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Abstract. The denominator formula for the Monster Lie algebra is the product expansion for the
modular function J(z)−J(τ) given in terms of the Hecke system of SL2(Z)-modular functions jn(τ).
It is prominent in Zagier’s seminal paper on traces of singular moduli, and in the Duncan-Frenkel
work on Moonshine. The formula is equivalent to the description of the generating function for the
jn(z) as a weight 2 modular form with a pole at z. Although these results rely on the fact that X0(1)
has genus 0, here we obtain a generalization, framed in terms of polar harmonic Maass forms, for all
of the X0(N) modular curves. We use these functions to study divisors of modular forms.

1. Introduction and statement of results

As usual, let J(τ) be the SL2(Z) Hauptmodul defined by

J(τ) =
∞∑

n=−1

c(n)e2πinτ :=
E4(τ)3

∆(τ)
− 744 = e−2πiτ + 196884e2πiτ + · · · ,

where Ek(τ) := 1− 2k
Bk

∑∞
n=1 σk−1(n)e2πinτ is the weight k ∈ 2N Eisenstein series, σ`(n) :=

∑
d|` d

`,

Bk is the kth Bernoulli number, and ∆(τ) := (E4(τ)3 −E6(τ)2)/1728. By Moonshine (for example,
see [14]), J(τ) is the McKay-Thompson series for the identity (i.e., its coefficients are the graded
dimensions of the Monster module V \). Moonshine also offers the striking infinite product

J(z)− J(τ) = e−2πiz
∏

m>0, n∈Z

(
1− e2πimze2πinτ

)c(mn)
,

the denominator formula for the Monster Lie algebra. Here we let τ, z ∈ H. This formula is equivalent
to the following identity of Asai, Kaneko, and Ninomiya (see Theorem 3 of [2])

(1.1) Hz(τ) :=

∞∑
n=0

jn(z)e2πinτ =
E4(τ)2E6(τ)

∆(τ)

1

J(τ)− J(z)
= − 1

2πi

J ′(τ)

J(τ)− J(z)
.

The functions jn(τ) form a Hecke system. Namely, if we let j0(τ) := 1 and j1(τ) := J(τ), then the
others are obtained by applying the normalized Hecke operator T (n)

(1.2) jn(τ) := j1(τ) | T (n).

Remark. The functions Hz(τ) and jn(τ) played central roles in Zagier’s [20] seminal paper on traces
of singular moduli and the Duncan-Frenkel work [13] on the Moonshine Tower. Carnahan [10] has
obtained similar denominator formulas for completely replicable modular functions.
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If z ∈ H, then Hz(τ) is a weight 2 meromorphic modular form on SL2(Z) with a single pole
(modulo SL2(Z)) at the point z. Using these functions, the divisor modular form of a normalized
weight k meromorphic modular form f(τ) on SL2(Z) was defined in [9] as1

(1.3) fdiv(τ) :=
∑

z∈SL2(Z)\H

ezordz(f)Hz(τ),

where ez := 2/#Stabz (SL2(Z)) With Θ := 1
2πi

d
dτ , Theorem 1 of [9] asserts that

(1.4) fdiv(τ) = −Θ(f (τ))

f(τ)
+
kE2(τ)

12
.

Although these results rely on the fact that X0(1) has genus 0, there is a natural extension for
congruence subgroups. This extension requires polar harmonic Maass forms, which are harmonic
Maass forms with poles in the upper half-plane (see [5] for details). Here we consider the modular
curves X0(N). For n ∈ N, we define a Hecke system of Γ0(N) harmonic Maass functions jN,n(τ) in
Section 3 which generalize the jn(τ).

In Section 2 we construct weight 2 polar harmonic Maass forms H∗N,z(τ) which generalize the

Hz(τ). We have two cases for the H∗N,z(τ), according to whether z ∈ H or z is a cusp, which we
consider separately. The following theorem summarizes the essential properties of these functions
when z ∈ H.

Theorem 1.1. If z ∈ H, then H∗N,z(τ) is a weight 2 polar harmonic Maass form on Γ0(N) which
vanishes at all cusps and has a single simple pole at z. Moreover, the following are true:

(1) If z ∈ H and Im(τ) > max{Im(z), 1
Im(z)}, then we have that

H∗N,z(τ) =
3

π [SL2(Z) : Γ0(N)] Im(τ)
+

∞∑
n=1

jN,n(z)e2πinτ .

(2) For gcd(N,n) = 1, we have jN,n(τ) = jN,1(τ) | T (n).
(3) For n | N , we have jN,n(τ) = jN

n
,1(nτ).

(4) As n→∞, we have

(1.5) jN,n (τ) =
∑
λ∈Λτ
λ≤n

∑
(c,d)∈Sλ

e
(
−n
λ
rτ (c, d)

)
e

2πnIm(τ)
λ +Oτ (n)

for some real numbers rτ (c, d) (see (3.2)), Λτ a lattice in R (see (3.3)), and Sλ the set of solutions
to Qτ (c, d) = λ for a certain positive-definite binary quadratic form Qτ (see (3.4)).

Four Remarks.
(1) In Theorem 1.1 (1), the inequality on Im(τ) is required for convergence.

(2) For N = 1, we have that H∗1,z(τ) = Hz(τ)−E∗2(τ), where E∗2(τ) := − 3
πIm(τ) +E2(τ) is the usual

weight 2 nonholomorphic Eisenstein series, and we have that j1,n(τ) = jn(τ) + 24σ1(n).

(3) The sums (1.5) were introduced by Hardy and Ramanujan [15] (see also [3, 4]) to study the Fourier
coefficients of 1/E6. Their formulas have been generalized [7, 8] to negative weight meromorphic
modular forms. Theorem 1.1 (4) extends these results to weight 0 where the series are not absolutely
convergent.

1Note that this summation does not include the cusp i∞.
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(4) Theorem 1.1 (4) gives asymptotics for jN,n(z) in the n-aspect. If Im(z) ≥ Im (Mz) for all
M ∈ Γ0(N), then

(1.6) jN,n(z) = e−2πinz +
∑
c≥1
N |c

∑
d∈Z

gcd(c,d)=1
|cz+d|2=1

e

(
n
d− a
c

)
e2πinz +Oz(n)

as n→∞.

The second case we consider are those H∗N,ρ(τ) where ρ is a cusp of X0(N). These functions

are compatible with the H∗N,z(τ) considered in Theorem 1.1. More precisely, since z 7→ H∗N,z(τ) is

continuous (even harmonic) and Γ0(N)-invariant, it follows that

(1.7) H∗N,ρ(τ) := lim
z→ρ

H∗N,z(τ)

is well-defined and only depends on the equivalence class of ρ. The next result summarizes these
functions’ properties. We use the Kloosterman sums Ki∞,ρ(0,−n; c) of (2.4) and the weight 2
harmonic Eisenstein series E∗2,N,ρ(τ) for Γ0(N) defined in Section 2. These have constant term 1 at
ρ and vanish at all other cusps.

Theorem 1.2. We have that H∗N,ρ(τ) = −E∗2,N,ρ(τ). Moreover, the following are true:

(1) We have

H∗N,ρ(τ) =
3

π [SL2(Z) : Γ0(N)] Im(τ)
− δρ,∞ +

∞∑
n=1

jN,n(ρ)e2πinτ , with

jN,n(ρ) := lim
τ→ρ

jN,n(τ) =
4π2n

`ρ

∑
c≥1
N |c

Ki∞,ρ(0,−n; c)

c2
,

where `ρ denotes the cusp width of ρ and δρ,∞ := 1 if ρ = i∞ and 0 otherwise.
(2) For gcd(N,n) = 1, we have jN,n(ρ) = limτ→ρ jN,1(τ) | T (n).
(3) For n | N , we have jN,n(ρ) = limτ→ρ jN

n
,1(nτ).

Two Remarks.
(1) Recall that the Fourier expansion in Theorem 1.1 (1) is not valid as z → i∞.

(2) The jN,n(ρ) are divisor sums, which we leave to the interested reader to verify. From a general-

ization of the Weil bound (3.9) one can obtain jN,n(ρ) = O(n
3
2 ).

We turn to the task of extending (1.4) to generic Γ0(N). Suppose that f is a weight k meromorphic
modular form on Γ0(N). In analogy with (1.3), we define the divisor polar harmonic Maass form

(1.8) fdiv(τ) :=
∑

z∈X0(N)

eN,zordz(f)H∗N,z(τ),

where eN,z := 2/#Stabz(Γ0(N)) and eN,ρ := 1 when ρ is a cusp. Generalizing (1.4), we show the
following.

Theorem 1.3. If S2(Γ0(N)) denotes the space of weight 2 cusp forms on Γ0(N), then

fdiv(τ) ≡ k

4π Im(τ)
− Θ(f(τ))

f(τ)
(mod S2(Γ0(N))).
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Three Remarks.
(1) The coefficient of 1/ Im(τ) in H∗N,z(τ) is independent of z. By the valence formula, summing over

every element of X0(N) in the definition of fdiv(τ) multiplies this constant by k
12 [SL2(Z) : Γ0(N)],

giving the nonholomorphic correction term on the right-hand side of Theorem 1.3.

(2) At first glance, definitions (1.3) and (1.8) might appear different for N = 1. Indeed, H∗1,z(τ) =

Hz(τ)−E∗2(τ), and the sum in (1.8) includes the cusp i∞ whereas (1.3) omits it. The quasimodular
Eisenstein series E2(τ) in (1.4) and the valence formula guarantee that they coincide.

(3) The formula in Theorem 1.3 has already been obtained by Choi using a regularized inner product
due to Petersson, but without relating the Fourier coefficients of fdiv to the polar harmonic Maass
forms H∗N,z (see Theorem 1.4 of [11]).

Theorem 1.3 can be used to numerically compute divisors of meromorphic modular forms f(τ),

which, in general, is a difficult task (for example, see [12]). The series −Θ(f(τ))
f(τ) is the logarithmic

derivative of f(τ), and this fact converts the points z ∈ H in the divisor of f(τ) into simple poles.
These can be identified by the asymptotic properties of the coefficients of H∗N,z(τ) given in Theo-
rem 1.1. This follows from Theorem 1.3 and the fact that coefficients of cusp forms satisfy Deligne’s
bound. In the case of the modular functions j(τ)−α, where α ∈ C, this has been carried out recently
by Alwaise [1]. The method is based on the following immediate corollary to Theorems 1.1–1.3.

Corollary 1.4. Suppose that f(τ) is a meromorphic modular form of weight k on Γ0(N) whose
divisor is not supported at cusps. Let y1 be the largest imaginary part of any points in the divisor of

f(τ) lying in H. Then if −Θ(f(τ))
f(τ) =:

∑
n�−∞ a(n)qn (q = e2πiτ ), we have that

y1 = lim sup
n→∞

log |a(n)|
2πn

.

Two Remarks.
(1) We require lim sup in Corollary 1.4 because the a(n) can vanish on arithmetic progressions.

(2) It would be interesting to develop a practical algorithm for numerically computing modular form
divisors. The idea would be to carefully peel away poles of fdiv(τ) in descending order until one is
left with a linear combination of functions E∗N,ρ(τ).

Example 1. For the Eisenstein series E4(τ), we have

−Θ(E4(τ))

E4(τ)
= −240q + 53280q2 − 12288960q3 + 2835808320q4 − 654403831200q5 + · · · .

The sequence {b(n)}n≥1 = {log |a(n)|/(2πn)}n≥1 converges rapidly. Indeed, b(2) = 0.866066794 . . . ,
and b(10) = 0.866025404 . . . matches the first 16 digits of the limiting value. The divisor of E4(τ)
is supported on a zero at ω := (−1 +

√
−3)/2. By (1.6), since ω lies on the unit circle (implying

that the second term on the right-hand side of (1.6) appears) for large n, a(n) should very nearly be
1
3

(
e−2πinω + 2e2πinω

)
= e−2πinω, which is very easily seen numerically.

Example 2. We consider f(τ) := E4(2τ) + η16(2τ)
η8(τ)

, where η(τ) is Dedekind’s eta-function. By the

valence formula for Γ0(2), it has a single zero, say z0, in X0(2). We find that

−Θ(f(τ))

f(τ)
= −q − 495q2 + 659q3 + 113233q4 − 261211q5 + · · · .

After the first 3000 terms the sequence log |a(n)|/(2πn) stabilizes and offers Im(z0) ≈ 0.4357. As
f(τ) has real coefficients and there is only one zero, −z0 must be Γ0(2)-equivalent to z0. We choose
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the fundamental domain{
z ∈ H: −1

2
≤ Re(z) ≤ 1

2
and ∀M ∈ Γ0(2):

(
Im (Mz) ≥ Im(z) and Im (Mz) > Im(z) if Re(z) < 0

)}
.

Thus, either Re(z) ∈ {0, 1
2}, or z lies on the arc |2z− 1| = 1. The first two cases are easily excluded

by the sign patterns of a(n), and the zero on the arc is easily approximated as z0 ≈ 0.2547 + 0.4357i.

This paper is organized as follows. In Section 2 we construct the weight 2 polar harmonic Maass
forms H∗N,z(τ). In Section 3 we relate their Fourier coefficients to the values of the weight 0 weak
Maass forms at τ = z, proving Theorems 1.1, 1.2, and 1.3.

2. Weight 2 Polar Harmonic Maass forms

2.1. The H∗N,z(τ) when z ∈ H. Define for z, τ ∈ H and s ∈ C with Re(s) > 0

(2.1) PN,s(τ, z) :=
∑

M∈Γ0(N)

ϕs (Mτ, z)

j (M, τ)2 |j (M, τ) |2s

with j(
(
a b
c d

)
, τ) := cτ + d and

ϕs(τ, z) := (Im(z))1+s (τ − z)−1(τ − z)−1 |τ − z|−2s .

These functions were introduced and investigated in the z-variable in [6], where it was shown that
these are polar harmonic Maass forms. These functions are allowed to have poles in the upper half
plane instead of only at the cusps. In this paper, we are interested in properties of PN,s(τ, z) as
functions of τ . A direct calculation shows that for L ∈ Γ0(N)

PN,s (Lτ, z) = j (L, τ)2 |j (L, τ) |2sPN,s(τ, z).
In [6] it was shown, by a lengthy calculation, that the function PN,s(τ, z) has an analytic con-

tinuation to s = 0, which we denote by Im(z)Ψ2,N (τ, z). Let Hk(Γ0(N)) be the space of weight
k polar harmonic Maass forms with respect to Γ0(N). Lemma 4.4 of [6] then states that z 7→
Im(z)Ψ2,N (τ, z) ∈ H0(Γ0(N)). In the τ variable, these functions are also polar harmonic Maass
forms, as the next proposition shows. For this, for w ∈ C, let e(w) := e2πiw, and

K(m,n; c) :=
∑

a,d (mod c)
ad≡1 (mod c)

e

(
md+ na

c

)
.

Moreover, Ik and Jk denote the usual I- and J-Bessel functions. The following proposition can be
obtained by a careful inspection of the proof of Theorem 3.1 of [6].

Proposition 2.1. We have that τ 7→ Im(z)Ψ2,N (τ, z) ∈ H2(Γ0(N)). For Im(τ) > max{Im(z), 1
Im(z)},

its Fourier expansion (in τ) has the form

Im(z)Ψ2,N (τ, z) = − 6

[SL2(Z) : Γ0(N)] Im(τ)
− 2π

∑
m≥1

(
e−2πimz − e−2πimz

)
e2πimτ

− 4π2
∑
m≥1

∑
n,c≥1
N |c

√
m

n

K(m,−n; c)

c
I1

(
4π
√
mn

c

)
e2πinze2πimτ

− 4π2
∑
m≥1

∑
n,c≥1
N |c

√
m

n

K(m,n; c)

c
J1

(
4π
√
mn

c

)
e−2πinze2πimτ − 8π3

∑
m≥1

m
∑
c≥1
N |c

K(m, 0; c)

c2
e2πimτ .
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We then set

(2.2) H∗N,z(τ) := − Im(z)

2π
Ψ2,N (τ, z).

Remark. We have, as τ → z,

(2.3) H∗N,z(τ) =
1

2πieN,z

1

τ − z
+O(1)

with eN,z as defined after (1.8).

2.2. The H∗N,z(τ) for cusps. We require the Fourier expansion of the functions H∗N,ρ(τ) defined in

(1.7). For any cusp ρ of Γ0(N), denote by `ρ the cusp width and let Mρ be a matrix in SL2(Z) with
ρ = Mρi∞. For two cusps a, b of Γ0(N), the generalized Kloosterman sums are

(2.4) Ka,b(m,n; c) :=
∑

(
a b
c d

)
∈Γ`a∞

∖
M−1

a Γ0(N)Mb

/
Γ
`b∞

e

(
md

`bc
+
na

`ac

)

with Γ∞ := {± ( 1 n
0 1 ) : n ∈ Z}. Note that we have Ki∞,i∞(m,n; c) = K(m,n; c).

Lemma 2.2 (Lemma 5.4 of [6]). We have

H∗N,ρ(τ) =
3

π [SL2(Z) : Γ0(N)] Im(τ)
− δρ,∞ +

4π2

`ρ

∑
n≥1

n
∑
c≥1

Kρ,i∞(n, 0; c)

c2
e2πinτ .

The Fourier expansions in Lemma 2.2 yield a relation with the harmonic weight 2 Eisenstein series
E∗2,N,ρ(τ) for Γ0(N). For Re(s) > 0, define

(2.5) E∗2,N,ρ,s(τ) :=
∑

M∈Γρ\Γ0(N)

j (MρM, τ)−2 |j (MρM, τ)|−2s .

Using the Hecke trick, it is well-known (cf. Satz 6 of [16]) that E∗2,N,ρ,s(τ) has an analytic continuation

to s = 0, denoted by E∗2,N,ρ(τ). Applying equations (5.3) and (5.4) in Theorem 1 of [19] with v = 1,

Aj = Mρ, Γ=Γ0(N), and µ = 0 to obtain the Fourier expansion of E∗2,N,ρ, we see that

(2.6) H∗N,ρ(τ) = −E∗2,N,ρ(τ).

3. The jN,n(z) and the proofs of Theorems 1.1 and 1.2

3.1. The functions jN,n(z). The functions jN,n(z) are constructed as analytic continuations of
Niebur’s Poincaré series [18]. To be more precise, set for n ∈ N and Re(s) > 1

FN,−n,s(z) :=
∑

M∈Γ∞\Γ0(N)

e (−nRe(Mz)) Im(Mz)
1
2 Is− 1

2
(2πn Im(Mz)) .

These functions are weak Maass forms of weight 0; instead of being annihilated by ∆0, they have
eigenvalue s(1−s). To obtain an analytic continuation to s = 1, one computes the Fourier expansion
of FN,−n,s(z) and uses

lim
s→1

y
1
2 Is− 1

2
(2πny) = y

1
2 I 1

2
(2πny) =

1

π
√
n

sinh (2πny) =
e2πny − e−2πny

2π
√
n

.

Proposition 3.1 (Theorem 1 of [18]). The function FN,−n,s(z) has an analytic continuation FN,−n(z)
to s = 1, and FN,−n(z) ∈ H0(Γ0(N)). It has the Fourier expansion

FN,−n(z) =
e−2πinz − e−2πinz

2π
√
n

+ cN (n, 0) +
∑
m≥1

(
cN (n,m)e2πimz + cN (n,−m)e−2πimz

)
,
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where the coefficients are given by

cN (n,m) :=
∑
c≥1
N |c

K(m,−n; c)

c
×


1√
m
I1

(
4π
√
mn
c

)
if m > 0,

2π
√
n

c if m = 0,

1√
|m|
J1

(
4π
√
|m|n
c

)
if m < 0.

We then define the functions jN,n(z) by

jN,n(z) := 2π
√
nFN,−n(z).(3.1)

For N = 1, we recover the jn(z) from the introduction up to the constant 2π
√
nc1(n, 0) = 24σ1(n).

3.2. Proofs of Theorems 1.1 and 1.2. In order to formally state Theorem 1.1 (4), for an arbitrary
solution a, b ∈ Z to ad− bc = 1, we define

rz(c, d) := ac|z|2 + (ad+ bc) Re(z) + bd,(3.2)

Λz :=
{
α2|z|2 + βRe(z) + γ2 > 0 : α, β, γ ∈ Z

}
,(3.3)

Qz(c, d) := c2|z|2 + 2cdRe(z) + d2,

Sλ := {(c, d) ∈ NZ× Z : c ≥ 0, gcd(c, d) = 1, and Qz(c, d) = λ} .(3.4)

Note that although rz(c, d) is not uniquely determined, e(−nrz(c, d)/Qz(c, d)) is well-defined.

Proof of Theorem 1.1. (1) For n ∈ N, inspecting the expansions in Propositions 2.1 and 3.1 yields
that 2π

√
nFN,−n(z) is the coefficient of e2πinτ in − Im(z)Ψ2,N (τ, z)/(2π), yielding the claim.

(2) Since gcd(N,n) = 1, T (n) commutes with the action of Γ0(N), and so it suffices to show that
(by analytic continuation) fn(z) = f1(z) | T (n), where

fn(z) = fn,s(z) := e (−nRe(z)) (n Im(z))
1
2 Is− 1

2
(2πn Im(z)) .

Let f be a nonholomorphic modular form of weight 0 with Fourier expansion

f(z) =
∑
m∈Z

a(Im(z),m)e2πimz.

Then for gcd(n,N) = 1, the action of T (n) on f is given by

(3.5) f(z) | T (n) = n
∑
m∈Z

∑
d|gcd(m,n)

a
(
d2

n Im(z), mn
d2

)
d

e2πimz.

Write fn(z) = f∗n(Im(z))e−2πinz with f∗n(y) := (ny)
1
2 Is− 1

2
(2πny)e−2πny. The mth coefficient in (3.5)

vanishes unless m = −n. Moreover, only d = n contributes, giving

f1(z) | T (n) = f∗n (n Im(z)) e−2πinz = (n Im(z))
1
2 Is− 1

2
(2πn Im(z)) e−2πinRe(z) = fn(z).

(3) For n | N , we rewrite ∑
M∈Γ∞\Γ0(N)

fn(Mz) =
∑

M∈Γ∞\Γ0(N)

f1(nMz).

Now, with M =
(
a b
c d

)
∈ Γ0(N), we have nMz = anz+bn

c
n
nz+d and

(
a bn
c
n
d

)
runs through Γ∞ \ Γ0(Nn ) if M

runs through Γ∞ \ Γ0(N), implying the claim for n | N .
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(4) We first rewrite the claimed asymptotic formula in terms of the corresponding points Mz with
M =

(
a b
c d

)
∈ Γ∞\Γ0(N). Directly plugging in and simplifying yields rz(c, d)/Qz(c, d) = Re(Mz)

and Im(z)/Qz(c, d) = Im(Mz), so the claim in Theorem 1.1 (4) is equivalent to

(3.6) jN,n(z) =
∑

M∈Γ∞\Γ0(N)
n Im(Mz)≥Im(z)

e−2πinMz +Oz(n).

In order to show (3.6), we only expand the Fourier expansion for large c. That is to say, we write

jN,n(z) = 2
∑

1≤c≤
√
n

Im(z)

N |c

∑
d∈Z

gcd(c,d)=1

e(−nRe(Mz)) sinh(2πn Im(Mz))

+ 2π
√
n
∑

c>
√
n

Im(z)

N |c

∑
m≥1

K(m,−n; c)√
mc

I1

(
4π
√
mn

c

)
e2πimz + 4π2n

∑
c>

√
n

Im(z)

N |c

K(0,−n; c)

c2

+ 2π
√
n
∑

c>
√
n

Im(z)

N |c

∑
m≥1

K(−m,−n; c)√
mc

J1

(
4π
√
mn

c

)
e−2πimz.

(3.7)

In order to obtain (3.6), we split the main terms with n Im(Mz) ≥ Im(z) off and rewrite

(3.8) 2 sinh(2πn Im(Mz)) = e2πn Im(Mz) − e−2πn Im(Mz).

The second term above is obviously bounded. Since

Im(z) ≤ n Im(Mz) =
n Im(z)

c2 Im(z)2 + (d+ cRe(z))2

implies that c ≤
√
n/ Im(z) �z

√
n and |d| ≤ |cRe(z)|+

√
n Im(z) �z

√
n, the contribution to the

error from the sum of the second terms in (3.8) yields an error of at most Oz(n).
For the second, third, and fourth sums in (3.7), we use the Weil bound for Kloosterman sums

(3.9) |K(m,−n; c)| ≤
√

gcd(m,n, c)σ0(c)
√
c�

{√
nc

1
2

+ε if m = 0,√
|m|c

1
2

+ε if m 6= 0.

For the third sum in (3.7), this gives

(3.10) 2π
√
n
∑

c>
√
n

Im(z)

N |c

K(0,−n; c)

c2
� n

∑
c>

√
n

Im(z)

N |c

c−
3
2

+ε �z n
3
4

+ε.

Next note that for x ≥ 0 we have |J1(x)| ≤ I1(x) by their series expansions. Since x 7→ I1(x)
x is

monotonically increasing and grows at most exponentially, the contribution from the second and
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fourth terms in (3.7) may be bounded by, using (3.9),

�
∑

c>
√
n

Im(z)

N |c

∑
m≥1

|K(±m,−n; c)|√
mc

I1

(
4π
√
mn

c

)
e−2πm Im(z)

�
√
n
∑

c>
√
n

Im(z)

N |c

∑
m≥1

|K(±m,−n; c)|
c2

I1 (4π Im(z)
√
m)

4π Im(z)
√
m

e−2πm Im(z)

�
√
n
∑
m≥1

I1

(
4π Im(z)

√
m
)
e−2πm Im(z) �

√
n.

(3.11)

It remains to bound the terms in the first sum in (3.7) with |cz + d|2 > n. Since each term gives
a constant contribution, the terms with |d| <

√
n+ |cRe(z)| give an error term of at most Oz(n).

We finally assume that |d| ≥
√
n + |cRe(z)|. Since x 7→ sinh(x)

x is monotonically increasing and

|cz + d|2 > n, the remaining terms contribute∣∣∣∣∣∣∣∣∣∣
∑

c≤
√
n

Im(z)

N |c

∑
|d|≥
√
n+|cRe(z)|

gcd(c,d)=1,

e (−nRe (Mz)) sinh (2πn Im (Mz))

∣∣∣∣∣∣∣∣∣∣
≤

∑
c≤

√
n

Im(z)

∑
|d|≥
√
n+|cx|

sinh

(
2πn Im(z)

|cz + d|2

)

≤
∑

c≤
√
n

Im(z)

∑
|d|≥
√
n

sinh

(
2πn Im(z)

d2

)
≤ 2π

√
n
∑
d≥
√
n

n

d2

sinh (2π Im(z))

2π Im(z)
= Oz(n),

This implies that the terms in the first sum in (3.7) with |cz + d|2 > n contribute Oz(n). �

Remark.
By replacing c >

√
n/ Im(z) with c > C in (3.10) and (3.11), one finds that the terms decay like

C−
1
2

+ε times a power of n. For c ≤ C, the expansions in Proposition 3.1 decay exponentially in m.

Proof of Theorem 1.2. (1) Let Ks denote the usual K-Bessel function. Expanding FN,−n,s(z) at the
cusp ρ as in Section 3.4 of [17], we obtain

FN,−n,s (Mρz) =
cρ,s(n, 0)

2s− 1
(Im(z))1−s+

∑
m∈Z\{0}

cρ,s(n,m)e
2πim

Re(z)
`ρ (Im(z))

1
2 Ks− 1

2

(
2π|m| Im(z)

`ρ

)
,

with cρ,s(n,m) :=
∑
c≥1

Ki∞,ρ(m,−n; c)×


2

c
√
`ρ
I2s−1

(
4π
√
mn

`ρc

)
if m > 0,

2πsns−
1
2

`sρc
2sΓ(s)

if m = 0,

2

c
√
`ρ
J2s−1

(
4π
√
|m|n

`ρc

)
if m < 0,

The right-hand side is analytic at s = 1, which gives the expansion of FN,−n(z) at ρ. Plugging in

K 1
2
(y) =

√
π
2ye
−y and taking the limit z → i∞, we obtain

(3.12) jN,n(ρ) = 2π
√
n lim
s→1+

cρ,s(n, 0) =
4π2n

`ρ

∑
c≥1

Ki∞,ρ(0,−n; c)

c2
.
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We have Ki∞,ρ(0,−n; c) = Kρ,i∞(n, 0; c), since M =
(
a b
c d

)
runs through Γ0(N)Mρ/Γ

`ρ
∞ iff −M−1 =(−d b

c −a
)

runs through Γ
`ρ
∞\M−1

ρ Γ0(N) in (2.4). Hence (2.6) yields the claim.
Parts (2) and (3) follow by taking limits τ → ρ in Theorem 1.1 (2) and (3), respectively. Using the
growth in n of jN,n(ρ) from (3.12), these limits may be taken termwise.

�

Proof of Theorem 1.3. We show that the difference of both sides has no poles in H and decays towards

the cusps. We start by considering the points in H. One easily computes that the residue of −Θ(f(τ))
f(τ)

at τ = z equals 1
2πiordz(f). Using (2.3) gives that the principal part at z agrees. At a cusp ρ one

similarly sees that Θ(f(τ))
f(τ) has no pole and its constant term equals ordρ(f). Using that the constant

term of H∗N,z(τ) at ρ is −1 then gives the claim. �
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