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NUMBER THEORETIC GENERALIZATION OF THE MONSTER

DENOMINATOR FORMULA

KATHRIN BRINGMANN, BEN KANE, STEFFEN LÖBRICH, KEN ONO, AND LARRY ROLEN

Abstract. The denominator formula for the Monster Lie algebra is the product expansion for the
modular function j(z)− j(τ ) in terms of the Hecke system of SL2(Z)-modular functions jn(τ ). This
formula can be reformulated entirely number theoretically. Namely, it is equivalent to the description
of the generating function for the jn(z) as a weight 2 modular form in τ with a pole at z. Although
these results rely on the fact that X0(1) has genus 0, here we obtain a generalization, framed in terms
of polar harmonic Maass forms, for all of the X0(N) modular curves. In this survey of recent work,
we discuss this generalization, and we offer an introduction to the theory of polar harmonic Maass
forms. We conclude with applications to formulas of Ramanujan and Green’s functions.

1. Introduction and statement of results

The theory of Monstrous Moonshine (see [15] and [16] for an introduction) offers the denominator
formula for the Monster Lie algebra, the striking infinite product identity

J(z)− J(τ) = e−2πiz
∏

m>0, n∈Z

(

1− e2πimze2πinτ
)c(mn)

,

where J(τ) the usual SL2(Z) Hauptmodul

J(τ) =
∞
∑

n=−1

c(n)e2πinτ :=

(

1 + 240
∑∞

n=1

∑

d|n d
3e2πinτ

)3

e2πiτ
∏∞

n=1(1− e2πinτ )24
−744 = e−2πiτ + 196884e2πiτ + · · · .

This identity is the crucial device for associating an algebra structure to the infinite dimensional
monster module V ♮ whose graded dimensions are the Fourier coefficients of J(τ). Generalizations of
the Monster denominator formula to Hauptmoduln of certain genus 0 subgroups have been obtained
in [25].

From a number theoretic perspective, it is natural to consider the logarithmic derivative with
respect to τ of this infinite product. Asai, Kaneko, and Ninomiya (see Theorem 3 of [1]) considered
this line of reasoning, and they proved the equivalent formulation

Hz(τ) :=

∞
∑

n=0

jn(z)e
2πinτ = − 1

2πi

J ′(τ)
J(τ)− J(z)

=
E4(τ)

2E6(τ)

∆(τ)

1

J(τ)− J(z)
.

The modular functions jn form a Hecke system. Namely, if we let j0(τ) := 1 and j1(τ) := J(τ), then
the others are obtained by applying the normalized Hecke operator T (n)

jn(τ) := j1(τ) | T (n).
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The normalization is chosen so that

jn(τ) = e−2πinτ +On(e
2πiτ ).

Remark. These objects are critical for Zagier’s [29] seminal paper on traces of singular moduli and the
Duncan-Frenkel work [14] on the Moonshine Tower. Carnahan [13] has obtained similar denominator
formulas for completely replicable modular functions, and other analogues for certain genus zero
groups Γ1(N) have been obtained by Ye in [28].

In this survey we consider work on generalizations of these results to more general modular curves.
We consider the functions Hz as objects to generalize to other modular curves, not just those with
genus 0 such as X0(1). To this end, we note the features that we hope to find in such a generalization.
One obvious feature is that if z ∈ H, then Hz is a weight 2 meromorphic modular form on SL2(Z)
with a single pole (modulo SL2(Z)) at the point z. Another critical feature is that the coefficients
are the special values jn(z) for a fixed Hecke system of modular functions. Although the proof of
these features for the Hz relies on the fact that X0(1) has genus 0, it turns out that there is indeed a
generalization for arbitrary genus. The authors have obtained these results in [10], and this extension
requires polar harmonic Maass forms.

Here we consider the modular curves X0(N). For n ∈ N, we define a Hecke system of Γ0(N)
harmonic Maass functions jN,n which generalize the jn. An important property we obtain about the
jN,n is their growth in the n-aspect, which is not easily described in terms of Fourier expansions.
Instead, we use “Ramanujan-like” expansions, sums of the form

(1.1)
∑

λ∈Λz

∑

(c,d)∈Sλ

1

λk
e
(

−n

λ
rz(c, d, k)

)

e
2πnIm(z)

λ ,

for certain real numbers rz(c, d, k) (see (3.4)), e(x) := e2πix, Λz a lattice in R (see (3.5)), and Sλ the
set of solutions to Qz(c, d) = λ for a certain positive-definite binary quadratic form Qz (see (3.6)).

We construct weight 2 polar harmonic Maass forms H∗
N,z which generalize the Hz. We have two

cases for the H∗
N,z which we consider separately. These two cases correspond to points in the upper

half plane and those points which are cusps of X0(N). The first theorem (cf Theorem 1.1 of [10])
summarizes the essential properties of these functions when z ∈ H.

Theorem 1.1. If z ∈ H, then H∗
N,z(τ) is the unique (up to normalization) weight 2 polar harmonic

Maass form on Γ0(N) which vanishes at all cusps and has a single simple pole at z. Moreover, the
following are true.

(1) If z ∈ H and Im(τ) > max{Im(z), 1
Im(z)}, then we have that

H∗
N,z(τ) =

3

π [SL2(Z) : Γ0(N)] Im(τ)
+

∞
∑

n=1

jN,n(z)e
2πinτ .

(2) For gcd(N,n) = 1, we have jN,n(τ) = jN,1(τ) | T (n).
(3) For n | N , we have jN,n(τ) = jN

n
,1(nτ).

(4) As n → ∞, we have

jN,n (τ) =
∑

λ∈Λτ

λ≤n

∑

(c,d)∈Sλ

e
(

−n

λ
rτ (c, d)

)

e
2πnIm(τ)

λ +Oτ (n).

Some Remarks.
(1) In Theorem 1.1 (1), the inequality on Im(τ) is required for convergence.

(2) For N = 1, we have that j1,n(τ) = jn(τ), and that H∗
1,z(τ) = Hz(τ) +

3
πIm(τ) − E2(τ).
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(3) Theorem 1.1 (4) gives asymptotics for jN,n(z) in n-aspect.

(4) If y ≥ Im (Mz) for all M ∈ Γ0(N), then

jN,n(z) ≈ e−2πinz +
∑

c≥1
N |c

∑

d∈Z
gcd(c,d)=1
|cz+d|2=1

e

(

n
d− a

c

)

e2πinz.

We now turn to those H∗
N,̺ where ̺ is a cusp of X0(N). These functions are compatible with

the H∗
N,z considered in Theorem 1.1. Indeed, since z 7→ H∗

N,z(τ) is continuous (even harmonic) and

Γ0(N)-invariant, it follows that

(1.2) H∗
N,̺(τ) := lim

z→̺
H∗

N,z(τ).

The next result (cf. Theorem 1.2 of [10]) summarizes the properties of these functions. We use the
Kloosterman sums Ki∞,̺(0,−n; c) of (3.7) and the weight 2 harmonic Eisenstein series E∗

2,N,̺(τ)
with constant term 1 at ̺ and vanishing at all other cusps.

Theorem 1.2. For every cusp ̺ of Γ0(N), we have that H∗
N,̺(τ) = −E∗

2,N,̺(τ). Moreover, the
following are true.

(1) We have

H∗
N,̺(τ) =

3

π [SL2(Z) : Γ0(N)] Im(τ)
− δ̺,∞ +

∞
∑

n=1

jN,n(̺)e
2πinτ , with

jN,n(̺) := lim
τ→̺

jN,n(τ) =
4π2n

ℓ̺

∑

c≥1
N |c

Ki∞,̺(0,−n; c)

c2
,

where δ̺,∞ := 1 if ̺ = i∞ and 0 otherwise.
(2) For gcd(N,n) = 1, we have jN,n(̺) = limτ→̺ jN,1(τ) | T (n).
(3) For n | N , we have jN,n(̺) = limτ→̺ jN

n
,1(nτ).

Remark. The Fourier expansion in Theorem 1.1 (1) is not valid as z → i∞.

These results are special cases in weight 2 of the theory of polar harmonic Maass forms. This paper
is meant to be an introduction of the theory with the applications above in mind as motivation for
their study. In Section 2 we provide a general overview of the theory. We offer definitions, essential
properties, and explicit constructions of these forms in some detail. Then in Section 3 we consider
the special case of weight 2, and we give a brief sketches of the proofs of Theorems 1.1 and 1.2.
Finally, in Section 4 we summarize recent work on formulas of Ramanujan and Green’s functions.

2. General theory of polar harmonic Maass forms

We begin with the definition of a polar harmonic Maass form. The difference from usual harmonic
Maass forms is that we also allow singularites in H. For more on the theory of harmonic Maass
forms, the interested reader is also referred to the survey [22] and the forthcoming textbook [5].
Throughout, we let τ = u + iv, with u, v ∈ R (resp. z = x + iy, with x, y ∈ R). As usual, for
M =

(

a b
c d

)

∈ SL2(Z) and k ∈ Z, we define j(M, τ) := cτ + d and let

F |kM(τ) := j(M, τ)−kF

(

aτ + b

cτ + d

)

denote the weight k slash operator. Whenever we apply the slash operator to a function with multiple
variables, we resolve the ambiguity by writing, e.g., |k,τM .
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Definition 2.1. For k ∈ Z, a polar harmonic Maass form of weight k on Γ0(N) is a function
F : H → C which is real-analytic outside a discrete set of points and satisfies the following conditions:

i) For every M ∈ Γ0(N), we have F |kM = F .
ii) The function F is annihilated by the weight k hyperbolic Laplacian

∆k := −v2
(

∂2

∂u2
+

∂2

∂v2

)

+ ikv

(

∂

∂u
+ i

∂

∂v

)

.

iii) For every z ∈ H, there exists an n ∈ N0 such that (τ − z)nF (τ) is bounded in some neigh-
borhood of z.

iv) The function F grows at most linearly exponentially at the cusps of Γ0(N).

We denote byHk(Γ0(N)) the space of polar harmonic Maass forms of weight k with respect to Γ0(N).

Remark. Analogous definitions may be made for half-integral weight, on arbitrary congruence sub-
groups, and for forms with multiplier systems.

Polar harmonic Maass forms of weight k ≤ 0 have a natural decomposition into holomorphic and
non-holomorphic parts. To describe these, we require their Fourier expansion around a cusp ̺ of
Γ0(N).

Proposition 2.2. Suppose that the cusp width of ̺ is ℓ̺ and choose M̺ such that M̺̺ = i∞. If
k ≤ 0, then the Fourier expansion of F at ̺ has the shape (convergent for v ≫ 0)

F̺(τ) := F
∣

∣

k
M̺(τ) = F+

̺ (τ) + F−
̺ (τ),

where, for some c±F,̺(n) ∈ C,

F+
̺ (τ) :=

∑

n≫−∞
c+F,̺(n)e

2πinτ
ℓ̺ , F−

̺ (τ) := c−F,̺(0)v
1−k +

∑

n≪∞
n 6=0

c−F,̺(n)Γ

(

1− k,−4πnv

ℓ̺

)

e
2πinτ

ℓ̺ ,

with the incomplete gamma function Γ(a,w) :=
∫∞
w

ta−1e−tdt.

Sketch of proof. By condition i) in Definition 2.1, any F ∈ Hk(Γ0(N)) has an expansion of the form

F (τ) =:
∑

n∈Z
cf (n, v)e (nu) .(2.1)

If n = 0, then we have that cf (0, v) is a linear combination of 1 and v1−k. If n 6= 0, let C(2πnv) :=
cf (n, v). Applying ∆k to (2.1), one finds that the Fourier coefficients C(w) satisfy the differential
equation

∂2

∂w2
C(w)− C(w) +

k

w

(

∂

∂w
C(w) + C(w)

)

= 0.(2.2)

Thus, if n 6= 0, equation (2.2) has two linearly independent solutions, namely e−w and Γ(1 −
k,−2w)e−w. The restrictions in the summations follow from condition iv) in 2.1. �

We call F+
̺ the holomorphic part of F at ̺ and F−

̺ the non-holomorphic part. We call the terms
of the Fourier expansion which grow towards ̺ the principal part at ̺.

The coefficients c−F,̺(n) are closely related to coefficients of meromorphic modular forms of weight
2− k. Indeed, this relationship follows from the fact that the hyperbolic Laplacian splits as

∆k = −ξ2−k ◦ ξk,
where ξk := 2ivk ∂

∂τ . If F satisfies weight k modularity, then ξk(F ) is modular of weight 2 − k, and
thus ξk maps weight k polar harmonic Maass forms to weight 2 − k meromorphic modular forms.
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It is natural to consider the subspace Hcusp
k (Γ0(N)) ⊂ Hk(Γ0(N)) consisting of those F for which

ξk(F ) is a cusp form.

We next consider elliptic expansions of polar harmonic Maass forms. For this purpose, it is natural
to first look at elliptic expansions of meromorphic modular forms of weight k (attached to points
on the upper half plane), as opposed to the more common Fourier series in q (which are expansions
around the cusp at i∞). These are of the shape

f(τ) = (τ − z)−k
∑

n≫−∞
cf,z(n)X

n
z (τ)

and converge if

(2.3) Xz(τ) :=
τ − z

τ − z

is sufficiently small. Just as there are two parts to the Fourier expansion at a cusp, polar harmonic
Maass forms have expansions around points in the upper half-plane which break into two pieces.

Proposition 2.3. A polar harmonic Maass form F of weight k ≤ 0 has an expansion around each
point z ∈ H of the form F = F+

z + F−
z , where the meromorphic part F+

z is given by

(2.4) F+
z (τ) := (τ − z)−k

∑

n≫−∞
c+F,z(n)X

n
z (τ)

and the non-meromorphic part F−
z by

(2.5) F−
z (τ) := (τ − z)−k

∑

n≪∞
c−F,z(n)β0

(

1− |Xz(τ)|2; 1− k,−n
)

Xn
z (τ).

These expressions converge for |Xz(τ)| ≪ 1. Here, we have that

β0 (w; a, b) := β (w; a, b) − Ca,b with Ca,b :=
∑

0≤j≤a−1
j 6=−b

(

a− 1

j

)

(−1)j

j + b
,

where the incomplete β-function is defined by β(w; a, b) :=
∫ w

0 ta−1(1− t)b−1dt.

We refer to the terms in (2.4) and (2.5) which grow as τ → z as the principal part of F around z.

Remarks.
(1) If F ∈ Hcusp

k (Γ0(N)), then (2.5) only runs over n < 0.
(2) If F ∈ Hk(Γ0(N)), then the sums in (2.4) and (2.5) run only over those n which satisfy n ≡ −k/2
(mod e−1

N,z), where eN,z := 2/#Stabz(Γ0(N)).

Sketch of proof of Proposition 2.3. For w := Xz(τ) sufficiently small, the function
(

2iy

1− w

)k

F

(

z − zw

1− w

)

= (τ − z)k F (τ).

has an expansion of the shape (w = reiθ)
∑

n∈Z
ar(n)e

inθ

We then define a function bn by ar(n) =: rnbn(r
2). A straightforward but lengthy calculation yields

that

(2.6) 0 = (1− t)tb′′n(t) + (n+ 1− (k + n+ 1)t) b′n(t).
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The general solution of (2.6) is given by

bn(t) = c1β(1− t; 1− k,−n) + c2

with c1, c2 ∈ C. Hence, noting that β(1; 1 − k,−n) exists for n < 0, we conclude that

(τ − z)k F (τ) =
∑

n∈Z
anw

n −
∑

n≥0

bnβ
(

1− r2; 1− k,−n
)

wn

+
∑

n<0

bn
(

β(1; 1 − k,−n)− β
(

1− r2; 1− k,−n
))

wn,

for some an and bn ∈ C. From condition iii) in Definition 2.1, we obtain that an = 0 if n < −n0 and
bn = 0 if n > n0. �

Following Bruinier and Funke, for k ∈ N0, g ∈ Sk(Γ0(N)), and F ∈ Hcusp
2−k (Γ0(N)), we define the

pairing

{g, F} := 〈g, ξ2−k(F )〉 ,
where for g, h ∈ Sk(Γ0(N)), 〈g, h〉 denotes the standard Petersson inner product. The pairing {g, F}
was computed for F a harmonic Maass form in [12]. We recall an extension to the entire space
Hcusp

2−k (Γ0(N)).

Proposition 2.4 (Proposition 6.1 of [6]). If g ∈ Sk(Γ0(N)) and F ∈ Hcusp
2−k (Γ0(N)), then

{g, F} =
1

[SL2(Z) : Γ0(N)]

∑

n≥1





∑

z∈Γ0(N)\H

πeN,z

y
c+F,z (−n) cg,z (n− 1) +

∑

̺∈SN

c+F,̺(−n)cg,̺(n)



 ,

where SN denotes the set of inequivalent cusps of Γ0(N).

For k > 2, the principal parts of the Fourier expansions around all cusps and the principal parts
of the elliptic expansions uniquely determine the form. Indeed, Proposition 2.4 implies that any
polar harmonic Maass form F without any singularities must satisfy ξ2−k(F ) = 0 and there are no
non-trivial negative-weight holomorphic modular forms.

For z ∈ H, n ∈ Z, and k ∈ N>2, the meromorphic elliptic Poincaré series of Petersson are given
by

(2.7) Ψz
k,n,N(τ) :=

∑

M∈Γ0(N)

(

(τ − z)−kXn
z (τ)

)∣

∣

∣

k,τ
M.

These functions give rise to natural polar harmonic Maass forms. Namely, we have the following
general theorem.

Theorem 2.5. The functions Ψz
k,n,N are weight k meromorphic modular forms which are cusp forms

if n ≥ 0. For n < 0, they are orthogonal to cusp forms and have principal part around τ = z equal to

2eN,z(τ − z)−kXn
z (τ).

Furthermore, the functions z 7→ y−k−nΨz
k,n,N(τ) are polar harmonic Maass forms of weight −2n−k.

Remark. By orthogonal to cusp forms we mean with respect to a regularised inner product.

Sketch of proof of Theorem 2.5. The series in (2.7) converges absolutely and locally uniformly in
both τ and z for k > 2. Thus it can be checked termwise that the functions are meromorphic in
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τ and harmonic in z. The principal parts come from the summand corresponding to the identity
matrix and orthogonality to cusp forms has been proven in Satz 8 of [23]. We now use the identity

Mτ −Mz = j(M, τ)j(M,z)(τ − z)

to rewrite

y−k−nj(M, τ)k(Mτ − z)n(Mτ − z)−n−k = j(M,z)2n+k Im(M−1z)−k−n(τ −M−1z)n(τ −M−1z)−n−k.

Summing over M implies that y−k−nΨz
k,n,N(τ) is modular in z. �

3. The Special case of weight 2

In this section, we construct weight 2 polar harmonic Maass forms H∗
N,z which only have simple

poles in z modulo Γ0(N) and decay towards the cusps. This is achieved by using analytic continuation
to obtain analogues of Ψz

k,−1,N for k = 2. It turns out that these functions are not meromorphic in
τ anymore. However, they are still polar harmonic Maass forms in τ and in z. To construct them
we define for z, τ ∈ H and s ∈ C with Re(s) > 0

(3.1) PN,s(τ, z) :=
∑

M∈Γ0(N)

ϕs (Mτ, z)

j (M, τ)2 |j (M, τ) |2s

with

ϕs(τ, z) := Im(z)1+s(τ − z)−1(τ − z)−1 |τ − z|−2s .

Proposition 3.1 (Lemma 4.4 of [6]). The function PN,s(τ, z) has an analytic continuation denoted
by yΨ2,N (τ, z) to s = 0. We have z 7→ yΨ2,N (τ, z) ∈ H0(Γ0(N)) and τ 7→ yΨ2,N(τ, z) ∈ H2(Γ0(N)).

Remark. Explicit Fourier expansions for z 7→ yΨ2,N (τ, z) are given in Lemma 5.4 of [6] and for
τ 7→ yΨ2,N (τ, z) in Proposition 2.1 of [10].

Sketch of proof of Proposition 3.1. One uses a splitting of the sum in (3.1) due to Petersson and
computes the Fourier expansion of each part. These converge absolutely and locally uniformly in s
and can be analytically continued to s = 0. Once the analytic continuation is established, one can
proceed as in the proof of Theorem 2.5 �

We then set

(3.2) H∗
N,z(τ) := − y

2π
Ψ2,N (τ, z).

Note that H∗
N,z has principal part

1

2πieN,z

1

τ − z

at τ = z.

The Fourier coefficients jN,n(z) of H
∗
N,z are given by analytic continuations of Niebur’s Poincaré

series [21]. To be more precise, set for n ∈ N and Re(s) > 1

FN,−n,s(z) :=
∑

M∈Γ∞\Γ0(N)

e (−nRe(Mz)) Im(Mz)
1
2 Is− 1

2
(2πn Im(Mz))

with Γ∞ := {± ( 1 n
0 1 ) : n ∈ Z} and Iα the usual I-Bessel function of order α. These functions are

weak Maass forms of weight 0; instead of being annihilated by ∆0, they have eigenvalue s(1− s).

Proposition 3.2 (Theorem 1 of [21]). The function FN,−n,s has an analytic continuation FN,−n to
s = 1 and FN,−n ∈ H0(Γ0(N)).
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To obtain the analytic continuation, one computes the Fourier expansion of FN,−n,s(z). We then
define the functions jN,n(z) by

jN,n(z) := 2π
√
nFN,−n(z).(3.3)

For N = 1, we recover the jn(z) from the introduction up to the constant 2π
√
nc1(n, 0) = 24σ1(n).

In order to formally state Theorem 1.1 (4), for an arbitrary solution a, b ∈ Z to ad − bc = 1, we
define

rz(c, d) := ac|z|2 + (ad+ bc)Re(z) + bd,(3.4)

Λz :=
{

α2|z|2 + β Re(z) + γ2 > 0 : α, β, γ ∈ Z
}

,(3.5)

Sλ := {(c, d) ∈ NN0 × Z : gcd(c, d) = 1 and Qz(c, d) = λ} ,(3.6)

Qz(c, d) := c2|z|2 + 2cdRe(z) + d2.

Note that although rz(c, d) is not uniquely determined, e(−nrz(c, d)/Qz(c, d)) is well-defined.

Sketch of proof of Theorem 1.1. Part (1) follows from the explicit Fourier expansions given in Propo-
sition 3.2 and Proposition 2.1 of [10]. Parts (2) and (3) follow from a straightforward calculation.
To prove part (4), we rewrite the claimed asymptotic formula in terms of the corresponding points
Mz with M =

(

a b
c d

)

∈ Γ∞\Γ0(N). Directly plugging in and simplifying yields that the claim in
Theorem 1.1 (4) is equivalent to

jN,n(z) =
∑

M∈Γ∞\Γ0(N)
n Im(Mz)≥Im(z)

e−2πinMz +Oz(n),

which can be shown using standard estimates and the Weil bound for Kloosterman sums. �

The functions H∗
N,̺ do not have simple poles at ̺, but they can still be seen as analogues of H∗

N,z

at the cusps of Γ0(N). It turns out that they are connected to the harmonic weight 2 Eisenstein
series E∗

2,N,̺(τ) for Γ0(N). For Re(s) > 0, define

E∗
2,N,̺,s(τ) :=

∑

M∈Γ̺\Γ0(N)

j (M̺M, τ)−2 |j (M̺M, τ)|−2s .

Using the Hecke trick, it is well-known (cf. Satz 6 of [19]) that E∗
2,N,̺,s has an analytic continuation

to s = 0, denoted by E∗
2,N,̺.

Sketch of proof of Theorem 1.2. The Fourier expansion of H∗
N,̺ given in Theorem 1.2 (1) follows

from Lemma 5.4 of [6]. We obtain the statement by comparing to the Fourier expansion of E∗
2,N,̺

given in Theorem 1 of [26]. For this we recall that the generalized Kloosterman sums for a cusp ̺ of
Γ0(N) are defined by

(3.7) Ki∞,̺(m,n; c) :=
∑

(

a b
c d

)

∈Γ∞

∖

Γ0(N)M̺

/

Γ
ℓ̺
∞

e

(

md

ℓ̺c
+

na

c

)

.

Parts (2) and (3) follow again from a straightforward calculation. �
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4. Further Remarks

4.1. Applications to Formulas of Ramanujan. Polar harmonic Maass forms can be used to
solve the difficult problems of computing and estimating Fourier coefficients of meromorphic modular
forms. Hardy and Ramanujan [18] considered the special case where the form has a unique simple
pole in SL2(Z)\H. In particular, they found a formula for the reciprocal of the Eisenstein series
E6. Ramanujan [24] then conjectured further formulas for other examples of meromorphic modular
forms, such as

1

E4(τ)
=
∑

n≥0

βne
2πinτ ,

where βn is a sum of the form (1.1) with z = ρ := 1
2 + i

√
3/2. Expansions like (1.1) are very

convenient since they turn out to converge extremely rapidly. It is easy to check that the main
asymptotic growth in (1.1) comes from the λ = 1 terms, yielding

βn ∼ (−1)n
3

E6(ρ)
eπn

√
3.

Such estimates confirm that the coefficients of meromorphic modular forms grow much faster than
the coefficients of weakly holomorphic modular forms, as a lengthy calculation shows. Ramanujan’s
formulas for forms with simple poles were proven by Bialek in his Ph.D. thesis written under Berndt
[3]. Berndt, Bialek, and Yee [2] then pushed the Circle Method further to study examples with
second-order poles, and they managed to prove the remaining cases of Ramanujan’s formulas. The
proofs of [2, 3, 18] all utilized a modification of the Hardy-Ramanujan Circle Method, but the cal-
culations rapidly become more difficult with rising pole orders.

It turns out that, for z ∈ {i, ρ}, all of the meromorphic modular forms investigated by Ramanujan
may be written as linear combinations of the series

fk,j,r(z, τ) := y−j
∞
∑

m=0

∑∗

b⊆Z[z]

Ck (b,m)

N(b)
k
2
−j

(4πm)re
2πmz
N(b) e2πimτ ,

where b runs over primitive ideals of Z[z], N(b) is the norm of b, and Ck are certain functions on
ideals which we next describe. To be precise, for b = (cρ+ d) ⊂ Z[ρ], we define

C6m (b, n) := cos

(

πn

N(b)
(ad+ bc− 2ac− 2bd)− 6m arctan

(

c
√
3

2d− c

))

,

and we set Cm(b, n) := 0 if 6 ∤ m. Similarly, for b = (ci+ d) ⊆ Z[i], we let

C4m (b, n) := cos

(

2πn

N(b)
(ac+ bd) + 4m arctan

( c

d

)

)

and Cm(b, n) := 0 if 4 ∤ m.

To describe the coefficients in these linear combinations, we need a basis of meromorphic Poincaré
series, originally discovered by Petersson. On the subgroup Γ0(N), a weight k ∈ N>1, we define
a 2-variable Poincaré series (for k = 1, similar construction holds but an analytic continuation is
required.) Setting

H2k,N(z, τ) :=
∑

M∈Γ∞\Γ0(N)

1

1− e2πi(τ−z)

∣

∣

∣

∣

2k,z

M,



10 KATHRIN BRINGMANN, BEN KANE, STEFFEN LÖBRICH, KEN ONO, AND LARRY ROLEN

we then let

H2k,N(z, τ) := H2k(z, τ) +
2k−2
∑

r=0

(2iv)r

r!

∂r

∂τ r
H2k(z, τ ).

In the variable z, this function is a weight 2k meromorphic cusp form on Γ0(N) with poles supported
on H, and in τ it is a polar harmonic Maass form in Hcusp

2−2k(Γ0(N)). The following result, which
follows by a careful computation and comparison of principal parts at poles on H, shows that the
functions H2k,N provide bases for polar harmonic Maass forms. In what follows, Rk,z := 2i ∂

∂z
+ k

Im(z)

denotes the usual Maass raising operator with respect to the variable z.

Proposition 4.1 (Proposition 4.2 of [9]). If f ∈ Hcusp
2−2k(Γ0(N)) with k ∈ N>1, then we can decompose

f as a sum of the form

f(τ) =

r
∑

ℓ=1

nℓ
∑

n=0

aℓ,n
[

Rn
2k,z (H2k(z, τ))

]

z=zℓ
,

where aℓ,n ∈ C and z1, . . . , zr are the locations of the poles of f on H.

Proposition 4.1 then allows us to describe the Fourier expansions of meromorphic cusp forms.

Theorem 4.2 (Theorem 1.1 of [9]). If f is a meromorphic cusp form of integral weight 2− 2k < 0
and z ∈ {i, ρ} is the only pole of f in SL2(Z) \H, then, with coefficients aℓ defined by the expansion
in Proposition 4.1, for v > y, we have the following Fourier expansion:

f(τ) = 2e1,z

n0
∑

n=0

an

n
∑

j=0

(2k + n− 1)!

(2k + n− 1− j)!

(

n

j

)

f2k+2n,j,n−j(z, τ).

Remark. A more general formula for meromorphic cusp forms with arbitrary order poles at arbitrary
points is given in Theorem 4.1 of [7].

4.2. Applications to Green’s Functions. We now consider the functions

fA(τ) := D
k
2

∑

Q∈A
Q(τ, 1)−k,

where A is an SL2(Z)-equivalence class of integral binary quadratic forms of discriminant −D < 0. In
what follows, we denote by τQ the unique root of Q(X, 1) in the upper half plane. These are analogous
to Zagier’s fk,D functions for D > 0, which play an important role in Shimura and Shintani lifts. In
the case when D < 0 Bengoechea showed in her thesis [4] that one obtains interesting meromorphic
modular forms. The importance of these functions comes to the forefront when one integrates
them which can be used to give evaluations of higher Green’s functions at CM points [11]. Such
Green’s functions appeared in Gross and Zagier’s [17] evaluation of the local heights on X0(N) at
Archimedean places and an identity between higher Green’s functions evaluated at CM-points and
the infinite part of the height pairing of CM-cycles was later established by Zhang [30]. We briefly
recall the definition of these functions.

Definition 4.3. For k ∈ N>1 and N ∈ N, the higher Green’s function Gk : H × H → C is uniquely
characterized by the following properties.

i) The function Gk is smooth and real-valued on H×H \ {(z, γz) : γ ∈ Γ0(N), z ∈ H}.
ii) For γ1, γ2 ∈ Γ0(N), we have Gk(γ1z, γ2z) = Gk(z, z).
iii) We have

∆0,z (Gk (z, z)) = k(1 − k)Gk (z, z) = ∆0,z (Gk (z, z)) .
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iv) As z → z

Gk(z, z) =
1

eN,z
log (rz (z)) +O(1),

where

rz(z) := tanh

(

d(z, z)

2

)

= |Xz(z)|.

Here d(z, z) denotes the hyperbolic distance between z and z.
v) As z approaches a cusp, Gk(z, z) → 0.

These functions have a long history and Gross and Zagier conjectured [17] that their evaluations
at CM-points are essentially logarithms of algebraic numbers. Specifically, in the special case when
the space of weight 2k cusp forms on Γ0(N) is trivial, their conjecture states that

Gk(z, z) = (D1D2)
1−k
2 log(α)

for CM-points z, z of discriminants D1 and D2, respectively and α is an algebraic number. Various
cases of this conjecture have been solved. For example Mellit, in his Ph.D. thesis [20], proved the
case k = 2, z = i and also gave an interpretation of α as a certain intersection number of certain
higher Chow cycles. Viazovska [27] then proved the conjecture when the two CM points lie in the
same imaginary quadratic field.

The Petersson inner product of two fQ functions, suitably regularized and studied using the theory
of polar harmonic Maass forms, gives evaluations of the Green’s functions.

Theorem 4.4 (Corollary 1.5 of [11]). Suppose that −D1,−D2 < 0 are two discriminants. If Q1, Q2

are quadratic forms in distinct SL2(Z)-equivalence classes A1,A2 of discriminants −D1,−D2, then
we have

〈fA1 , fA2〉 =
(−1)k

√
πΓ
(

k − 1
2

)

2k(k − 1)!
e1,τQ1

e1,τQ2
Gk (τQ1 , τQ2)

with the rational numbers e1,z defined in Remark 2 after Proposition (2.3).

Remark. It is possible that this result will shed new light on and offer an alternative approach to
solving Gross and Zagier’s conjecture.
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