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Abstract. Capparelli conjectured two modular identities for partitions whose
parts satisfy certain gap conditions, which were motivated by the calculation of
characters for the standard modules of certain affine Lie algebras and by vertex op-
erator theory. These identities were subsequently proved and refined by Andrews,
who related them to Jacobi theta functions, and also by Alladi-Andrews-Gordon,
Capparelli and Tamba-Xie. In this paper we prove two new companions to Cap-
parelli’s identities, where the evaluations are expressed in terms of Jacobi theta
functions and false theta functions.

1. Introduction and statement of results

The study of hypergeometric q-series identities for partitions whose adjacent parts
satisfy minimum gap conditions has a long and rich history, including Euler’s Theo-
rem for partitions into distinct parts (see e.g. Corollary 1.2 in [6]), and the famous
Rogers-Ramanujan identities [24]. The basic combinatorial problem of evaluating the
resulting generating functions has deep ramifications in the theory of hypergeometric
q-series and modular forms (cf. [2,16]), as the resulting identities provide infinite prod-
ucts that are essentially (up to rational q-powers) meromorphic quotients of elliptic
theta functions.
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The partition identities discussed in this paper are inspired by Lepowsky and Wil-
son’s seminal work in [18], which introduced vertex operators as a method for ex-
plicitly constructing affine Lie algebras, and [19], which extended this construction
to Z-algebras, which are certain generalized vertex-algebraic structures; see [14] for
further developments. From this perspective the construction of the corresponding
standard modules is naturally linked to combinatorial partition identities, such as the
new interpretation of the Rogers-Ramanujan identities proven in [19]. Indeed, Lep-

owsky and Wilson’s construction of the standard modules of A
(1)
1 results in formulas

that coincide with the generalized Rogers-Ramanujan identities due to Andrews [2],
Bressoud [8], and Gordon [16].

Lepowsky and Milne [17] also showed that the Rogers-Ramanujan identities arise

in character formulas for the level 2 standard modules for A
(2)
2 , which was later proven

using Z-algebras by Capparelli [10]. Capparelli additionally used Z-algebras to con-
jecturally construct the level 3 standard modules (also see [9]), and found two striking
formulas for the generating functions of partitions satisfying certain gap conditions
and smallest part restrictions. Capparelli’s identities were a significant development
in the theory of vertex operator algebras, as they were the first notable examples that
had not been previously appeared in the literature of partition identities, but were
instead discovered using vertex-operator-theoretic techniques. Independent proofs
of Capparelli’s conjectures were subsequently given by Andrews, Alladi-Andrews-
Gordon, Capparelli and Tamba-Xie, as we discuss below; the fact that the identities
intersect with a wide variety of fields further indicates their significance. Many other
such identities have since also been found; for example, see [18, 19, 23] for further
discussion of the role of affine Lie algebras, vertex operator methods, and statistical
mechanics.

Following the then-conjectural statement of Theorem 21 of [10], we say that a
partition satisfies Capparelli’s level 3 gap condition if successive parts differ by at
least 2, and two parts differ by 2 or 3 only if their sum is a multiple of 3. The
level 3 gap condition can also be equivalently written in terms of part multiplicities,
which is one form of the combinatorial identities that naturally occur in the study of
character formulas. For example, the following formulation is the special case k = 1
of (11.2.8) in [21], which describes the partition ideals that arise from root lattices.
Define indicator functions such that ψj(λ) = 1 if j is a part of λ, and ψj(λ) = 0
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otherwise. The level 3 gap condition is satisfied if and only if for all j ≥ 1,

ψ3j+2 + ψ3j + ψ3j−1 ≤ 1,

ψ3j+1 + ψ3j + ψ3j−2 ≤ 1,

ψ3j−1 + ψ3j−2 ≤ 1.

Note that (11.2.8) of [21] is actually a system of four inequalities, but in the special
case k = 1 it is overdetermined and reduces to the above.

In order to state Capparelli’s conjectures, now identities, we also require enumer-
ation functions for the partitions described above. Let cm(n) denote the number of
partitions of n that satisfy the level 3 gap condition and whose parts are all at least
m. Capparelli also considered the closely related function c∗2(n), which denotes the
number of partitions that satisfy the level 3 gap conditions and additionally do not
contain 2 as a part. Note that this can be expressed in terms of the cm(n) through
the simple combinatorial relation

c∗2(n) = c1(n)− c2(n) + c3(n). (1.1)

Capparelli’s identities are stated in the following theorem, which was proven using
techniques from q-series by Andrews [5] (this paper contains only the first of the two
identities), and Andrews, Alladi, and Gordon [1]. The identities were also proven
using the Z-algebra program of [19] by both Tamba and Xie [27] and Capparelli
himself [11]. For j = 1, 2, let dj(n), denote the number of partitions of n into distinct
parts that are not ±j (mod 6).

Theorem ( [1, 5, 11,27]). For n ≥ 1,

c2(n) = d1(n), (1.2)

c∗2(n) = d2(n). (1.3)

Remark. The above theorem is not the original combinatorial formulation of Cappar-
elli’s identities, but it is an elementary exercise in infinite product generating functions
to verify that, for example, d1(n) also enumerates the number of partitions of n into
parts congruent to ±2,±3 (mod 12), as in Theorem 21 A of [10].

However, despite their natural connections to Lie theory, the study of Capparelli’s
identities using hypergeometric q-series gives additional information that is of particu-
lar number-theoretic interest. The preceding combinatorial results can be equivalently
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stated as generating function identities, and for m ≥ 1 we write

Cm(q) :=
∑
n≥0

cm(n)qn =
∑

λ level 3 gaps
λj≥m

q|λ|.

Here |λ| denotes the size of a partition λ, and the summation subscript in the final
expression is an abbreviation for “λ satisfying the level 3 gap condition, with all parts
of λ of at least size m.” Similarly, we set

C ∗2 (q) :=
∑
n≥0

c∗2(n)qn.

Note that (1.1) is equivalently expressed as

C ∗2 (q) = C1(q)− C2(q) + C3(q). (1.4)

In this paper, we adopt the standard q-factorial notation for a ∈ C and n ∈
N0 ∪ {∞}, namely (a)n = (a; q)n :=

∏n−1
j=0 (1 − aqj). We also use the additional

shorthand (a1, . . . , ar)n := (a1)n · · · (ar)n. We can now rewrite (1.2) and (1.3) as

C2(q) =
(
−q2,−q3,−q4,−q6; q6

)
∞ , (1.5)

C ∗2 (q) =
(
−q,−q3,−q5,−q6; q6

)
∞ . (1.6)

These are modular identities in the sense that the right-hand sides are essentially
weakly holomorphic modular forms.

In fact, Andrews’ results in [5] also include a refinement of (1.5) that is of additional
number-theoretic interest due to the presence of an additional parameter. Moreover,
in [1] Alladi, Andrews, and Gordon proved a similar result for (1.6), as well as further
refinements of both identities that provide additional combinatorial information. The
general results in [1] are best stated as identities for three-colored partitions, in which
each part may be labeled with one of three distinct colors; identities for three-colored

partitions also arise in [22], where the basic A
(1)
2 -module is constructed using vertex

operator methods We further note that in [26] Sills proved a one-parameter general-
ization of an “analytic counterpart” to Capparelli’s identities, using Bailey chains to
obtain interesting hypergeometric q-series representations for infinite products related
to (1.5) – (1.6).

However, in our present study we focus on the one-parameter refinements of Cap-
parelli’s identities, as we are particularly interested in the automorphic properties of
q-series. In order to describe the refined identities, for j ∈ {1, 2}, we let νj(λ) be
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the number of parts of λ that are congruent to j modulo 3. The refined Capparelli
generating functions are then defined as

Cm(t; q) :=
∑

λ level 3 gaps
λj≥m

tν1(λ)−ν2(λ)q|λ|,

and similarly the refined generating function for partitions without 2 as a part is

C ∗2 (t; q) := C1(t; q)− C2(t; q) + C3(t; q).

The refinements of Capparelli’s identities provide product identities for these gen-
erating functions. We write the results in terms of the Jacobi theta function

θ(z; q) :=
(
−z,−z−1q, q; q

)
∞ =

∑
k∈Z

zkq
k(k−1)

2 , (1.7)

where the final equality follows from Jacobi’s Triple Product identity ((2.2.10) in [6]).

Theorem ( [1, 5]). The following identities hold:

C2(t; q) =
θ (tq4; q6)

(q3; q3)∞
, (1.8)

C ∗2 (t; q) =
θ (tq; q6)

(q3; q3)∞
. (1.9)

Remark. Although the first of these identities is not stated in [5], it follows implicitly
as a limiting case of Theorem 2 from that paper. It is also a special case of Theorem
1 from [1] (specifically, see Remark 1 on page 646 of [1] and set a = t, b = t−1). The
second identity is not stated in [1], but is implied by Theorem 3 and the discussion
in the Acknowledgments Section on page 658.

Remark. Building on the previous discussion of modularity, we note that θ(z; q) is
essentially a holomorphic Jacobi form as introduced by Eichler and Zagier [12].

Our main result provides two new evaluations for the generating functions of par-
titions satisfying the level 3 gap conditions as introduced by Capparelli.

Theorem 1.1. Let χ3 denote the shifted Dirichlet character defined by χ3(m) :=(
m+1
3

)
. Then following identities hold:

C1(t; q) =
(
−q3; q3

)
∞ θ
(
−t2q2; q6

)
+ C2(t; q)

(
1−Θ1(t; q)

)
+ C ∗2 (t; q)

(
1−Θ2(t; q)

)
,

C3(t; q) = −
(
−q3; q3

)
∞ θ
(
−t2q2; q6

)
+ C2(t; q)Θ1(t; q) + C ∗2 (t; q)Θ2(t; q), (1.10)
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where

Θ1(t; q) :=
∑
k≥0

χ3(k)t−kqk(k+1),

Θ2(t; q) :=
∑
k≥0

χ3(k)tkqk
2

.

Remarks. 1. As described in an earlier remark, the factor θ (−t2q2; q6) is essentially
a Jacobi form. The Θj should be thought of as “false” analogues of Jacobi’s theta
function, in the sense that they are given as half-lattice sums that are twisted by
shifted characters. Note that the first series, for example, is equivalently written as

Θ1(t; q) :=
∑
k≥0

(
t−3kq3k(3k+1) − t−(3k+1)q(3k+1)(3k+2)

)
.

Following Zagier’s introduction of quantum modular forms in the seminal paper [29],
there has been a great deal of recent work illuminating the connections between false
theta functions and classical automorphic forms; for example, see [13].

2. When t = 1, these formulas are reminiscent of the “bosonic” evaluations that are
frequently found in the study of solvable lattice models and/or characters for affine
Lie algebras; for example, see Section 2 of [28]. Furthermore, the appearance of false
theta functions is not entirely unexpected; see [7] for other examples arising from
mathematical physics, as well as [20] for examples in q-series derived from Bailey
pairs. However, the “Jacobi-like” parameter t is often absent in identities that are
derived from Lie-theoretic or physical settings, and our formulas therefore provide
additional information.

3. In light of the identities (1.4), (1.8), and (1.9), either one of our new formulas
implies the other. In fact, it turns out to be convenient to prove the four formulas
(1.8) – (1.10) simultaneously.

The remainder of the paper is structured as follows. In the next section we recall
several standard results from the theory of hypergeometric q-series. We then prove
Theorem 1.1 in Section 3 by applying techniques from the theory of q-difference
equations [3, 15].
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2. Hypergeometric q-series identities

In this section we record a number of identities that are useful in the evaluation
of the generating functions that are the main topic of the paper. If 0 ≤ m ≤ n, the
q-binomial coefficient is denoted by[

n

m

]
q

:=
(q; q)n

(q; q)m(q; q)n−m
.

We also need the limiting case

lim
n→∞

[
n

m

]
q

=
1

(q; q)m
. (2.1)

Next, we recall two identities due to Euler, which state (see (2.2.5) and (2.2.6)
in [6])

1

(x; q)∞
=
∑
n≥0

xn

(q; q)n
, (2.2)

(x; q)∞ =
∑
n≥0

(−1)nxnq
n(n−1)

2

(q; q)n
. (2.3)

A related identity is ∑
n≥0
n even

q
n(n−1)

2

(q; q)n
=

1

(q; q2)∞
= (−q; q)∞ ; (2.4)

the first equality follows from Cauchy’s identity, which is (2.2.8) in [6].
We also need the following identity from Ramanujan’s famous “Lost Notebook”,

which appears as (4.1) in [4]:∑
n≥0

qn

(−aq; q)n(−bq; q)n
=
(
1 + a−1

)∑
n≥0

(−1)nq
n(n+1)

2

(
b
a

)n
(−bq; q)n

−
a−1

∑
n≥0(−1)nq

n(n+1)
2

(
b
a

)n
(−aq,−bq; q)∞

.

(2.5)
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Finally, in order to derive expressions involving false theta functions, we use a related
identity of Rogers [25], which states that∑

n≥0

(−1)ny2nq
n(n+1)

2

(yq; q)n
=
∑
n≥0

(−1)ny3nq
n(3n+1)

2

(
1− y2q2n+1

)
. (2.6)

3. Finite evaluations and proof of Theorem 1.1

In order to simultaneously work with C1,C2,C3, and C ∗2 , we incorporate the part
indicator functions into the generating series. We control the smallest part conditions
through two parameters α, β ∈ {0, 1}, which determine whether or not the indicators
are “active”. Specifically, if α = 0, then no parts of size 1 are allowed, but when
α = 1 such a part is permitted, and β has a similar affect on parts of size 2. The
generating functions with these indicators taken into account are then defined by

C α,β(t; q) :=
∑

λ level 3 gaps

(
1− (1− α)ψ1(λ)

)(
1− (1− β)ψ2(λ)

)
tν1(λ)−ν2(λ)q|λ|.

This notation corresponds to the four series of interest as follows:

C1 = C 1,1, C2 = C 0,1, C ∗2 = C 1,0, C3 = C 0,0.

The results in Theorem 1.1 are equivalent to the following generating function
evaluation.

Theorem 3.1. If α, β ∈ {0, 1}, then

C α,β(t; q) =(α + β − 1)
(
−q3; q3

)
∞ θ
(
−t2q2; q6

)
+
θ (tq4; q6)

(q3; q3)∞

(
β + (1− α− β)Θ1(t; q)

)
+
θ (tq; q6)

(q3; q3)∞

(
α + (1− α− β)Θ2(t; q)

)
.

Remark. In the two cases considered by Capparelli the above expression simplifies
drastically, as 1− α− β = 0.

We prove our generating function evaluations by following Andrews’ approach in
[5], as well as arguments from [1]. In particular, we consider recurrences for finite
truncations of the generating functions, defining for M ∈ N

Cα,β
M (t; q) :=

∑
λ level 3 gaps

λj≤M

(
1− (1− α)ψ1(λ)

)(
1− (1− β)ψ2(λ)

)
tν1(λ)−ν2(λ)q|λ|.
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For convenience of notation, we regularly suppress the superscript, and sometimes
the arguments, writing only CM(t; q) or CM , with α and β unspecified.

Theorem 3.1 arises as the limiting case n → ∞ of a finite evaluation; we will
calculate this limit in Section 3.2.

Lemma 3.2. For n ≥ 0 we have

Cα,β
3n−2(t; q)

=
∑

0≤j≤n
j≡n (mod 2)

q
3j(j−1)

2

[
n

j

]
q3

(
−t−1q2,−tq4; q6

)
n−j
2

β + t(1− α− β)

n−j
2∑
`=1

q6`−2

(−t−1q2,−tq4; q6)`


+

∑
0≤j≤n−1

j≡n−1 (mod 2)

q
3j(j−1)

2

[
n

j

]
q3

(
−t−1q5,−tq7; q6

)
n−1−j

2

×

1− β + αtq − t(1− α− β)

n−1−j
2∑
`=1

q6`+1

(−t−1q5,−tq7; q6)`

 .

3.1. Proof of Lemma 3.2. We prove Lemma 3.2 by following the general frame-
work of [1] and [5], although the presence of the indicators (α, β) introduces intricate
boundary effects throughout the calculations. As described in equations (4.2) – (4.4)
of [5], the finite generating functions satisfy the recurrences (for n ≥ 2)

C3n−1(t; q) = C3n−2(t; q) + t−1q3n−1C3n−5(t; q), (3.1)

C3n(t; q) = C3n−1(t; q) + q3nC3n−3(t; q),

C3n+1(t; q) = C3n(t; q) + tq3n+1C3n−3(t; q) + q6nC3n−5(t; q).

Note that these recurrences arise from conditioning on the largest parts in a partition
and therefore depend only on parts of size 5 or larger. As the indicators α and β
only affect parts of size 1 and 2, Andrews recurrences’ are thus unchanged. However,
the indicators do affect the initial values, which are obtained by explicitly listing the
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partitions with largest part at most 4 that satisfy the level 3 gap condition:

C1(t; q) = 1 + αtq, (3.2)

C2(t; q) = 1 + αtq + βt−1q2,

C3(t; q) = 1 + αtq + βt−1q2 + q3,

C4(t; q) = 1 + αtq + βt−1q2 + q3 + tq4 + βq6.

Andrews also showed that when the recurrences (3.1) are iterated, they combine
to imply the single recurrence

C3n+1 =
(
1 + q3n

)
C3n−2 +

(
t−1q3n−1 + tq3n+1 + q6n

)
C3n−5 + q6n−3

(
1− q3n−3

)
C3n−8,

(3.3)

which holds for n ≥ 3. In fact, it is convenient to assume that this recurrence holds
for n ≥ 2, which is achieved by setting n = 1 in the first line of (3.1) to obtain the
value C−2(t; q) = β. Combined with the known expressions for C1 and C4 in (3.2),
these are the necessary initial values.

Our goal is to gather the CM in a series and thereby derive a solvable q-difference
equation, but this has a simpler shape if we first renormalize by defining

γn = γn(t; q) :=
C3n−2(t; q)

(q3; q3)n
. (3.4)

After shifting n 7→ n− 1, the recurrence (3.3) then becomes(
1− q3n

) (
1− q3n−3

)
γn

=
(
1− q6n−6

)
γn−1 +

(
t−1q3n−4 + tq3n−2 + q6n−6

)
γn−2 + q6n−9γn−3,

(3.5)

which now holds for n ≥ 3. From (3.2) we see that the initial values are

γ0 = β, γ1 =
1 + αtq

1− q3
, γ2 =

1 + αtq + βt−1q2 + q3 + tq4 + βq6

(1− q3) (1− q6)
. (3.6)

Now we set

F (z) = F (z, t; q) :=
∑
n≥0

γn(t; q)zn, (3.7)

and we also briefly use the notation

F (m)(z) :=
∑
n≥m

γn(t; q)zn
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for the series with truncated initial terms. Multiplying (3.5) by zn and summing over
n ≥ 3, we obtain the series identity

F (3)(z)−
(
1 + q−3

)
F (3)

(
zq3
)

+ q−3F (3)
(
zq6
)

= zF (2)(z)− zF (2)
(
zq6
)

+ z2
(
t−1q2 + tq4

)
F (1)

(
zq3
)

+ z2q6F (1)
(
zq6
)

+ z3q9F
(
zq6
)
.

Using the initial values in (3.6) to add back in the missing coefficients of z0, z1, and
z2, we obtain the q-difference equation

(1− z)F (z) =
(
1 + q−3 + z2t−1q2 + z2tq4

)
F
(
zq3
)

+
(
1 + zq3

) (
−q−3 + z2q6

)
F
(
zq6
)

+ z2(1− α− β)tq4. (3.8)

Note that while the z0 and z1 terms vanish in all cases, the z2 term only vanishes in
the two cases considered by Capparelli (recall (1.8) and (1.9))).

We renormalize once more by setting

H(z) :=
F (z)

(−z; q3)∞
, (3.9)

and obtain(
1− z2

)
H(z) =

(
1 + q−3 + z2t−1q2 + z2tq4

)
H
(
zq3
)

+
(
−q−3 + z2q6

)
H
(
zq6
)

+ (1− α− β)t
∑
n≥0

(−1)nzn+2q3n+4

(q3; q3)n
. (3.10)

For the last term we expanded (−zq3; q3)−1∞ as a series using (2.2).
At this point our approach varies from [1], where a solution to (3.8) was found by

using the general theory of second order q-difference equations for the hypergeometric
series 2φ1. Our proof instead proceeds from the observation that the coefficients of
the “homogeneous part” of (3.10) (which includes only those terms that have a factor
H(zqk) for some k ∈ N) have only even powers of z. This property allows us to solve
the q-difference equation directly, even with the presence of the “non-homogeneous”
final summation.

Writing the series expansion as H(z) =
∑

n≥0 δnz
n, (3.10) implies that the coeffi-

cients δn satisfy the recurrence (for n ≥ 2)

δn =
(1 + t−1q3n−4) (1 + tq3n−2)

(1− q3n−3) (1− q3n)
δn−2 +

(1− α− β)t(−1)nq3n−2

(q3; q3)n
. (3.11)
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The initial values δ0 and δ1 are determined by using (3.7) and (3.9) to directly calculate

∑
n≥0

δnz
n = γ0 +

(
γ1 −

γ0
1− q3

)
z +O

(
z2
)

= β +
1 + αtq − β

1− q3
z +O

(
z2
)
.

In particular, we read off

δ0 = β and δ1 =
1 + αtq − β

1− q3
.

Plugging in to (3.11), we find that for n ≥ 0,

δ2n =
(−t−1q2,−tq4; q6)n

(q3; q3)2n

(
β + t(1− α− β)

n∑
`=1

q6`−2

(−t−1q2,−tq4; q6)`

)
, (3.12)

δ2n+1 =
(−t−1q5,−tq7; q6)n

(q3; q3)2n+1

(
1− β + αtq − t(1− α− β)

n∑
`=1

q6`+1

(−t−1q5,−tq7; q6)`

)
.

(3.13)

For ease of calculation, we separate these two cases, setting

H(z) = H0(z) +H1(z) :=
∑
n≥0

δ2nz
2n +

∑
n≥0

δ2n+1z
2n+1,

and similarly

Fj(z) :=
(
−z; q3

)
∞Hj(z),

for j = 0, 1. We now plug (3.12) and (3.13) in to the definition of the Fj and further
expand the product (−z; q3)∞ using (2.3). Collecting like powers of z, we obtain the
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series

F0(z) =
∑
n≥0

zn

(q3; q3)n

∑
j, r≥0
j+2r=n

q
3j(j−1)

2

[
n

j

]
q3

(
−t−1q2,−tq4; q6

)
r

(3.14)

×

(
β + t(1− α− β)

r∑
`=1

q6`−2

(−t−1q2;−tq4; q6)`

)
,

F1(z) =
∑
n≥0

zn

(q3; q3)n

∑
j, r≥0

j+2r+1=n

q
3j(j−1)

2

[
n

j

]
q3

(
−t−1q5,−tq7; q6

)
r

(3.15)

×

(
1− β + αtq − t(1− α− β)

r∑
`=1

q6`+1

(−t−1q5;−tq7; q6)`

)
.

Recalling (3.4) and (3.7) and isolating the coefficients of zn in the above expressions
completes the proof of Lemma 3.2.

3.2. Proof of Theorem 3.1. We now prove Theorem 3.1 by taking the limit as
n → ∞ of the expressions from Lemma 3.2. We again separate the expressions
arising from H0 and H1, letting C0,3n−2(t; q) and C1,3n−2(t; q) denote the inner sums
in (3.14) and (3.15), respectively. For example, we have

F0(z) =
∑
n≥0

zn

(q3; q3)n
· C0,3n−2(t; q).

Using (2.1), the limit of these evaluates to

C0(t; q) := lim
n→∞
n even

C0,3n−2(t; q) (3.16)

=
(
−t−1q2,−tq4; q6

)
∞

∑
j≥0
j even

q
3j(j−1)

2

(q3; q3)j

(
β + t(1− α− β)

∑
`≥1

q6`−2

(−t−1q2,−tq4; q6)`

)
.

We are allowed to restrict to even n because we know a priori (through combinato-
rial arguments) that the limit exists, and therefore has the same value as n approaches
∞ along any subsequence. Using (2.4), the sum on j evaluates to (−q3; q3)∞ (this
evaluation was also noted in (4.8) of [1]).
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For the final sum in (3.16), we first shift the summation index by ` 7→ ` + 1 and
then apply (2.5) with q 7→ q6, a = tq4, and b = t−1q2, obtaining

∑
`≥1

q6`−2

(−t−1q2,−tq4; q6)`
=

q4

(1 + t−1q2) (1 + tq4)

∑
`≥0

q6`

(−t−1q8,−tq10; q6)`
(3.17)

=
q4

(1 + t−1q2) (1 + tq4)

[(
1 + t−1q−4

)∑
k≥0

(−1)kq3k
2+kt−2k

(−t−1q8; q6)k
−
t−1q−4

∑
k≥0(−1)kq3k

2+kt−2k

(−t−1q8,−tq10; q6)∞

]

= t−1
∑
k≥0

(−1)kq3k
2+kt−2k

(−t−1q2; q6)k+1

−
t−1
∑

k≥0(−1)kq3k
2+kt−2k

(−t−1q2,−tq4; q6)∞
.

To simplify further, consider the first sum on the third line of (3.17). By shifting
k 7→ k − 1 and then applying (2.6) with q 7→ q6 and y = −t−1q−4 we calculate

∑
k≥0

(−1)kq3k
2+kt−2k

(−t−1q2; q6)k+1

= −
∑
k≥1

(−1)kq3k
2−5k+2t−2k+2

(−t−1q2; q6)k
(3.18)

= −t2q2
(
−1 +

∑
k≥0

t−3kq9k
2−9k (1− t−2q12k−2))

=
∑
k≥0

(
t−3kq3k(3k+1) − t−(3k+1)q(3k+1)(3k+2)

)
.

Combining (3.16), (3.17), and (3.18), we obtain the overall expression

C0(t; q)

(−q3; q3)∞
= −(1− α− β)

∑
k≥0

(−1)kt−2kq3k
2+k (3.19)

+
(
−t−1q2,−tq4; q6

)
∞

(
β + (1− α− β)

∑
k≥0

(
t−3kq3k(3k+1) − t−(3k+1)q(3k+1)(3k+2)

))
.

To complete the proof, we similarly evaluate the limit of the second summand from
Lemma 3.2 and simplify the resulting expressions. Proceeding as above, (2.1) once
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more implies

C1(t; q) := lim
n→∞
n odd

C1,3n−2(t; q) =
(
−t−1q5,−tq7; q6

)
∞

∑
j≥0
j even

q
3j(j−1)

2

(q3; q3)j
(3.20)

×

(
1− β + αtq − t(1− α− β)

∑
`≥1

q6`+1

(−t−1q5,−tq7; q6)`

)
.

The sum on j is again evaluated by (2.4), and for the sum on ` we apply (2.5) with
q 7→ q6, a = t−1q−1, and b = tq, yielding∑
`≥1

q6`+1

(−t−1q5,−tq7; q6)`
= q

(
−1 +

∑
`≥0

q6`

(−t−1q5,−tq7; q6)`

)
(3.21)

= −q + q(1 + tq)
∑
k≥0

(−1)kq3k
2+5kt2k

(−tq7; q6)k
−
tq2
∑

k≥0(−1)kq3k
2+5kt2k

(−t−1q5,−tq7; q6)∞
.

Furthermore, applying (2.6) with q 7→ q6, y = −tq gives∑
k≥0

(−1)kq3k
2+5kt2k

(−tq7; q6)k
=
∑
k≥0

t3kq9k
2+6k

(
1− t2q12k+8

)
. (3.22)

Combining (3.20), (3.21), and (3.22) results in the overall expression

C1(t; q)

(−q3; q3)∞
= (1− α− β)

∑
k≥0

(−1)kt2k+2q3k
2+5k+2 (3.23)

+
(
−tq,−t−1q5; q6

)
∞

(
1− β − (1− α− β)

∑
k≥0

(
t3k+1q(3k+1)2 − t3k+3q(3k+3)2

))
.

In order to write the inner sum in terms of Θ2(t; q), note that 1−β = α+(1−α−β).
The proof of Theorem 3.1 is complete once we add (3.19) and (3.23). The final

simplification comes from combining the first sum in both equations, using the fact
that ∑

k≥0

(−1)kt2k+2q3k
2+5k+2 = −

∑
k≤−1

(−1)kt−2kq3k
2+k.

Recalling (1.7), this gives the theorem statement.
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