 0; τ) is majorized by ζ(2s) (with ζ the
Riemann zeta-function), and ζ(2s) decays as 2−s as s → ∞, whereas it would need
to grow to ruin the decay due to the Gamma function. Similarly, for w �= 0 on p. 42
of [23] (set g = 0 there), En(z, w; τ) was majorized by the Hurwitz zeta function.
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focus on the special case w = 0. We obtain from (23), setting E1,μ(z; τ) :=
E1,μ(z, 0; τ)

E1,μ(z; τ) = E0(z, 0; τ)− πμE1(z, 0; τ) +
∑
n≥2

(−πμ)n

n

(τ2
π

)n∑∗

r,�

1

|z + rτ + �|2n

= E1(0, z; τ)− πμE1(z, 0; τ) +
∑∗

r,�

∑
n≥2

1

n

(
−μτ2

|z + rτ + �|2
)n

,(24)

where the summation Σ∗ indicates that the sum runs over all (r, �) ∈ Z2 such
that w+ rτ + � �= 0. This expression can be further manipulated to a double
sum of logarithms, but convergence becomes somewhat more complicated
and we therefore do not do so here. This last expression has the nice feature
that the massless Green’s function E1(0, z; τ) appears as a separate first
term, and the remaining part manifestly vanishes for μ = 0, making the limit
μ → 0+ more manifest than in (7), Proposition 3.3, and Proposition 4.1.

In anticipation of the comparison to string theory literature in Section
5 below, note that

−
[
∂2
μ (E1,μ(0, z; τ))

]
z=0

=

⎡
⎣∑∗

r,�

τ22
(|z + rτ + �|2 + μτ2)2

⎤
⎦
z=0

=
∑∗

r,�

τ22
(|rτ + �|2 + μτ2)2

.

This is essentially a simpler version of the function W occurring in Section
4 of [9], a generating function of (massless) modular graph functions.

5. Comparison to string theory literature

This section is mainly intended for physics readers, or mathematicians who
are curious why physicists might be interested in the objects we study here.

In string theory, just as in quantum field theory, it is natural to consider
massive worldsheet fields, either in a gravitational wave background, as in
[3], or as a technical trick in flat space, as in [15], including as generating
function of modular graph functions [9].

5.1. Massive modular graph functions

There is recent interest in modular graph functions [8], that are constructed
by integrating various combinations of (massless) Green’s functions over a
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fundamental domain for the action of the lattice Zτ +Z. The simplest non-
trivial example of a modular graph function is just the non-holomorphic
Eisenstein series E2(0; τ), arising from the integral over a fundamental do-
main P of the product of two Kronecker–Eisenstein series: E1(z; τ)E1(−z; τ),
viewed as Green’s functions for the Laplace equation on the torus.

A simple corollary of the considerations in this paper is that one can re-
place E1(z; τ) E1(−z; τ) with E1,μ(z; τ)E1,μ(−z; τ) to create a mass-deformed
modular graph function that we might call E1,1,μ(0; τ). We integrate over the
region P with corners at the complex numbers z = 0, z = 1, z = τ , and
z = τ + 1, a fundamental domain for C/(Zτ + Z). The integration is

E1,1,μ(0; τ) =
1

τ2

∫
P
E1,μ(z; τ)E1,μ(−z; τ)d2z

=

∫ 1

0

∫ 1

0

∑∗

r1,�1

√
μτ2K1(2π

√
μ
τ2
|r1τ + �1|)

|r1τ + �1|
e2πi(r1β−�1α)

×
∑∗

r2,�2

√
μτ2K1(2π

√
μ
τ2
|r2τ + �2|)

|r2τ + �2|
e2πi(�2α−r2β)dαdβ(25)

= μτ2
∑∗

r1,�1

∑∗

r2,�2

K1

(
2π

√
μ
τ2
|r1τ + �1|

)
|r1τ + �1|

K1

(
2π

√
μ
τ2
|r2τ + �2|

)
|r2τ + �2|

δr1,r2δ�1,�2

= μτ2
∑∗

r,�

K1

(
2π

√
μ
τ2
|rτ + �|

)2

|rτ + �|2 .

For μ → 0+, this clearly reduces to the massless modular graph function
E2(0; τ). In the third equality above, the integration over α, β produces

factors like
∫ 1
0 e2πi(r1−r2)α dα = δr1,r2 for rj ∈ Z, where δr1,r2 = 0 unless

r1 = r2 in which case it equals 1. This collapses the two double sums in
E1,μ(z; τ)E1,μ(−z; τ) to a single double sum.

Note that in the differential equations in the sections above, we view τ
and z as independent variables. Here, τ is considered to be fixed and we
integrate over z, and are free to change variables of integration from z to
(α, β) as independent real variables, with Jacobian τ2.

In this calculation, unlike in its massless counterpart, each double sum
converges exponentially. The undeformed μ = 0 eigenvalue equation is
Δτ,0(E2(0; τ)) = −2E2(0; τ). For the μ-deformed modular graph function,
we have the following:
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Proposition 5.1. We have(
Δτ,0 − 2μ∂μ + μ2∂2

μ

)
E1,1,μ(0; τ) = −2E1,1,μ(0; τ).

Proof. The double sum in E1,1,μ(0; τ) in (25) converges absolutely so we
can differentiate term by term. Each term has the form is E1,1,μ,r,�(τ) =
μτ2
ω f(Xμ(τ))

2 for some function f , where Xμ(τ) := 2π
√

μω(τ)
τ2

with ω(τ) :=

|rτ + �|2. We find that

Δτ,0(E1,1,μ,r,�)(τ)
E1,1,μ,r,�(τ)

=
πμw(τ)

2f(Xμ(τ))2τ2

(
2
√

τ2
μw(τ)f(Xμ(τ))f

′(Xμ(τ))

− 4π
(
f(Xμ(τ))f

′′(Xμ(τ)) + f ′(Xμ(τ))
2
) )

.

The action of μ2∂2
μ is similar, namely

μ2∂2
μ(E1,1,r,μ,�(τ))
E1,1,r,μ,�(τ)

=
πμw(τ)

2τ2f(Xμ(τ))2

(
6
√
τ2f(Xμ(τ))f

′(Xμ(τ))√
μw(τ)

+4π
(
f(Xμ(τ))f

′′(Xμ(τ)) + f ′ (Xμ(τ))
2
))

.

Finally, we compute

−2μ∂μ(E1,1,μ,r,�)(τ)
E1,1,μ,r,�(τ)

= −2− 4π
√

μw
τ2

f ′(Xμ(τ))

f(Xμ(τ))
.

Combining gives the claim, without using any properties of f .

We are writing Proposition 5.1 in the form above to make the relation
to the undeformed modular graph function explicit. In terms of the massive
Maass forms in Theorem 3.6, we move the μ-terms in the differential operator
to the right, namely

Δτ,0 (E1,1,μ) (0; τ) =
(
−μ2∂2

μ + 2μ∂μ − 2
)
E1,1,μ(0; τ) ,

so we identify g2(μ) = −μ2, g1(μ) = 2μ, and g0(μ) = −2. In the proof
of Theorem 3.6, we have g2(μ) = −b2μ2, g1(μ) = −

(
b2 + 2bc+ b

)
μ, and

g0(μ) = −c2−c, so this corresponds to (b, c) = (1,−2), since we are requiring

b > 0. But Theorem 3.6 holds for fμ,r,�(τ) = |rτ+�|2c
τc
2

h(μ|rτ+�|2b
τb
2

) for any h,

and the proof of Proposition 5.1 holds for any f , so there is the question
of equivalence relations as discussed in Section 3.2. Indeed, the example we
are discussing below Theorem 3.6 has K2 in the double sum for E2,μ(0; τ),
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not K2
1 as we have here in E1,1,μ(0; τ) (hence the notation “1,1”). There

are many relations between Bessel functions, e.g. recurrence relations, that
need to be taken into account in a systematic study of connections between
massive Maass forms and massive modular graph functions. The objective
here is just to provide one entry point into those connections, and we leave
such investigations to the future.

5.2. Helmholtz equation

The ordinary meaning of the “massive” Laplace equation is the Helmholtz
equation, i.e., its Green’s function is a solution of(

2∂z∂z −m2
)
G(z; τ) = −δ[2](z; τ) .

The differential operator 2∂z∂z is not invariant under the Jacobi group,
since e.g. under an S transformation, z �→ z

τ . Multiplying by τ2 brings the
differential operator to our Δz,0,0 = 2τ2∂z∂z, and m2 is completed to the
invariant τ2m

2 = μ. Finding the solution for G(z; τ) as a double sum is a
standard exercise if τ1 = 0, see e.g. Appendix E of [15]. Using the basis
functions e2πi(rβ−�α) as for E(z; τ), we find that in coordinates z = ατ + β,
we have Δz,0,0 = 2τ2∂z∂z = 1

τ2
(τ22∂

2
β + ∂2

α), and we multiply the differential
operator with τ2 to find

(26) G(z; τ) :=
∑

(r,�)∈Z2

e2πi(rβ−�α)

4π2(r2τ22 + �2) + μ
.

Integrating in α and β gives∫ 1

0

∫ 1

0
G(z; τ) dαdβ =

1

μ
.

In physics, one may want to normalize this to unity by multiplying G(z; τ)
by μ, but we do not do so here. Note that if we remove the term (r, �) = (0, 0)
and set μ = 0, then we obtain the Kronecker–Eisenstein series E1(z; iτ2), up
to normalization. Following e.g. Appendix E of [15], we can write the sum-
mand in (26) as an integral over a parameter s, then do modular inversion
of the sum over �, and evaluate the integral in s. For μ = 0 this gives a
logarithm of |ϑ1(z; iτ2)|, as in Kronecker’s second limit formula (33). The
result for μ �= 0 is

G(z; τ) =
∑

(r,�)∈Z2

e−2πτ2
√

4π2r2τ2
2+μ|�−α|e2πirβ

2
√

4π2r2τ22 + μ
.
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The inversion followed by the integration in s caused r and � to play different
roles in the summation. This is not surprising, as we single out the sum on �
by hand. In particular, if we now let μ → 0+, then in terms with r = 0, the
dependence on � and β is trivial which causes the sum on � to diverge, even
though that is not the case before those manipulations. One way to regularize
is to subtract the massive point-particle Green’s function Gparticle(β) :=
cosh(m(|β|−πτ2))
m sinh(πmτ2)

, which is also (quadratically) divergent as m → 0. Related

discussions appear e.g. in [21] Appendix A. The appearance of the divergence
is similar to the elementary sum

(27)
∑
�≥1

1

�2 +m2
=

π coth(πm)

2m
− 1

2m2
.

The limit of the “coth” term does not exist for m → 0, but clearly the
left-hand side is not divergent, and indeed the term 1

2m2 subtracts the prin-
cipal part. This is close in spirit to (24). There, we “subtract” the entire
string Green’s function E1(0, z; τ), not just the point-particle Green’s func-
tionGparticle. (“Subtract” in quotation marks since just like in (27) we merely
split up an expression in two parts that by themselves would be divergent,
we did not subtract anything by hand.)

Going further back in the literature, Sugawara [25] computed the par-
tition function of the gravitational plane wave from the functional integral,
in his equation (2.34)

Zm(τ) =
1∏

r,�∈Z τ2(τ
−2
2 |rτ + �|2 +m2)

which implies that

Log(Zm(τ)) = −
∑
r,�∈Z

log
(
τ2

(
τ−2
2 |rτ + �|2 +m2

))
.

If we regulate this expression by differentiating twice with respect to m,
it looks like the double sum representation in (25). But as expected, this
formal partition function calculation does not tell us how to traverse the
divergence. In (23), we use a twist regularization and analytic continuation.

Finally, we note that there is an extensive literature on related topics.
For example, in statistical field theory, similar objects were used to com-
pute renormalization group dependence of the conformal field theory central
charge [12, 22]. The Helmholtz equation with periodic boundary conditions
has many other applications, e.g. in waveguide physics (see e.g. [17]).
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6. Outlook

It would be interesting to continue the discussion of modular graph functions
(and forms) from Section 5.1. This should be feasible using the tools given
in this paper.

We now give another source for constructing more examples in the fu-
ture. Note that we can interpret the proof of (2) in [5] as giving the expres-
sion

(28) log (Fm(τ2))

= 2πτ2cm +
2π

τ2
cmτ2 −

1

4

∫ ∞

0
e−

πτ2m2

s (ϑ3(iτ2s)− 1)
(
ϑ3

(
is
τ2

)
− 1

)
ds,

where ϑ3(τ) :=
∑

n∈Z q
n2

2 . Equation (28) is invariant under the simultaneous
transformations τ2 �→ 1

τ2
, m �→ mτ2. An obvious generalisation of (28) is to

replace ϑ3 with functions f, g satisfying, for all τ2 ∈ R+,

f
(

i
τ2

)
= τk2F (iτ2), g

(
i
τ2

)
= tkG(iτ2)

for some k ∈ 1
2Z and any functions F,G. If f and g are Jacobi theta functions

with characteristic, then we recover the special case τ = iτ2 of Zα,β,m(τ). It
might be possible to construct new massive Maass forms by a clever choice
of f, g, but we do not investigate this question in this paper.

Another question is: can we embed the massive deformation in some
more general and familiar framework? We believe that there is a sense
in which the massive deformations for SL2(R) “sit” inside automorphic
forms for more general Lie groups. We give some remarks on this with-
out any pretense of rigor. The idea is that the results in the main text of
this paper may be reproduced and generalized by what is called warped
Kaluza–Klein reduction in physics, for example from ordinary (massless)
automorphic forms on SL3(R) or Sp2(R) to massive automorphic forms on
SL2(R). To illustrate this, let us view the usual Fourier expansion of the
non-holomorphic Eisenstein series for SL2(R) as a warped Kaluza–Klein re-
duction to massive automorphic form on SL2(R)/(τ1 ∼ τ1 + 1). This means
we make an Ansatz for each nonzero-mode part of its Fourier expansion that
Es

∣∣
τ1 piece

∝ fm(τ2)e
2πimτ1 , so that the Laplacian in τ yields

Δτ,0(Es)
∣∣
τ1 piece

⊃ −τ22
(
∂2
τ2 + ∂2

τ1

)
fm(τ2)e

2πimτ1

= −τ22
(
∂2
τ2 − 4π2m2

)
fm(τ2)e

2πimτ1
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which can be viewed as a “massive” one-dimensional differential operator
in τ2 only. It is not truly the Helmholtz operator, since the “mass” when
multiplying out is 4π2m2τ22 , i.e., it depends on the vertical position τ2 in the
upper half-plane in these coordinates. Demanding that Es is an eigenfunction
of Δτ,0 with eigenvalue −s(s− 1) produces a differential equation purely in
τ2,

τ22
(
∂2
τ2 − 4π2m2

)
fm(τ2) = s(s− 1)fm(τ2)

which is a Bessel differential equation like (15). Demanding that fm(τ2)
falls off as τ2 → ∞ yields specifically that fm(τ2) = cm

√
τ2Ks− 1

2
(2πmτ2),

with some constant cm ∈ C. This is the standard result for the nonzero-
mode Fourier expansion of the usual SL2(R) Eisenstein series. We call this
reduction from SL2(R) to SL2(R)/(τ1 ∼ τ1+1) “warped” essentially because
the “mass” 4π2m2τ22 depends on τ2, unlike in the Helmholtz equation. One
can find a coordinate system on the upper half-plane where the mass is
constant, but in this (trivial) example it is not necessary to do so to find
fm(τ2).

Pursuing this further is beyond the scope of this paper, but a first
glimpse can be seen in Kiritsis–Pioline [13], Appendix A, with the Eisen-
stein series for SL3(R). The non-zero-mode terms in their equation (A.4)
resemble our Proposition 3.3. It would also be interesting to study the con-
nection to Niebur–Poincaré series [1], where Siegel–Narain theta functions
provide multi-parameter families of automorphic forms. The parameters in
the Siegel–Narain theta function comprise supersymmetric Calabi–Yau mod-
uli space with zero flux. The gravitational wave background has nonzero flux
that produces the worldsheet mass term, so in that sense mass deformation
in this paper can be thought of as a more drastic change than moving around
in Calabi–Yau moduli space.

Appendix A. Review of the Kronecker–Eisenstein series
Es(w, z; τ )

In Appendix A, we review material of Appendix E in [4]. We begin with
the question of finding a (non-holomorphic) function Es : C

2 ×H → C that
depends on a parameter s ∈ C and is doubly periodic on the torus in the
first variable w

(29) Es(w + 1, z; τ) = Es(w, z; τ) , Es(w + τ, z; τ) = Es(w, z; τ).

In the second variable z it should be quasiperiodic, namely

(30) Es(w, z+1; τ) = e2πiAEs(w, z; τ), Es(w, z+τ ; τ) = e−2πiBEs(w, z; τ),
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where w = Aτ + B (A,B ∈ R). In physics, expressions corresponding to

Feynman graphs are composed of Green’s function of the Laplace equation.

For the torus, allowing characteristics as in (30), we have

(31) Δz,0,0(G(z; τ)) = −2πe
2πi

τ2
Im(wz)

δ[2](z; τ).

The factor in front of δ[2](z; τ) ensures compatibility with quasiperiodicity.

We now define the Kronecker–Eisenstein series3 (s ∈ C with Re(s) ≥ 1)

Es(w, z; τ) := Γ(s)
(τ2
π

)s ∑∗

r,�

e
2πi

τ2
Im((w+rτ+�)z)

|w + rτ + �|2s

= Γ(s)
(τ2
π

)s ∑∗

r,�

e2πi(r+A)β−2πi(�+B)α

|(r +A)τ + �+B|2s ,(32)

where the summation Σ∗ indicates that the sum runs over all (r, �) ∈ Z2

such that w + rτ + � �= 0. It is not hard to see that Es(w, z; τ) satisfies the

transformations in (29) and (30). For the special case w = 0 and s = 1,

it is also easy to see that E1(0, z; τ) does not quite satisfy (31) but rather

(9), with an extra term that is required for the right-hand side to yield zero

when integrated over a fundamental domain in z. When w �= 0 there is

quasiperiodicity as in (30), and the Laplace operator no longer integrates to

zero as it does for a doubly periodic function. That is why the extra term

on the right-hand side is not needed in (31).

Note that, by Kronecker’s second limit formula, E1(0, z; τ) can alterna-

tively be represented as (see e.g. Chapter 20 of [14] or Section 5 of [23])

(33) E1(0, z; τ) = − log

(∣∣∣∣ϑ1(z; τ)

η(τ)

∣∣∣∣
2
)

+
2πz22
τ2

.

The double sum (32) is only absolutely convergent for Re(s) > 1, but

an analytic continuation to all complex s can be found as an integral repre-

sentation. If either z or w are lattice points there are additional pole terms

at s = 0 or s = 1 in this integral representation, that are written out in

Appendix E of [4], but in this calculation we for simplicity stay away from

3This has an additional Γ(s) as compared to [4], which makes it “completed” in

the sense of the reflection formula (35) below.
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lattice points. The integral (Mellin) representation is then found from

Es(w, z; τ) =

∫ ∞

0
xs−1

∑∗

r,�

e
−πx

τ2
|w+rτ+�|2+ 2πi

τ2
Im((w+rτ+�)z)

dx,

which is valid for Re(s) > 1. The sum is exponentially decaying for x → ∞
but for s ≤ 1 it is potentially divergent towards x → 0. We follow the

approach of Riemann, namely to split the integral into one from 0 to 1 and

one from 1 to ∞, then use the modular transformation of a theta function

on the first piece and change variables x �→ 1
x to obtain

(34) Es(w, z; τ) = e
2πi

τ2
Im(wz)

∫ ∞

1
x−s

∑∗

r,�

e
−πx

τ2
|z+rτ+�|2+ 2πi

τ2
Im((z+rτ+�)w)

dx

+

∫ ∞

1
xs−1

∑∗

r,�

e
−πx

τ2
|w+rτ+�|2+ 2πi

τ2
Im((w+rτ+�)z)

dx.

Although we are originally assuming that Re(s) > 1, this integral repre-

sentation gives an analytic continuation (in s) of Es(w, z; τ). Moreover it

directly implies a symmetry under s �→ 1− s,

(35) Es(w, z; τ) = e
2πi

τ2
Im(wz)

E1−s(z, w; τ)

which is the functional relation (reflection formula) for Es(w, z; τ). Note that

the variables w and z are switched, which gives a motivation to allow w �= 0

in the first place. Note that (as is familiar from discussions of L-functions,

but here Es(w, z; τ) depends on τ) the two sides of (35) never simultaneously

have convergent double sum representations, and that the reflection formula

does not give any information on the behavior of the double sums in the strip

0 < Re(s) < 1, which is instead provided by the integral representation.

If z /∈ Zτ +Z, Es(w, z; τ) satisfies the partial differential equation where

we view z and τ as independent variables,

(36) Δz,0,0(Es(w, z; τ)) = −2π(s− 1)Es−1(w, z; τ) .

The “twisted” (quasiperiodic) Kronecker–Eisenstein series has a factor

in front of the delta function that allows for quasiperiodicity:

(37) Δz,0,0 (E1(w, z; τ)) = −2πe
2πi

τ2
Im(wz)

δ[2](z; τ) .
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A formal power series representation of the lattice delta function is

(38) δ[2](z; τ) =
∑
r,�∈Z

e2πi(rβ−�α).

The factor in front of the lattice delta function in (37) may seem inconse-
quential, since the right-hand side is zero away from lattice points and at
z = 0 the factor is one, but it can be nontrivial at lattice points away from the
origin. We do not attempt to write nonzero-index distributions in detail here.

Note that Es(z, w; τ) has weight zero, but it can be used to generate
objects with non-zero weight, e.g. those called Es,k(z, w; τ) in Appendix E
of [4]. We do not discuss them here.
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