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A CLASSIFICATION OF HARMONIC MAASS FORMS

KATHRIN BRINGMANN AND STEPHEN KUDLA

Abstract. We give a classification of the Harish-Chandra modules generated by the pull-
back to SL2(R) of harmonic Maass forms for congruence subgroups of SL2(Z) with expo-
nential growth allowed at the cusps. We assume that the weight is integral but include
vector-valued forms. Due to the weak growth condition, these modules do not need to be
irreducible. Elementary Lie algebra considerations imply that there are 9 possibilities, and
we show, by giving explicit examples, that all of them arise from harmonic Maass forms.
Finally, we briefly discuss the case of forms that are not harmonic but rather are annihilated
by a power of the Laplacian, where much more complicated Harish-Chandra modules can
arise. We hope that our classification will prove useful in understanding harmonic Maass
forms from a representation theoretic perspective and that it will illustrate in the simplest
case the phenomenon of extensions occurring in the space of automorphic forms.

1. Introduction and statement of results

The standard definition of a weight k modular form f , say for SL2(Z) or a subgroup Γ
of finite index in SL2(Z), requires that f is holomorphic at the cusps. If this condition is
relaxed to allow poles at the cusps, the resulting weakly holomorphic modular forms can have
negative weight and the associated Γ-invariant function f̃ on Γ\G, G := SL2(R), does not
need to be square-integrable. By further relaxing the holomorphicity condition by allowing
functions which are annihilated by the Laplace operator, one arrives at harmonic Maass forms
– see Section 2 for the precise definition. Such functions have proved to be of considerable
interest and importance, as they arise, for example, in the study of mock modular forms,
in the constructions of Borcherds forms, in Bruinier’s construction of Green functions for
divisors on orthogonal Shimura varieties, as incoherent Eisenstein series. In a number of
cases, vector-valued forms are involved, and so we include such forms in our discussion.

Suppose that f is a harmonic Maass form of integral weight k and let f̃ be the corresponding
function on G, cf. (3.1) below. In the scalar-valued case, it is left invariant under Γ, and,
in general, it satisfies the equivariance property (3.2) below. The group G, and hence its

complexified Lie algebra, acts on such functions by right translations. Let M(f̃) be the

(g,K)-module generated by f̃ , where g := Lie(G)C is the complexified Lie algebra of G and
K := SO(2) is the standard maximal compact subgroup.

Our first result, Theorem 5.2, is a classification of the possible (g,K)-modules that could

arise as M(f̃)’s, based on considerations of the structure of a cyclic (g,K)-module generated
by a “harmonic” vector. The resulting indecomposable modules are built up from the various
irreducible (g,K)-modules occurring as constituents of the principal series for G at points of
reduciblity. It turns out that there are 9 possibilities. Most are subquotients of the reducible
principal series but several are not, cf. Corollary 5.3. The proof of this result is an easy
exercise and the list of possibilities has a simple reformulation in terms of the behavior of
f under the classical raising and lowering operators, cf. Remark 6. Note that some of the
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possible (g,K)-modules associated to harmonic Maass forms were described in the earlier
work of Schulze-Pillot (Proposition 3 of [21]) where he assumed1 that f has weight k ≤ 1.

Our second and main result shows that every possibility listed in Theorem 5.2 actually
arises as an M(f̃) for some harmonic Maass form f . We prove this in Section 6, by giving
explicit examples for each case. Here it should be noted that it is essential to consider vector-
valued forms, since it is shown that certain cases cannot occur non-trivially for scalar-valued
forms. In fact, in realizing our list, we only use the symmetric tensor representations (ρm,Pm)
of G on the space Pm of polynomials of degree at most m ∈ N0, cf. (6.1) below. For example,
the Pm-valued function defined via

er,m−r(τ)(X) :=
(−1)m−r

r!
vr−m (X − τ)r(X − τ)m−r, 0 ≤ r ≤ m,

for τ = u+ iv ∈ H, satisfies

er,m−r(γτ) = (cτ + d)m−2r ρm(γ) er,m−r(τ),

for all γ =
(
a b
c d

)
∈ G, and thus the holomorphic function em,0 is a harmonic Maass form of

weight −m and type ρm for any Γ. The space

M(ẽm,0) = span
{
ẽm,0, ẽm−1,1 . . . , ẽ1,m−1, ẽ0,m

}
,

realizes the finite dimensional (g,K)-module of dimension m + 1, case I(a) on our list. As
already observed in [21], the only finite dimensional representation which can occur for scalar-
valued forms is the trivial representation.

A related case involves a generalization of the (non-holomophic) weight 2 Eisenstein series
E∗2 defined in (6.9). This case is treated in [19], however, for the reader’s convenience, we
give all details. The (g,K)-module associated to E∗2 is a non-split extension with the weight
2 holomorphic discrete series representation as quotient and the trivial representation as
submodule. For any m ∈ N0, there is a Pm-valued function

E∗m+2(τ) :=
m∑
r=0

1

r + 1

(
m

r

)
er,m−r(τ)Rr E∗2(τ),

where Rr = Rrk := Rk+2(r−1) ◦ . . . ◦ Rk+2 ◦ Rk is the r-fold application of the Maass raising
operator

(1.1) R = Rk := 2i
∂

∂τ
+
k

v
.

It satisfies

Lm+2E
∗
m+2 =

3

π
e0,m

with the Maass lowering operator

(1.2) L = Lk := −2iv2 ∂

∂τ
.

Since e0,m is annihilated by Rm and the Laplace operator ∆k (defined in (2.1) below) satisfies
∆k = −Rm ◦ Lm+2, E∗m+2 is a harmonic Maass form of weight k = m + 2. The associated
(g,K)-module is a non-split extension with the weight k holomorphic discrete series repre-
sentation as quotient and the finite-dimensional space M(ẽm,0) as submodule; this is case

1In the case k = 1, the principal series, V (1) in his notation, is a direct sum LDS+(0) ⊕ LDS−(0), in
our notation. So his indecomposable in this case should be taken to mean the indecomposable II(b) in our
Theorem 5.2 rather than V (1).
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III(b) in our list. Note that the functions Rr E∗2 occurring in the components of E∗m+2 lie in
the spaces of nearly holomorphic modular forms in Theorem 4.2 of [19].

Case II(b) in our list is a non-split extension with the holomorphic weight 1 limit of
discrete series representation as quotient and anti-holomorphic weight 1 limit of discrete
series representation as submodule, cf. (6.8) below. This is precisely the (g,K)-module
associated to the central derivative of the incoherent Eisenstein series of weight 1 introduced
in [13]. This weight 1 harmonic Maass form can be viewed as the “modular completion” of
the generating series for arithmetic degrees of special 0-cycles on the moduli space of CM
elliptic curves, loc.cit., and hence is typical of a class of such forms whose holomorphic part is
related to arithmetic. Other such examples occur, sometimes only conjecturally, for example
in [14, 15], and in the work of Duke-Li [10]. Analogous phenomena have emerged the in the
theory of p-adic modular forms [8].

Remark 1. In this paper, we do not include of half-integral weight forms for which a similar
classification could be made, cf. [21] for a discussion.

Finally, we note that the harmonicity condition ∆kf = 0 is essential to our classification,
since it implies that the K-types occur in M(f̃) with multiplicity 1. In Section 7, we show
that more complicated (g,K)-modules can show up if one only requires that ∆`

kf = 0 for
some ` ∈ N0. A simple, but arithmetically interesting example is given by the weight 0
non-holomorphic modular form

(1.3) φ(τ) := −1

6
log
(
|∆(τ)|2 v12

)
,

which arises in the Kronecker limit formula, where ∆ is the weight 12 modular discriminant.
This form is annihilated by ∆2

0 and the associated (g,K)-module has the following picture:

Figure 1. The (g,K)-module for the Kronecker limit formula
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An explanation is given in Section 7.

In summary, we hope that our classification will prove useful in understanding harmonic
Maass forms from a representation theoretic perspective and that it will provide an elementary
motivating example2 for the study of extensions occurring in the space of automorphic forms,
including those with weaker than traditional growth conditions, and their analogues for more
general groups. In addition, we hope that it will serve as an accessible introduction to this
point of view.

Thanks: This project was begun during a visit by the second author to the University of
Cologne in of 2014 and completed during visits to Oberwolfach, TU Darmstadt, and ETH,
Zürich, in the summer of 2016. He would like to thank these institutions for their support
and stimulating working environments. The research of the first author is supported by the
Alfried Krupp Prize for Young University Teachers of the Krupp foundation and the research
leading to these results receives funding from the European Research Council under the
European Unions Seventh Framework Programme (FP/2007-2013) / ERC Grant agreement

2In fact, this development is already underway, cf. Remark 10 in section 7 for a brief discussion.
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n. 335220 - AQSER. The authors thank Dan Bump, Stephan Ehlen, Olav Richter, Rainer
Schulze-Pillot, and Martin Westerholt-Raum for useful comments on an earlier version of this
paper.

2. Harmonic Maass form

Let (ρ, V ) be a finite dimensional complex representation of a subgroup Γ of finite index
in SL2(Z), and, for simplicity, suppose that k is an integer. By a harmonic Maass form of
weight k and type (ρ, V ), we mean a smooth function f : H → V satisfying the following
conditions, [5]:

(1) For γ =
(
a b
c d

)
∈ Γ

f(γτ) = j(γ, τ)k ρ(γ) f(τ),

where j(γ, τ) := cτ + d.
(2) We have

∆kf = 0,

with the hyperbolic Laplacian in weight k

(2.1) ∆k := −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ik v

(
∂

∂u
+ i

∂

∂v

)
.

(3) There exists a constant B > 0 such that

f(τ) = O
(
eBv
)

as v →∞, uniformly in u.

A similar condition holds at all cusps of Γ.

We denote this space by Hmg
k (Γ, ρ). If the representation (ρ, V ) is one-dimensional, i.e. is

given by a character χ : Γ→ C×, we abbreviate this to Hmg
k (Γ, χ) or Hmg

k (Γ), if χ is trivial or
if we do not want to be explicit about χ. We refer to functions in this space as scalar-valued
Maass forms.

A special subspace of Hmg
k (Γ, ρ) consists of those forms, for which there exists a polynomial

Pf (τ) ∈ V [q−1] such that

f(τ)− Pf (τ) = O
(
e−εv

)
as v →∞ for some ε > 0, and similarly at the other cusps. We denote this space by Hk(Γ, ρ)
and refer to Pf (τ) as the principal part of f (at the given cusp).

Remark 2. Note that a holomorphic function satisfying these conditions can have poles at
the cusps, i.e., is a weakly holomorphic modular form in the usual, somewhat unfortunate,
terminology. Harmonic Maass forms with exponential growth at the cusps as allowed by (3)
are sometimes referred to as “harmonic weak Maass forms”.

A scalar-valued Maass form f of weight k ∈ Z \ {1} has a Fourier expansion of the form
(see (3.2a) and (3.2b) of [5])

(2.2) f(τ) = f+(τ) + f−(τ)

where the holomorphic part of f is given by

(2.3) f+(τ) =
∑

n∈ 1
N

Z
n�−∞

c+
f (n) qn,
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for some N ∈ N, whereas, for k 6= 1, its non-holomorphic part is given by

(2.4) f−(τ) = c−f (0) v1−k +
∑

n∈ 1
N
Z\{0}

n�∞

c−f (n)Wk(2πnv) qn.

Here, for x ∈ R, Wk(x) is the real-valued incomplete gamma function3, defined as in [3],
Section 2.2, by

(2.5) Wk(x) = Re
(

Γ(1− k,−2x)
)

= Γ(1− k,−2x) +

{
(−1)1−kπi

(k−1)! for x > 0,

0 for x < 0,

with

Γ(s, x) :=

∫ ∞
x

e−t ts−1 dt.

For k = 1, the non-holomorphic part f−(τ) has the same shape but with the term v1−k in
(2.4) replaced by − log(v). Note that the constraints on n in the sums, n � −∞ in f+(τ)
and n�∞ in f−(τ), are a consequence of the growth condition (3) and the asymptotics of
Γ(s, x).

The subspace Hk(Γ) may be characterized as those elements of Hmg
k (Γ) for which c−f (n) = 0

for n ≥ 0. For f ∈ Hk(Γ), we have

(2.6) f−(τ) =
∑
n∈ 1

N
Z

n<0

c−f (n) Γ (1− k, 4π|n|v) qn.

We define the “flipped space”

(2.7) H]
k (Γ) :=

{
f ∈ Hmg

k (Γ) : c+
f (n) = 0 for n < 0

}
.

Remark 3. The Fourier expansion in the case of vector-valued forms of type (ρ, V ) is more
subtle. Suppose that Γ = SL2(Z), so that we have

f(τ + 1) = ρ

((
1 1
0 1

))
f(τ).

If the space V admits a basis of eigenvectors of ρ(( 1 1
0 1 )), then corresponding components

of f have a Fourier expansion as in (2.2). This is for example the case if (ρ, V ) is a Weil
representation as in [5]. On the other hand, if (ρ, V ) is a symmetric tensor representation,
say realized on a space of polynomials as in (6.1), then there is no such basis and the Fourier
series of f must be defined by procedure of [16], which we now describe. Suppose that the
representation (ρ, V ) is the restriction to SL2(Z) of a holomorphic representation of SL2(C).
Letting

f∗(τ) := ρ

((
1 τ
0 1

))−1

f(τ),

we have

f∗(τ + 1) = ρ

((
1 τ + 1
0 1

))−1

ρ

((
1 1
0 1

))
f(τ) = f∗(τ).

Thus f∗ has a Fourier expansion. The twist from f to f∗ alters the action of the Maass opera-
tors, (1.1) and (1.2) however, and this is responsible for the occurrence of different phenomena
for vector-valued forms in certain cases, specifically cases I(a) and III(b) of Theorem 5.2.

3We sometimes write βk(x) in place of Wk(−x/2), as this notation occurs in many places in the literature.
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Harmonic Maass forms relate in many ways to classical (weakly holomorphic) modular
forms. To state the first of these connections, define the Bruinier-Funke ξ-operator

ξk := 2ivk
∂

∂τ
.

Note that

ξkf = vk−2Lkf = R−k

(
vkf

)
from which one can easily conclude that ξk : Hmg

k (Γ, ρ) → M !
2−k(Γ, ρ̄), where ρ̄ is the

representation of Γ on V defined by

ρ̄(γ)v = ρ(γ)v̄.

Here we need to assume that V is defined over R, i.e., that complex conjugation¯: V → V
is defined. Of course this is true for spaces of complex-valued functions, e.g., polynomials or
group algebras as in [5]. We also note that, if f has weight k, then vk f(τ) has weight −k
and

La−k

(
vk f(τ)

)
= vk+2aRakf(τ), Ra−k

(
vk f(τ)

)
= vk−2aLakf(τ).

Now assume that f is scalar-valued. Writing the Fourier expansion of f as in (2.2), we
have

(2.8) ξkf(τ) = (1− k)c−f (0)− (4π)1−k
∑

n∈ 1
N
Z\{0}

n�−∞

c−f (−n)

nk−1
qn.

while, for k = 1, we have

(2.9) ξ1f(τ) = −c−f (0)−
∑

n∈ 1
N
Z\{0}

n�−∞

c−f (−n) qn.

Using this operator, Hk(Γ) may be characterized as those elements in Hmg
k (Γ) which map to

cusp forms under ξk.
A further operator which relates harmonic Maass forms to (weakly) holomorphic modular

forms is given by iterated differentiation. Suppose that k ∈ −N0 and let

D1−k :=

(
1

2πi

∂

∂τ

)1−k
.

Using Bol’s identity, [1, 6],

(2.10) D1−k = (−4π)k−1R1−k
k ,

one can show that D1−k : Hmg
k (Γ, ρ)→M !

2−k (Γ, ρ). For f scalar-valued, the operator D1−k

acts on (2.2) as

(2.11) D1−kf(τ) = (1− k)!(4π)k−1c−f (0) +
∑

n∈ 1
N
Z\{0}

n�−∞

c+
f (n)

nk−1
qn.

Using this operator, the space (2.7) may be characterized as

H]
k (Γ) =

{
f ∈ Hmg

k (Γ) : D1−k(f) ∈ S2−k (Γ)
}
.
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Finally, we also require an operator, which “flips” the two spaces Hk(Γ) and H]
k(Γ). To

be more precise, define for f ∈ Hmg
k (Γ) the flip of f

Fk :=
v−k

(−k)!
R−kk .

The flipping operator Fk satisfies

Fk :Hk (Γ)→ H]
k (Γ) , H]

k (Γ)→ Hk (Γ) ,

Fk ◦ Fk(f) = f.(2.12)

Moreover we have

ξk ◦ Fk = −(−4π)1−k

(−k)!
D1−k,(2.13)

D1−k ◦ Fk =
(−k)!

(4π)1−k ξk.(2.14)

Natural harmonic Maass forms can be given via Poincaré series. For simplicity, we restrict
to scalar-valued forms. We now describe the general construction. Let

Pk(ϕ; τ) :=
∑

γ=
(
a b
c d

)
∈Γ∞\SL2(Z)

ϕ
∣∣∣
k
γ(τ),

where Γ∞ := {± ( 1 n
0 1 ) : n ∈ Z},

∣∣
k

is the usual weight k slash operator and ϕ : H → C
satisfies

ϕ(τ) = O(v2−k+ε) (ε > 0).

For k < 0, let

Fk,m(τ) := Pk (ϕk,m) ,

with (e(u) := e2πiu)

ϕk,m(τ) :=
(− sgn(m))1−k

(1− k)!
(4π|m|v)−

k
2 Msgn(m) k

2
, 1−k

2
(4π|m|v) e(mu)

with Mµ,ν the M -Whittaker function. These functions give rise to harmonic Maass forms
(see e.g. [4, 18]). To be more precise, for m > 0, we have

Fk,m ∈ Hk, Fk,−m ∈ H]
k.

3. The (g,K)-module defined by f .

As usual, for g ∈ G = SL2(R) and f ∈ Hmg
k (Γ, ρ), we let

(3.1) f̃(g) := j(g, i)−k f(g(i)),

so that f̃ : G→ V satisfies

f̃(γg) = ρ(γ)f̃(g) for all γ ∈ Γ,(3.2)

f̃(gkθ) = eikθ f̃(g) for all kθ :=
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
∈ K = SO(2),(3.3)

and the growth condition

(3.4) f̃(g) = O
(
eBv
)
, g(i) = u+ iv,
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for a constant B > 0, uniformly in u, as v →∞. Again, similar conditions hold at all cusps
of Γ. As a good reference for this construction as well as the calculations to follow is [25], see
also Chapter 1 of [26].

Let

H := i

(
0 −1
1 0

)
, X+ :=

1

2

(
1 i
i −1

)
, X− :=

1

2

(
1 −i
−i −1

)
,

be the standard basis for the complexified Lie algebra g of G. Note that H spans k, the
complexified Lie algebra of K, and that condition (3.3) on f̃ is equivalent to the condition

Hf̃ = kf̃ . Recall that, if f̃ is the lift of f to G, then X+f̃ is the lift of Rkf and X−f̃ is the
lift of Lkf , where Lk and Rk are defined in (1.1) and (1.2), respectively.

The Casimir operator is the element of the universal enveloping algebra U(g) of g defined
by

(3.5) C := H2 + 2X+X− + 2X−X+ = (H − 1)2 + 4X+X− − 1 = (H + 1)2 + 4X−X+ − 1.

Note that C spans the center of U(g) and acts by a scalar in any irreducible (g,K)-module.
Using the second expression for C, it is immediate that the condition ∆kf = 0 is equivalent
to

(3.6) Cf̃ =
(

(k − 1)2 − 1
)
f̃ .

Note that, for k ∈ −N0, the flipping operator lifts to

F̃kf =
1

(−k)!
X−k+ f̃ ,

and the identity (2.12) amounts to

X−k− X−k+ f̃ = (−k)!2 f̃ .

Let A(G,V ) be the space of all K-finite4, C∞-functions on G, which are valued in V , and
let A(G,V ; Γ) be the subspace such that (3.2) holds. Note that this subspace is a (g,K)

submodule. For a harmonic Maass form f of weight k, the corresponding function f̃ on G
lies in A(G,V ; Γ) and satisfies conditions (3.3) and (3.6), as well as the growth condition

(3.4), which we do not use for the moment. We want to describe the (g,K)-submodule M(f̃)

of A(G,V ) generated by f̃ .
For j = k ± 2r ∈ k + 2Z, r ∈ N0, let

(3.7) f̃j := Xr
± f̃ .

The following fact is classically well-known.

Proposition 3.1. The (g,K)-submodule M(f̃) of A(G,V ) generated by f̃ = f̃k is spanned

by the f̃j. Moreover, for r ∈ N,

X−f̃k+2r = r(1− k − r) f̃k+2(r−1), and(3.8)

X+f̃k−2r = −(r − 1)(r − k)f̃k−2(r−1).

In particular, the following vanishing always occurs:

X+f̃k−2 = 0,

X−f̃2−k = 0 if k < 1 (so that r = 1− k > 0 in (3.7)),(3.9)

X+f̃−k = 0 if k > 0 (so that r = k > 0 in (3.7)).(3.10)

4A function in this space is a finite linear combination of functions satisfying (3.3) for various weights k.
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Proof. For convenience, we set ν = 1− k. By (3.5), we have

4X+X− = C − (H − 1)2 + 1,

4X−X+ = C − (H + 1)2 + 1,

and hence, recalling that C is in the center of the enveloping algebra,

4X+X− f̃j =
((
ν2 − 1

)
− (j − 1)2 + 1

)
f̃j ,(3.11)

4X−X+ f̃j−2 =
((
ν2 − 1

)
− (j − 1)2 + 1

)
f̃j−2.(3.12)

Now for j = k + 2r > k, the second equation gives us

X−f̃j =
1

4

((
ν2 − 1

)
− (2r − ν)2 + 1

)
f̃j−2, i. e., X−f̃k+2r = r(ν − r) f̃k+2(r−1).

Similarly, for r > 0, the first equation yields

X+f̃k−2r = −(r − 1)(ν + r − 1)f̃k−2(r−1).

�

Remark 4. Note that it is precisely the harmonicity condition (3.6) which yields the relations

(3.11) and (3.12). These imply that the K-types in M(f̃) have multiplicity 1, a fact which is
crucial to our determination of this module. If condition (3.6) is relaxed, higher multiplicities
and more complicated things can occur as shown by some examples in Section 7.

Remark 5. It is useful to note that for k < 1 and ν = 1 − k, the vanishing X−f̃2−k = 0 in
(3.9) implies that, for a holomorphic form f ,

(3.13) Rνkf(τ) =

(
2i
∂

∂τ

)ν
f(τ),

i.e., Bol’s identity (2.10).

4. Some standard (g,K) modules

Before continuing our analysis, we review the structure of the reducible principal series
representations of G. This provides the irreducible (g,K)-modules from which M(f) is built.
A nice reference for this material is Chapter 1 of [26]. Here we use the notation

m(a) :=

(
a 0
0 a−1

)
, n(b) :=

(
1 b
0 1

)
, and kθ =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
.

For ε ∈ {0, 1} and ν ∈ C, let Ism(ε, ν), be the principal series representation of G given by
right multiplication on the space of smooth functions5 φ such that

φ(n(b)m(a)g) = sgn(a)ε |a|ν+1 φ(g).

Let I(ε, ν) be the corresponding (g,K)-module of K-finite functions. For j ≡ ε (mod 2), let
φj ∈ I(ε, ν) be the function such that

(4.1) φj(kθ) = ejθi.

These functions give a basis for I(ε, ν), and and easy calculation shows that

(4.2) X±φj =
1

2
(ν + 1± j)φj±2.

5Hence the superscript ‘sm’.
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From this it is immediate that

(4.3) Cφj =
(

(j − 1)2 + (ν + 1− j)(ν + 1 + j − 2)− 1
)
φj =

(
ν2 − 1

)
φj .

The (g,K)-module I(ε, ν) is irreducible unless ν is an integer and ν−1 ≡ ε (mod 2). In that
case, I(ε, ν) is not irreducible and ν determines ε, so we write simply I(ν) = I(ε, ν). The
structure of I(ν) is well-known and can easily be derived from (4.2).

(1) If ν > 0, then there are two irreducible submodules, the holomorphic (resp. anti-
holomorphic) discrete series representation

DS+(ν) = [φν+1, φν+3, . . . , ], (resp. DS−(ν) = [. . . , φ−ν−3, φ−ν−1])

with lowest (resp. highest) weight k (resp. −k), and a unique irreducible quotient

(4.4) FD(ν) = [φ−ν+1, . . . , φν−1] (mod DS+(ν)⊕DS−(ν))

so that there is an exact sequence

0 −→ DS+(ν)⊕DS−(ν) −→ I(ν) −→ FD(ν) −→ 0.

In particular, FD(ν) is the finite dimensional representation of G of dimension ν.
(2) If ν < 0, then there is a unique irreducible submodule

FD(−ν) = [φν+1, . . . , φ−ν−1],

and two irreducible quotients, DS±(−ν), and so an exact sequence

0 −→ FD(−ν) −→ I(µ) −→ DS+(−ν)⊕DS−(−ν) −→ 0.

(3) If ν = 0, there are two irreducible summands, the limits of discrete series

LDS+(0) = [φ1, φ3, . . . ] and LDS−(0) = [. . . , φ−3, φ−1],

with lowest (resp. highest) weight 1 (resp. −1).

In each of the cases, we have, with k = 1− ν,

Xr
+φk = r!φk+2r, and Xr

−φk = ν(ν + 1)(ν + 2) · · · (ν + r − 1)φk−2r,

and, an easy calculation gives

X−X
r
+φk = r(ν − r)Xr−1

+ φk, and X+X
r
−φk = −(r − 1)(ν + r − 1)Xr−1

− φk.

5. A Classification

Now returning to the subspace M(f̃) of A(G,V ) generated by f̃ = f̃k, we distinguish the
three cases k < 1, k = 1, and k > 1. The transition equations (3.8)–(3.10) then show when

it is possible to move up and down among the f̃j ’s and hence reveal the possible module

structures for M(f̃) as an abstract (g,K)-module. It turns out that there are 9 cases. Recall
that ν = 1− k.

Theorem 5.2.
I. Suppose that k < 1, so that ν > 0. Then the structure of M(f̃) is determined by the

functions f̃k−2 and f̃k+2ν = f̃2−k. More precisely, M(f̃) is isomorphic to

(a) FD(ν) if f̃k−2 = 0 and f̃k+2ν = 0,

(b) I(ν)/DS−(ν) if f̃k−2 = 0 and f̃k+2ν 6= 0, so that there is an exact sequence

0 −→ DS+(ν) −→M
(
f̃
)
−→ FD(ν) −→ 0,
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(c) I(ν)/DS+(ν) if f̃k−2 6= 0 and f̃k+2ν = 0, so that there is an exact sequence

0 −→ DS−(ν) −→M
(
f̃
)
−→ FD(ν) −→ 0,

(d) I(ν) if f̃k−2 6= 0 and f̃k+2ν 6= 0, so that there is an exact sequence

0 −→ DS+(ν)⊕DS−(ν) −→M
(
f̃
)
−→ FD(ν) −→ 0.

Moreover, the sequences in cases (b), (c), and (d) are not split.

II. Suppose that k = 1 so that ν = 0.

(a) If f̃−1 = 0, then M(f̃) ' LDS+(0).

(b) If f̃−1 6= 0, then there is a non-split extension

0 −→ LDS−(0) −→M
(
f̃
)
−→ LDS+(0) −→ 0.

III. Suppose that k > 1 so that ν < 0. Then the structure of M(f̃) is determined by the

functions f̃k−2 and f̃−k.

(a) If f̃k−2 = 0, then M(f̃) ' DS+(−ν).

(b) If f̃k−2 6= 0 and f̃−k = 0, then there is a non-split extension

0 −→ FD(−ν) −→M
(
f̃
)
−→ DS+(−ν) −→ 0

so that M(f̃) is isomorphic to the submodule of I(ν) generated by φk.

(c) If f̃k−2 6= 0 and f̃−k 6= 0, then there is a (socle) composition series of length 3,

F 2M
(
f̃
)
⊂ F 1M

(
f̃
)
⊂M

(
f̃
)
,

with F 2M(f̃) ' DS−(−ν), F 1M(f̃)/F 2M(f̃) ' FD(−ν), and M(f̃)/F 1M(f̃) '
DS+(−ν).

Theorem 5.2 immediately implies

Corollary 5.3. (i) If k < 1, i.e., in cases I(a)-(d), M(f̃) is isomorphic to a quotient of
I(ν).

(ii) In cases III(a) and III(b), where k > 1, and in case II(a), where k = 1, M(f̃) is
isomorphic to a subquotient of I(ν).

(iii) In cases III(c), where k > 1, and II(b), where k = 1, M(f̃) is not isomorphic to a
subquotient of I(ν).

Remark 6. For convenience, we summarize what the various cases amount to in classical
language. Suppose that f is a harmonic Maass form of weight k, and, for r ∈ N0, set
fk+2r := Rrkf (resp. fk−2r := Lrkf) for the image of f under the r-fold application of the
raising (resp. lowering) operator.

I. Here k < 1. The subcases correspond to the following:
(a) Lkf = fk−2 = 0 and R1−k

k f = f2−k = 0,

(b) Lkf = fk−2 = 0 and R1−k
k f = f2−k 6= 0,

(c) Lkf = fk−2 6= 0 and R1−k
k f = f2−k = 0,

(d) Lkf = fk−2 6= 0 and R1−k
k f = fk+2ν 6= 0.

II. Here k = 1. The subcases correspond to the following:
(a) L1f = 0, i. e., f is a weakly holomorphic modular form of weight 1,
(b) L1f 6= 0, i. e., ξ1f is a weakly holomorphic modular form of weight 1.
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III. Here k > 1. The subcases correspond to the following:
(a) Lkf = fk−2 = 0, i. e., f is a weakly holomorphic modular form of weight k,

(b) Lkf = fk−2 6= 0 and Lkkf = f−k = 0. i. e., Lk−1
k f is holomorphic of weight 2− k,

(c) Lkf = fk−2 6= 0 and Lkkf = f−k 6= 0.

Of course, the cases listed in the theorem are simply possibilities. Our goal is to determine
which of them can actually arise as subspaces of A(G,V ; Γ) and for which (ρ, V ). Of course,

the cases I(a) and II(a), where k ∈ N, arise as irreducible submodules M(f̃) generated by the
lifts to G of holomorphic cusp forms of weight k. On the other hand, all other cases involve
non-split extensions and hence cannot occur as subspaces of L2(Γ\G). In fact, we show the
following:

Theorem 5.4. All possible cases enumerated in Theorem 5.2 arise as M(f̃)’s.

Remark 7. This result is proved in Section 6 by explicit construction. It is shown there, that
certain cases can only occur for (ρ, V ) with dim(V ) > 1.

6. Examples

In this section, we provide examples for each of the possibilities for M(f̃) listed in Theo-
rem 5.2.

6.1. Case I: k < 1.

6.1.1. Case I(a). In this case, we want an automorphic realization of the finite-dimensional
representation FD(ν) of dimension ν. For k = 0 and ν = 1 the constant function gives a trivial

example for the one-dimensional space M(f̃) = FD(1). Moreover, as remarked by Schulze-

Pillot [21], this is the only possibility of a finite-dimensional M(f̃) if the representation (ρ, V )
is a character, i.e., for scalar-valued modular forms. For convenience of the reader, we provide
a proof of this statement, which follows the approach of Schulze-Pillot.

Lemma 6.5. Suppose that k ≤ 0 and that f ∈ Hmg
k (Γ) is a scalar-valued harmonic Maass

form with M(f̃) = FD(ν). Then f is a constant and ν = 1.

Proof. The condition Lkf = 0 implies that f is holomorphic. Then the condition Dνf =
0 implies that f is a polynomial. Since f is invariant under τ 7→ τ + 1/N , f must be
constant. �

For vector-valued forms, each FD(ν) can occur, as shown by the following elementary
construction, cf. [25]. For k ∈ −N0, let m = −k and let Pm be the space of polynomials of
degree at most m in the variable X. The group SL2(R) acts of Pm via

(
γ :=

(
a b
c d

))
(6.1) ρm(γ)p(X) = (−cX + a)mp

(
dX − b
−cX + a

)
.

We abbreviate ρ := ρm. Following [25], for an integer r with 0 ≤ r ≤ m, define the function
er,m−r : H→ Pm by

er,m−r(τ)(X) : =
(−1)m−r

r!
vr−m det

(
X τ
1 1

)r
det

(
X τ
1 1

)m−r
=

(−1)m−r

r!
vr−m (X − τ)r (X − τ)m−r.
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Then, for any γ ∈ SL2(R),

(6.2) er,m−r(γτ) = (cτ + d)m−2r ρ(γ) er,m−r(τ),

so that er,m−r has weight m− 2r. The holomorphic function em,0 is a harmonic Maass form
of weight −m and type ρm. The corresponding functions ẽr,m−r on G are given by

ẽr,m−r(g)(X) =
(−1)m−r

r!
j(g, i)r j(g,−i)m−r det

(
X g(i)
1 1

)r
det

(
X g(−i)
1 1

)m−r
.

Let

φ(g) := det

((
X
1

)
, g

(
±i
1

))r
.

If A ∈ g0, the real Lie algebra of G, then

Aφ(g) = r det

((
X
1

)
, g

(
±i
1

))r−1

det

((
X
1

)
, A

(
±i
1

))
,

and the same formula holds for A ∈ g, the complexification of g0, by linearity. In particular,
since

X+

(
i
1

)
= −

(
−i
1

)
, and X+

(
−i
1

)
= 0,

we see that

X+ẽr,m−r = ẽr−1,m−r+1, X+ẽ0,m = 0, and

X−ẽr,m−r = (r + 1) (m− r) ẽr+1,m−r−1, X−ẽm,0 = 0.

The classical functions er,m−r behave in the same way under raising and lowering as the
ẽr,m−r behave under X±, viz

Lm−2r er,m−r = (r + 1) (m− r) er+1,m−r−1, Rm−2r er,m−r = er−1,m−r+1.

In particular,

L−mem,0 = 0, Rme0,m = 0.

These formulas are easily checked by a classical calculation as well. In this way, we obtain a
realization of FD(ν) in the space A(G,Pm; Γ), where m = ν− 1 and for any Γ ⊂ SL2(R); the
transformation law under Γ follows from (6.2).

Finally, we note that, under the flipping operator,

F−mem,0 = (−1)m em,0.

6.1.2. Case I(b). Any weakly holomorphic modular form f of weight k < 1 gives an extension
of the form

0 −→ DS+(ν) −→M
(
f̃
)
−→ FD(ν) −→ 0,

where ν = 1− k, as usual. The submodule is generated by Rνkf , which is again holomorphic
by either (3.9) or (3.13).

For example, for the form f = 1/∆ of weight −12, where ∆ is the usual cusp form of
weight 12 for SL2(Z), we have ν = 13 and, recalling (3.13),

h = R13
−12f = (2i)13 f (13)

is a weakly holomorphic form of weight 14. Then the extension is

0 −→M
(
h̃
)
−→M

(
f̃
)
−→ FD(13) −→ 0.
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As an even simpler example, we can take f = j, the modular j-invariant, with k = 0 and
ν = 1. Then we have h := R0f = 2i j′ and we get an extension

0 −→M
(
h̃
)
−→M

(
f̃
)
−→ FD(1) −→ 0

with the trivial representation as quotient.

6.1.3. Case I(c). Let F ∈ M !
k\{0} and set G := FkF . If k = 0, we assume that F is not a

constant. We compute, using (2.13),

ξkG = −(−4π)1−k

(−k)!
D1−kF 6= 0

since F 6= 0 (resp. F is non-constant for k = 0). Moreover, by (2.14),

D1−kG =
(−k)!

(4π)1−k ξkF = 0

since F ∈M !
k. This gives the claim.

These last two cases, say for 1
∆ and its flip F−12

1
∆ , can be pictured as follows: For case

I(b)

(6.3) •
R−12

(( ◦
L−10

hh

R−10

((. . .
L−8

ii
R8

)) ◦
R10 ))

L10

ll ~
L12

hh

R12
)) �

R14
(( ◦

R16
((

L16

ii ◦
L18

hh

R18 ** · · ·
L20

hh ,

where • indicates 1
∆ , ~ indicates the form R12

−12
1
∆ of weight 12, and � indicates the weight

14 holomorphic form h. The omitted arrows are zero.
Applying the flip yields the example for case I(c):

(6.4) . . .

R−20
(( ◦

R−18
((

L−18

jj ◦
R−16

))

L−16

hh �̆
L−14

hh ~̆
R−12

((

L−12

ii ◦
L−10

ii

R−10

((. . .
L−8

ii
R8

)) ◦
R10
((

L10

ll •̆
L12

hh ,

where •̆ indicates the form v12 1
∆ of weight 12, ~̆ indicates the harmonic form v−12R12

−12
1
∆ =

F−12
1
∆ , and �̆ indicates the weight −14 anti-holomorphic form v14h̄. Again, the omitted

arrows are zero.
Here is should be noted that the location of the harmonic Maass form in the diagram

changes under the flip, from • in (6.3) to ~̆ in (6.4). This is due to the harmonicity require-
ment, i.e., that the harmonic Maass form is annihilated by the composition Rr−2 ◦ Lk.

6.1.4. Case I(d). Here we want to realize a copy of the (g,K)-module I(ν) for ν = 1− k and
k < 1 in the space of automorphic forms.

The simplest example is given by adding a weakly holomorphic form and its flip. To be
more precise, let F ∈ M !

k\{0} and set G := F + Fk(F ). Then, by (2.13) and the fact that

F ∈M !
k,

ξkG = −(−4π)1−k

(−k)!
D1−kF 6= 0.

Moreover, using (2.14) yields

D1−kG = D1−kF 6= 0.
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A second example can be constructed using Eisenstein series and we refer to [12] as a
convenient reference. As in Section 3 of loc.cit., for r ∈ 2Z, we let

(6.5) Er,s(τ) =
∑

γ=
(
a b
c d

)
∈Γ∞\SL2(Z)

(cτ + d)−r Im(γτ)
1
2

(s+1−r).

This series is absolutely convergent for Re(s) > 1 and defines an automorphic form of weight
r. Its Fourier series is given by Proposition 3.1 of loc.cit.:

Er,s(τ) = vβ + vβ−s 2πir
2−sΓ(s)

Γ(α)Γ(β)

ζ(s)

ζ(s+ 1)

+
ir(2π)s+1 vβ

Γ(α) ζ(s+ 1)

∞∑
m=1

σs(m) Ψ(β, s+ 1; 4πmv) qm

+
ir(2π)s+1 vβ

Γ(β) ζ(s+ 1)

∞∑
m=1

σs(m) Ψ(α, s+ 1; 4πmv) qm,

where Γ(s) is the usual Gamma function, ζ(s) the Riemann zeta-function,

α :=
1

2
(s+ 1 + r), β :=

1

2
(s+ 1− r), σs(m) :=

∑
d|m

ds,

and Ψ(a, b; z) is the confluent hypergeometric function, given by

Ψ(a, b; z) :=
1

Γ(a)

∫ ∞
0

e−zt (1 + t)b−a−1 ta−1 dt.

Note that we take Ψ(0, b; z) = 1 (cf. [12], the equation after (2.20)).
Recall that the principal series representation6 I(s) is spanned by the functions φr(s),

defined in (4.1). For Re(s) > 1, we obtain a linear map

Ẽ(s) : I(s) −→ A(G; Γ), φr 7→ Ẽr,s,

and this map is (g,K)-intertwining. Thus, by (4.2),

LrEr,s =
1

2
(s+ 1− r)Er−2,s, and(6.6)

RrEr,s =
1

2
(s+ 1 + r)Er+2,s.(6.7)

In particular, set ` = −k with k < 0 and let s0 = 1 + ` = ν. Then we obtain a (g,K)-
intertwining map

Ẽs0 : I(s0) −→ A(G; Γ), φr 7→ Ẽr,s0 .

In fact, this map is injective. To see this, note that the constant term of Er,s0 equals

v1+ 1
2

(`−r) + v−
1
2

(`+r) 2πir 2−`−1Γ(`+ 1)

Γ
(
1 + 1

2(`+ r)
)

Γ
(
1 + 1

2(`− r)
) ζ(`+ 1)

ζ(`+ 2)
,

where, if |r| ≥ ` + 2, the second term is zero due to the pole in the denominator. Thus
Er,s0 6= 0 and these functions are linearly independent since they have distinct weights. The
function

f(τ) := Ek,1−k(τ)

6Here we write s for ν and take ε = 0.
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is the harmonic Maass form of weight k for SL2(Z). Its Fourier expansion is given by

E`+1,−`(τ) = v`+1 + 2π i` 2−`−1 ζ(`+ 1)

ζ(`+ 2)

+
i`(2π)`+2 v`+1

ζ(`+ 2)

∞∑
m=1

σ`+1(m) Ψ(`+ 1, `+ 2; 4πmv) qm

+
i`(2π)`+2 v`+1

Γ(`+ 1) ζ(`+ 2)

∞∑
m=1

σ`+1(m) Ψ(1, `+ 2; 4πmv) qm.

But we have

Ψ(`+ 1, `+ 2; z) =
1

Γ(`+ 1)

∫ ∞
0

e−zt t` dt = z−`−1, and

Ψ(1, `+ 2; z) = ez
∫ ∞

1
e−zt t` dt = z−`−1 ez

∫ ∞
z

e−t t` dt = z−`−1 ez Γ(`+ 1, z).

Thus

E`+1,−`(τ) = v`+1 + 2π 2−`−1 i`
ζ(`+ 1)

ζ(`+ 2)
+

2π 2−`−1 i`

ζ(`+ 2)

∞∑
m=1

σ−`−1(m) qm

+
2π 2−`−1 i`

Γ(`+ 1) ζ(`+ 2)

∞∑
m=1

σ−`−1(m) β−`(4πmv) q−m,

as in (2.2). The image of this series under ξk = ξ−` is 1− k times the holomorphic Eisenstein

series E2−k(τ) of weight 2− k, while its image under R1−k
k is a non-zero multiple of E2−k(τ).

We omit the case k = 0.

Remark 8. One could simply define, for k ∈ −2N,

Qk(τ) :=
∑

γ∈Γ∞\SL2(Z)

v1−k
∣∣∣
k
γ.

Then Qk ∈ Hmg
k and

ξk (Qk) = (1− k)E2−k,

D1−k (Qk) = −(4π)1−k(1− k)!E2−k.

However, we included the description including an s-parameter as this adds an extra per-
spective described in Section 7.

6.2. Case II: k = 1.

6.2.1. Case II(a). Any weakly holomorphic modular form f of weight 1 gives an example.
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6.2.2. Case II(b). In this case we want to realize the extension of (g,K)-modules

(6.8) 0 −→ LDS−(0) −→M
(
f̃
)
−→ LDS+(0) −→ 0,

which, in classical language, is equivalent to finding a harmonic Maass form f of weight 1
whose image under ξ1 is a holomorphic modular form of weight 1.

An example for this case is given by the derivatives of incoherent Eisenstein series of
weight 1, constructed in [13]. To describe this, we fix an imaginary quadratic field k of prime
discriminant −D with D ≡ 3 (mod 4) and D > 3. Then define the pair of weight 1 Eisenstein
series by

E±s (τ) : = v
s
2

∑
γ=

(
a b
c d

)
∈Γ∞\SL2(Z)

Φ±D(γ)(cτ + d)−1|cτ + d|−s,

where

Φ±D(γ) : =

{
χD(a) if D | c,
±iD−

1
2 χD(c) if (c,D) = 1,

with χD the quadratic character D associated to k. These series are absolutely convergent
for Re(s) > 1 and have a meromorphic continuation to the whole s-plane. Let L(s, χD) be
the usual Dirichlet L-series associated to χD. Then, the analytic continuations in s of the
normalized series

Ê±s (τ) :=

(
D

π

) s+1
2

Γ

(
s+ 1

2

)
L(s, χD)E±s (τ)

satisfies the functional equation

Ê±−s = ±Ê±s .
We refer to Ê+

s (resp. Ê−s ) as the coherent (resp. incoherent) Eisenstein series associated to

k (see [13]). For the coherent Eisenstein series Ê+
s , we have

1

2
Ê+

0 (τ) = hk + 2

∞∑
n=1

ρ(n) qn =
∑
a

ϑa(τ),

where the sum runs over representatives a for the ideal classes, hk is the class number of k,
and ρ(n) is the number of integral ideals of norm n. Here

ϑa(τ) :=
∑
n∈a

q
N(n)
N(a)

is Hecke’s weight 1 theta series for the ideal class of the fractional ideal a. Due to the

functional equation, the incoherent series Ê−s vanishes at s = 0, so we instead consider the
function

φ(τ) :=
1

2

∂

∂s

[
Ê−s (τ)

]
s=0

=: av(0) +
1∑

n=−∞
av(n) qn +

∞∑
n=1

a(n) qn.

According7 to Theorem 1 of [13], we have

av(n) =


−2 log(D) (ordD(n) + 1)ρ(n)− 2

∑
p 6=D log(p) (ordp(n) + 1) ρ

(
n
p

)
for n > 0,

hk

(
log(D) + 1

2
Λ′(1,χD)
Λ(1,χD) + log(v)

)
for n = 0,

−2 ρ(−n)β1(4π|n|v) for n < 0,

7Note that we have changed the sign compared to [13].
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where Λ(s, χD) := π−
1
2

(s+1) Γ(1
2(s + 1))L(s, χD), and β1(x) = Γ(0, x) is the incomplete Γ-

function. Here we slightly abuse notation and write av(n) = a(n) if n > 0.
Applying the ξ-operator, we obtain

ξ1φ =
1

2
Ê+

0 .

Thus, taking the function f(τ) = φ(τ) on H with corresponding function f̃(g) = j(g, i)−1 φ(g(i))
on G, we obtain the desired extension (6.8) of (g,K) modules, where the submodule LDS−(0)
is generated by the function

j(g, i)
1

2
Ê+

0 (g(i)).

6.3. Case III: k > 1.

6.3.1. Case III(a). The function f̃ on G corresponding to any holomorphic cusp form f of
weight k generates a copy of DS+(ν) and hence provides an example for this case.

6.3.2. Case III(b). For k = 2, let

(6.9) f(τ) = E∗2(τ) := 1− 24

∞∑
n=1

∑
d|n

d qn − 3

πv
,

be the classical non-holomorphic Eisenstein series of weight 2. Then L2E
∗
2 = 3

π and the

(g,K)-module M(f̃) generated by the corresponding f̃ gives an extension

0 −→ FD(1) −→M
(
f̃
)
−→ DS+(1) −→ 0,

with the trivial representation FD(1) as a submodule and the holomorphic discrete series
DS+(1) of weight 2 as quotient. This example was discussed in connection with the theory
of nearly holomorphic modular forms in [19].

In general, in case III(b), we want an extension

0 −→ FD(ν) −→M
(
f̃
)
−→ DS+(ν) −→ 0,

and thus, in classical language, a harmonic Maass form f of weight k = ν + 1 > 2 such
that ξkf 6= 0 but Rk−1

2−kξkf = 0, so that ξkf generates the “finite dimensional” piece. This
cannot happen for scalar-valued forms of weight k > 2. Indeed, the form h = ξkf is a weakly
holomorphic form of weight 2−k < 0. As in the proof of Lemma 6.5, the vanishing of Rν2−kh
implies that h is a constant and hence h = 0 if k > 2. Thus, in the scalar-valued case, only
case III(b) with ν = 1, i.e., the E∗2 example, can occur.

However, in the vector-valued case, we can construct more examples as follows. As in the
introduction, define a polynomial-valued function

(6.10) E∗m+2(τ) :=
m∑
r=0

1

r + 1

(
m

r

)
er,m−r(τ)Rr E∗2(τ),

a linear combination of products of the polynomials er,m−r(τ) and the Rr E∗2(τ)’s. Here and
in the following, we often omit the subscript on the raising and lowering operators to lighten
the notation.
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Proposition 6.6. The polynomial-valued function E∗m+2 satisfies

E∗m+2(γτ) = j(γ, τ)m+2 ρm(γ)E∗m+2(τ).

Moreover

Lm+2E
∗
m+2 =

3

π
e0,m.

Proof. For the transformation law, we have

E∗m+2(γτ) =

m∑
r=0

1

r + 1

(
m

r

)
er,m−r(γτ)Rr E∗2(γτ)

=
m∑
r=0

1

r + 1

(
m

r

)
j(γ, τ)m−2rρm(γ)er,m−r(τ) j(γ, τ)2+2r Rr E∗2(τ)

= j(γ, τ)m+2 ρm(γ)E∗m+2(τ),

as claimed.
Next, applying the lowering operator and using the fact that

Rk−2Lk = Lk+2Rk + k,

we have

LRr E∗2 = −2rRr−1E∗2 +RLRr−1E∗2 ,

and hence

LRr E∗2 = −r(r + 1)Rr−1E∗2 .

Then, for r ∈ N,

Lm+2

(
er,m−r R

r E∗2
)

= (r + 1)(m− r) er+1,m−r−1R
r E∗2 − r(r + 1) er,m−r R

r−1E∗2 ,

while,

Lm+2

(
e0,mE

∗
2

)
= me1,m−1E

∗
2 +

3

π
e0,m.

For r ∈ N0, the coefficient of er+1,m−r−1(τ)Rr E∗2(τ) in Lm+2( er,m−r(τ)Rr E∗2(τ) ) equals

1

r + 1

(
m

r

)
(r + 1)(m− r)− 1

r + 2

(
m

r + 1

)
(r + 1)(r + 2).

This vanishes for 0 ≤ r < m and the claimed lowering identity follows. �

Here is the picture of the corresponding (g,K)-module:

	

R2−k
(( ◦

L4−k

hh

R4−k,,
· · ·

L6−k

ii

Rk−6
)) ◦

Lk−4

ll

Rk−4
((
⊕

Lk−2

hh •
Rk
((

Lk

hh ◦
Lk+2

hh

Rk+2
** · · ·

Lk+4

hh

where • indicates E∗k , ⊕ indicates e0,m and 	 indicates em,0. Note that in all of these pictures
there are unspecified, but non-zero, transition constants.
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6.3.3. Case III (c). A natural construction of positive weight harmonic Maass forms goes
through sesquiharmonic Maass forms. They satisfy condition (1) and (3) of harmonic Maass
forms but condition (2) is replaced by

(6.11) ∆k,2f = 0 with ∆k,2 := −ξk ◦ ξ2−k ◦ ξk.
Let Hmg

k,2 be the space of sesqui-harmonic Maass forms. A way to construct sesquiharmonic

forms is to differentiate, with respect to an additional parameter as we do for weight 1 in
Subsection 5.2.2. In weight 3/2 this has been done by Duke, Imamoglu, and Toth [9] in the
context of finding a preimage under the ξ-operator of the Hirzebruch-Zagier Eisenstein series.
Let

H]
k,2 :=

{
f ∈ Hk,2 : ξk(f) ∈ H]

2−k

}
.

In [2] it was shown that the map

ξk : H]
k,2 → H]

2−k
is surjective. Note that a similar construction can be carried out for all forms mapping to
H2−k, as we show below. We use Poincaré series and differentiate with respect to an extra
s-parameter. To be more precise let for m ∈ Z \ {0}

Fk,m(τ) := Pk (ψk,m)

with

ψk,m(τ) :=

[
∂

∂s
Mk,s(4πmv)

]
s= k

2

e(mu),

where
Mk,s(w) := |w|−

k
2Msgn(w) k

2
,s− 1

2
(|w|).

Then Fk,m ∈ Hk,2 and, with same constant ck,m 6= 0,

ξkFk,m = ck,mF2−k,−m.

Now consider in particular
f := F4,1.

Then
ξ4f = c4,1F−2,−1 ∈ H−2.

However, since the space of dual weight, S4 = {0}, ξ4f ∈M !
−2, and thus f ∈ Hmg

4 .

7. Some related examples

It is natural to consider automorphic forms that are not harmonic but are annihilated by
a power of the weight k Laplacian, i.e., with condition (2) replaced by

(7.1) ∆`
kf = 0,

for some ` ∈ N. In particular for harmonic Maass forms we have ` = 1 and for sesqui-
harmonic forms ` = 2. Now, if the minimal power of ∆k annihilating f is greater than 1, the
relations (3.11) and (3.12) need not hold and, as a result, the K-types in M(f̃) can occur
with higher multiplicity. Much more complicated (g,K)-modules can arise. Here we give a
couple of examples, leaving a more systematic analysis to another occasion.

First, we consider the Eisenstein series of weight 0 given by (6.5) with r = 0. It has a
simple pole at s = 1 and Laurent expansion

2 ζ(s+ 1)Er,0(τ) =
2π

s− 1
+ 2π

(
γ − log(2)) +

π

2
φ(τ) +O(s− 1),
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where, by the Kronecker limit formula [17, 24], is as defined in (1.3). An easy calculation
shows that

L0φ(τ) =
π

3
v2E∗2(τ), and R0φ(τ) =

π

3
E∗2(τ).

Thus

∆0φ = L2R0φ = 1,

so that ∆2
0φ = 0. Actually, since ∆0φ is already annihilated by R0, φ is annihilated by ∆0,2 as

defined in (6.11) and thus is sesquiharmonic. The (g,K)-module generated by φ̃ contains the
trivial representation of K with multiplicity 2 and all other even weights with multiplicity 1.
This (g,K)-module is pictured in Figure 1 at the end of the introduction, where • indicates the
function φ, � indicates the constant function, and the omitted arrows R0 and L0 originating
from � are zero. This (g,K)-module has a socle filtration with the trivial representation
as maximal semi-simple submodule, the direct sum of the weight 2 holomorphic and anti-
holomorphic discrete series as intermediate subquotient, and the trivial representation as the
unique irreducible quotient.

A little more generally, consider the Laurent expansion of the Eisenstein series (6.5) at any
point s0 with Re(s0) > 1,

E`,s(τ) =
∑
r

Ar,`,s0(τ) (s− s0)r.

Note that for r < 0, Ar,`,s0(τ) = 0 for all `, since E`,s(τ) has no pole at τ = s0 in the
half-plane Re(s0) > 1. Let Er(s0) be the span of the functions Ar,`,s0 for t ≤ r and ` ∈ 2Z
and let Ẽr(s0) be the span of their lifts Ãr,`,s0 to G via (3.1).

Proposition 7.7. The surjective linear map defined by

ψr(s0) : I(s0) −→ Ẽr(s0)

/
˜Er−1(s0), φ` 7→ Ãr,`,s0

is equivariant for the action of (g,K). Moreover, this map is an isomorphism.

Remark 9. Proposition 7.7 yields that the space Ẽr(s0) has a (g,K)-invariant filtration with
I(s0) as subquotients. The interesting case is if s0 = k− 1 for an even integer k > 2, so that

the structure of I(s0) is given by (4.4). The quotients Ẽr(s0)/ ˜Er−j(s0) for j > 1 reveal a more
complicated extension of (g,K)-modules due to the relations (7.2) and (7.3). The situation
is illustrated in Figure 1 below.

Proof of Proposition 7.7. Relations (6.6) and (6.7) imply that

L`Ar,`,s0 =
1

2
(s0 + 1− `)Ar,`−2,s0 +

1

2
Ar−1,`−2,s0 and(7.2)

R`Ar,`,s0 =
1

2
(s0 + 1 + `)Ar,`+2,s0 +

1

2
Ar−1,`+2,s0 .(7.3)

There are analogous relations for the action of X± on the Ãr,`,s0 ’s. Moreover, we have

∆`E`,s =
1

4
(s+ 1− `)(s+ 1 + `− 2)E`,s,

and hence

(7.4) ∆`Ar,`,s0 =
1

4
(s0 + 1− `)(s0 + 1 + `− 2)Ar,`,s0 +

1

2
s0Ar−1,`,s0 +

1

4
Ar−2,`,s0 .
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Now suppose that s0 = k − 1 so that A0,k,s0 6= 0 is the standard weight k holomorphic
Eisenstein series. For any r ∈ N0, relation (7.4) then gives

∆kAr,k,s0 =
1

2
s0Ar−1,k,s0 +

1

4
Ar−2,k,s0 .

Hence
∆r
k Ar,k,s0 = 2−rsr0A0,k,s0 6= 0 and ∆r+1

k Ar,k,s0 = 0.

In particular, the functions Ar,k,s0 of weight k are linearly independent as r varies and give
examples of functions satisfying (7.1). Moreover, it follows that Ar,k /∈ Er−1(s0) so that the
map ψr(s0) is non-zero. Also note that, by the raising relation above,

Rk−2Ar,k−2,s0 = (k − 1)Ar,k,s0 +
1

2
Ar−1,k,s0 ,

so that the image of φk−2 under ψr(s0) is also non-zero. By equivariance, it follows that
ψr(φ2−k) 6= 0. On the other hand, again by (7.4), we have

(∆−k + k)Ar,−k,s0 =
1

2
s0Ar−1,−k,s0 +

1

4
Ar−2,−k,s0 ,

so that

(∆−k + k)rAr,−k,s0 = 2−r sr0A0,−k,s0 and

(∆−k + k)r+1Ar,−k,s0 = 0.

But
A0,−k,s0(τ) = E−k,s0(τ) = vk

∑
(
a b
c d

)
∈Γ∞\SL2(Z)

(cτ + d)−k,

so we again conclude that the Ar,−k,s0 ’s are linearly independent as r ∈ N0 varies. This
implies that ψr(φ−k) 6= 0 and thus that ψr(s0) is an isomorphism. �
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The following picture summarizes the structure that arises:

Figure 2. The (g,K)-module for the Taylor coefficients Ar,`,s0

of E`,s(τ) at s0 = k − 1

...
...

...

. . . ◦jj
((
�hh

R−k

��

	
L2−koo (( ◦hh

((. . .ii
)) ◦ll

((
⊕

Rk−2 //hh • ((

Lk

~~

◦hh
((. . .hh r=2

. . . ◦jj
((
�hh

R−k

��

	oo (( ◦hh
((. . .ii

)) ◦ll
((
⊕hh // • ((

Lk

��

◦hh
((. . .hh r=1

. . . ◦jj
((
�hh 	oo (( ◦hh

((. . .ii
)) ◦ll

((
⊕ //hh ~ (( ◦ii

((. . .hh r=0

Here the element in the `th column and rth row is Ar,`,s0 . The element ~ is the standard
weight k holomorphic Eisenstein series A0,k,s0 . The elements denoted with • (resp. �) have
weight k (resp. −k) and are annihilated by powers of ∆k (resp. ∆−k + k). The arrows along
rows with r > 0 indicate maps defined up to a scalar factor and an element of the same
weight lying in the row below the target, cf. (7.2) and (7.3). The diagonal arrows and the
arrows in the r = 0 row are maps involving non-zero scaling factors.

Thus, for example, the (g,K)-module generated by Ar,k,s0 , which is annihilated by ∆6
k

but no smaller power, has the holomorphic discrete series DS+(k − 1) of weight k as unique
irreducible quotient. It has as constituents DS+(k − 1) with multiplicity 6, DS−(k − 1) with
multiplicity 5 and FD(k − 1) with multiplicity 5.

Remark 10. It is clear that the structures we discuss here for harmonic and other Maass forms
on SL2(R) have natural generalizations to automorphic forms on other reductive groups, the
basic point being that a weakening of the cuspidal or square integrable growth conditions
allow indecomposable but not irreducible Harish-Chandra modules to occur as archimedean
components. The nearly holomorphic modular forms introduced by Shimura, [22, 23], and
widely studied since are among the important examples. Recently, in the case of Spg(R), for
genus g = 2, Pitale, Saha, and Schmidt [20] used the Harish-Chandra modules associated to
such forms to prove a structure theorem for them. Also for Sp2(R), Westerholt-Raum [27]
explained the use of Harish-Chandra modules to provide examples of harmonic weak Siegel
Maass forms and their holomorphic parts, Siegel mock modular forms. We make no attempt
to give a systematic review of these and related developments and apologize in advance for
the many references omitted as a result.
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