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GENERALIZED L-FUNCTIONS FOR MEROMORPHIC MODULAR FORMS

AND THEIR RELATION TO THE RIEMANN ZETA FUNCTION

KATHRIN BRINGMANN AND BEN KANE

Abstract. In this paper, we construct a family of generalized L-functions, one for each point z in
the upper half-plane. We prove that as z approaches i∞, these generalized L-functions converge to
an L-function which can be written in terms of the Riemann zeta function.

1. Introduction and statement of results

We begin by recalling some basic properties of L-functions. They encode arithmetic information
c(pr) that comes from local p-adic properties of some global object. This local information is
encoded in a series

Lp(s) := 1 +

∞∑

r=1

c (pr)

prs
.

In many examples, one may write

Lp(s) =
1

1− fp (p−s) p−s
(1.1)

for some polynomials fp. Extending the definition of c(pr) multiplicatively, one that then forms
the L-series as a Dirichlet series via the Euler product

L(s) :=
∏

p

Lp(s) =

∞∑

n=1

c(n)

ns
, (1.2)

where the product runs over all primes and the series converges for Re(s) sufficiently large if c(n)
grows at most polynomially in n.

By adding archimedean information L∞(s) at the real place one may form a complete L-function
Λ(s) := L∞(s)

∏
p Lp(s) which has a meromorphic continuation to C and satisfies a functional

equation

Λ(k − s) = Λ(s) (1.3)
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for some k ∈ R. The original example of an L-function is the Riemann zeta function, defined for
s ∈ C with Re(s) > 1 as

ζ(s) :=
∞∑

n=1

1

ns
=
∏

p

1

1− p−s
. (1.4)

From (1.4), one sees both the Euler product and series representations characterized by (1.2), and
the local factors indeed have the shape (1.1). Riemann [15] proved that ζ has a meromorphic
continuation to C with only a simple pole at s = 1. He also showed that the function

ξ(s) :=
1

2
π− s

2 s(s− 1)Γ
(s
2

)
ζ(s),

where Γ(s) is the Gamma function, satisfies the functional equation

ξ(s) = ξ(1− s), (1.5)

verifying the property (1.3).
The functional equation (1.5) can be explained by viewing the zeta function as the Mellin trans-

form of a modular form (see [17, p. 452]). It is hence natural to ask whether the functional equation
(1.3) more generally arises from connections with modular objects. A number of results and im-
portant conjectures about the interplay between modular objects and L-functions have originated
from this question. For example, Hamburger [9] proved a converse theorem characterizing ζ(s) by
its functional equation which was later extended by Hecke [11] and Weil [16] (see also [2]). Specifi-
cally, the version of the converse theorem of Hecke states that if c(n) are slow-growing and (1.3) is
satisfied, then the L-function comes from a Mellin transform of a modular form over SL2(Z). The
numbers c(n) are then realized as the Fourier coefficients of the corresponding modular form. The
idea to relate objects in different settings through their corresponding L-functions is one of the
cornerstones of the Langlands program [14], which conjectures deep connections between number
theory and geometry.

In this paper, we construct a family of functions Lz(s) for s ∈ C and z ∈ H := {z ∈ C : Im(z) > 0}
away from

S :=
{
z ∈ H : ∃M ∈ SL2(Z) such that Mz ∈ iR+

}
.

We call these functions generalized L-functions because they resemble L-functions. By the converse
theorem of Hecke [11] and Weil [16], if these are not Mellin transforms of modular forms, then either
the Euler product and series representations in (1.2) or the functional equation in (1.3) must not
hold. We consider the functional equation (1.3) to be the fundamental property of the function in
s and then concentrate on the properties as a function of the other variable z. In particular, the
(generalized) L-functions Lz satisfy a functional equation, are harmonic and SL2(Z)-invariant as a
function of z ∈ H \ S, and are related to the Riemann zeta function in the limit z → x+ i∞ with
x ∈ R \ Z.
Theorem 1.1. Let s ∈ C \ {1}, z ∈ H. There exists Lz(s) satisfying the following properties:

(1) For
(
a b
c d

)
∈ SL2(Z) and z ∈ H \ S we have

L az+b
cz+d

(s) = Lz(s).
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(2) The function z 7→ Lz(s) is harmonic on H \ S.
(3) We have the functional equation

Lz(2− s) = −Lz(s).

(4) Suppose that 1 < Re(s) < 2. Then for x ∈ R \ Z we have

lim
y→∞

(
Lx+iy(s)−

2πi

s
ys − 2πi

s− 2
y2−s + 2Arg

(
1− e2πix

)
ys−1

)
= − 24i

(2π)s−1
Γ(s)ζ(s)ζ(s− 1),

where Arg denotes the principal value of the argument.

Remarks.

(1) Although the generalized L-functions Lz(s) do not seem to satisfy the properties of classical
L-functions (we expect that one can define a series via the integral in (3.3) below, but we do not
study that in this paper), note that the limit in Theorem 1.1 (4) is the L-function associated
to the weight two Eisenstein series for SL2(Z). The series representation for ζ(s)ζ(s− 1) may
be found in (3.2)) and its Euler product follows from the right-hand side of (1.4)).

(2) A more general version of Theorem 1.1 (4) holds for all s ∈ C (see Theorem 4.3).

The paper is organized as follows. In Section 2, we recall polar harmonic Maass forms and relate
them to the resolvent kernel, as well as introducing some well-known useful functions and their
properties. In Section 3, we define the functions Lz(s) and prove Theorem 1.1 (1)–(3). We finally
show Theorem 1.1 (4) in Section 4.
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2. Preliminaries

2.1. Special functions and their properties. We require certain special functions and their
properties. For s ∈ C and y > 0, we let Γ(s, y) :=

∫∞
y

e−tts−1dt be the incomplete gamma function.

By [6, (8.11.1)–(8.11.3)], as y → ∞ we have

Γ(s, y) = ys−1e−y

(
N−1∑

ℓ=0

(s− ℓ)ℓy
−ℓ +O

(
y−N

)
)
, (2.1)

where (a)ℓ :=
∏ℓ−1

j=0(a+ j) is the rising factorial. For y1, y2 ∈ R with y1y2 > 0, we also require the

generalized incomplete gamma function Γ (s, y1, y2) :=
∫ y2
y1

e−tts−1dt. For Re(s) > 0, we have the

relation Γ(s, y1, y2) = γ(s, y2)− γ(s, y1) where γ(s, y) :=
∫ y

0 e−tts−1dt. We also require the identity
(see [6, 8.5.1])

Γ (s, y1, y2) =
ys2
s

1F1 (s; s+ 1;−y2)−
ys1
s

1F1 (s; s+ 1;−y1) . (2.2)
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Here 1F1(a; b; y) denotes the confluent hypergeometric function and for yj < 0, ysj is defined through
the principal branch of the logarithm. The asymptotic behaviour of the generalized incomplete
gamma function as y1 → ∞ or y2 → ∞ may thus be obtained from the asymptotic behaviour of
the 1F1-function. Namely, as y → ∞ we have (see [6, 13.7.2], where we note that M(a, b, y) =

1F1(a; b; y))

1F1(a; b; y) = Γ(b)

(
eyya−b

Γ(a)
+

e−πiay−a

Γ(b− a)

)(
1 +Oa,b

(
y−1
))

.

Assuming that s /∈ Z, [6, 13.7.1] furthermore implies that for any N ∈ N0

1F1 (s; s+ 1; y) ∼ seyy−1




N∑

j=0

(1− s)jy
−j +Os,N

(
y−N−1

)

 . (2.3)

Recall that for ℓ ∈ R the polylogarithm function is defined for |Z| < 1 by (see [6, 25.12.10])

Liℓ(Z) :=

∞∑

n=1

Zn

nℓ
.

We frequently use the identity

lim
ε→0+

∞∑

n=1

e−2πn(ix+εy)

(n(1 + ε))ℓ
= lim

ε→0+

Liℓ
(
e−2π(ix+εy)

)

(1 + ε)ℓ
= Liℓ

(
e−2πix

)
, (2.4)

where in the last equality we employ the fact that, since x /∈ Z, we avoid the branch cut of Liℓ(z)
along the positive real axis from 1 to ∞ and hence the limit exists.

2.2. Modular forms and polar harmonic Maass forms. As usual, for k ∈ Z, γ =
(
a b
c d

)
∈

SL2(Z), and f : H → C we define the weight k slash operator by

f
∣∣
k
γ(τ) := j(γ, τ)−kf

(
aτ + b

cτ + d

)
,

where j(γ, τ) := cτ + d. To describe certain modular objects, we require the growth of several
functions towards points in H ∪ {i∞}. For a non-holomorphic modular form f and a point z ∈ H,
we say that f exhibits the growth gz at τ = z if f(τ)− gz(τ) is bounded in an open neighborhood
around z. We say that a singularity of f at a point z ∈ H ∪ {i∞} has finite order if the following
holds:

(1) If z ∈ H, then there exists n ∈ N0 such that (τ −z)nf(τ) is bounded for τ in a sufficiently small
neighborhood of z.

(2) If z = i∞, then there exists n ∈ N0 such that f(τ)e−2πnv is bounded for v sufficiently large.

For τ = u+ iv, the weight k hyperbolic Laplace operator is given by

∆k := −v2
(

∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
.
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Throughout if we need to specify in which variable an operator Ok is taken, then we write Ok,τ .
We call a function f : H → C a weight k polar harmonic Maass form if it satisfies the following
properties:

(1) For every γ ∈ SL2(Z), we have f |kγ = f.
(2) The function f is annihilated by ∆k except for a discrete set of singularities.
(3) The singularities of f all have finite order.

We require the following relations, which may be found for example in [3, Lemma 5.2], between
the hyperbolic Laplace operator and the Maass raising operator Rk := 2i ∂

∂τ
+ k

v
.

Lemma 2.1.

(1) We have

Rk

(
f
∣∣
k
γ
)
= Rk(f)

∣∣
k+2

γ.

In particular, if f satisfies weight k modularity, then Rk(f) satisfies weight k + 2 modularity.
(2) If ∆k(f) = λf , then ∆k+2(Rk(f)) = (λ+ k)Rk(f).

We require properties of some explicit modular functions (i.e., weight zero meromorphic modular
forms). To describe these, for even k ≥ 4 we define the weight k Eisenstein series by

Ek(τ) := 1− 2k

Bk

∞∑

n=1

σk−1(n)e
2πinτ ,

where σℓ(n) :=
∑

d|n d
ℓ and Bk is the k-th Bernoulli number. We denote the unique normalized

newform of weight 12 on SL2(Z) by

∆(τ) := q

∞∏

n=1

(1− qn)24.

We then set J(τ) := j(τ) − 744, where j(τ) := E4(τ)3

∆(τ) . We furthermore define the weight two

meromorphic modular form

Hz(τ) :=
E4(τ)

2E6(τ)

∆(τ)(J(τ) − J(z))
. (2.5)

We require the behaviour of Hz(τ) as τ → i∞. To obtain this, we note that by computing the first
term of their Fourier expansions, one easily sees that as v → ∞, we have

J(τ) = e−2πiτ +O
(
e−2πv

)
,

E4(τ)
2E6(τ)

∆(τ)
= e−2πiτ +O(1). (2.6)

We see in particular that as τ → i∞ (resp. τ → 0), Hz(τ) exhibits the growth 1 (resp. 1
τ2
),

applying the weight two modularity in the second case.
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2.3. Real-analytic Eisenstein series. Setting Γ∞ := {± ( 1 n
0 1 ) : n ∈ Z}, the weight k real-

analytic Eisenstein series is defined for k ∈ 2N0 and w ∈ C with Re(w) > 1 by

Ek(w; τ) :=
∑

γ∈Γ∞\SL2(Z)

vw
∣∣
k
γ

and then continued meromorphically to the complex w-plane (see [13, Theorem 4.4.2]). Since we
make frequent use of results from [7, 8], we note for comparison the definition [8, (2.14) on p. 239]
specialized to N = 1 (see also the equivalent definition in [7, Section 5]), where the weight k = 0
is omitted, the order of the variables is flipped, and a semicolon is used to separate the variables
instead of a comma.

We furthermore define the weight two harmonic Eisenstein series as

Ê2(τ) := E2(τ)−
3

πv
where E2(τ) := 1− 24

∞∑

n=1

σ1(n)e
2πinτ .

Using the so-called Hecke trick, Hecke showed that

Ê2(τ) = E2(0; τ).

The weight zero and weight two real-analytic Eisenstein series are related via the raising operator,
as a direct calculation shows.

Lemma 2.2. For w ∈ C which is not a pole of (w − 1)E0(w; z) and k ∈ 2N0, we have

Rk (Ek(w; τ)) = (w + k)Ek+2(w − 1; τ).

In particular,

R0 (E0(1; τ)) = Ê2(τ).

Using the fact that E2(w; τ) is an eigenfunction under ∆2, one obtains the following asymptotic
behaviour of the Eisenstein series (see [8, (2.17) on p. 240]).

Lemma 2.3. Let w ∈ C be given such that Γ(w)ζ(2w − 2) 6= 0. Then, as t → ∞,

E2(w; it) = tw −
√
πwΓ

(
w + 1

2

)
ζ(2w + 1)

Γ(w + 2)ζ(2w + 2)
t−w−1 +Ow

(
e−t
)
.

The dependence on w in the error term is locally uniform.

2.4. Weight two polar harmonic Maass forms and the resolvent kernel. In this subsection,
we recall certain weight two polar harmonic Maass forms H∗

z on SL2(Z). Explicitly, we define
(writing z = x+ iy throughout)

H∗
z (τ) := − y

2π
Ψ2(τ, z),

where yΨ2(τ, z) is the analytic continuation to w = 0 of the Poincaré series (see [4, Section 3.1])

Pw(τ, z) :=
∑

M∈SL2(Z)

ϕw(Mτ, z)

j(M, τ)2|j(M, τ)|2w .

6



Here ϕw(τ, z) := yw+1(τ − z)−1(τ − z̄)−1|τ − z̄|−2w. Setting Xτ (z) := z−τ
z−τ

, we use the following

properties of z 7→ H∗
z which follow by [4, Lemma 4.4 and Proposition 5.1], and a direct calculation.

Lemma 2.4. The function z 7→ H∗
z (τ) is a weight zero polar harmonic Maass forms. Moreover,

if τ ∈ H is not an elliptic fixed point, then it exhibits the growth − 1
4πvXτ (z)

at z = τ and no other

singularities in (SL2(Z)\H) ∪ {i∞}. In particular

2πi lim
z→τ

(z − τ)H∗
z (τ) = 1. (2.7)

We also require the behaviour of H∗
z as z → i∞ (see [5, (1.7)] and [5, Theorem 1.2]).

Lemma 2.5. We have
lim

z→i∞
H∗

z = −Ê2. (2.8)

We next relate H∗
z to the resolvent kernel for SL2(Z) (see [12] for a full treatment). The resolvent

kernel is defined by the analytic continuation in w of

Gw(z, τ) :=
∑

M∈PSL2(Z)

gw(Mz, τ),

where

gw(z, τ) := −Γ(w)2

Γ(2w)

(
2

1 + cosh(d(z, τ))

)w

2F1

(
w,w; 2w;

2

1 + cosh(d(z, τ))

)
.

Here 2F1(a, b; c;Z) is Gauss’ hypergeometric function. Moreover, d(z, τ) is the hyperbolic distance
between z and τ , which satisfies

cosh(d(z, τ)) = 1 +
|z − τ |2
2vy

.

The function Gw(z, τ) is invariant under SL2(Z) in both variables. Since H∗
z (τ) satisfies weight

zero modularity in z and weight two modularity in τ (see Lemma 2.4 and [5, Theorem 1.1]), it is
natural to apply the Maass raising operator in τ . We therefore define

Gw(z, τ) :=
1

2i
R0,τ (Gw(z, τ)) .

We next use the invariance in both variables of Gw(z, τ) under SL2(Z) and the well-known facts
that it is an eigenfunction under ∆0 in both variables (see [7, property (b) in Section 5]) and that for
τ fixed it has a unique logarithmic singularity in SL2(Z)\H at z = τ (for example, see [7, property
(a) in Section 5]). A direct calculation using Lemma 2.1 then yields the following.

Lemma 2.6. The function z 7→ Gw(z, τ) is SL2(Z)-invariant and it is an eigenfunction with eigen-
value w(1 − w) under ∆0,z. The function τ 7→ Gw(z, τ) satisfies weight two modularity and has
eigenvalue w(1 − w) under ∆2,τ . Moreover, for Re(w) ≥ 1 and τ not an elliptic fixed point,
z 7→ Gw(z, τ) exhibits the growth 1

2iR0,τ (gw(z, τ)) at z = τ , which simplifies in the special case
w = 1 to

lim
z→τ

(z − τ)G1(z, τ) = −1, (2.9)

and does not grow at any point which is SL2(Z)-inequivalent to τ .
7



We additionally require the growth of Gw(z, τ) as z → i∞ or τ → i∞, which can be obtained
from [12, (6.5)].

Lemma 2.7. Assume that Re(w) ≥ 1.

(1) For y ≥ v + 1
v
+ ε with ε > 0, we have

Gw(z, τ) =
2πi

2w − 1
y1−wR0,τ (E0(w; τ)) +Ow,ε

((
v +

1

v

) 1
2

e
π
2 (v+

1
v
−y)

)
,

where the error is locally uniform around w = 1. In particular, as y → ∞

G1(z, τ) = 2πiÊ2(τ) +Ov

(
e−

πy

2

)
.

(2) For v ≥ y + 1
y
+ ε with ε > 0, we have

Gw(z, τ) =
2πi(w − 1)

1− 2w
v−wE0(w; z) +Ow,ε

((
y +

1

y

) 1
2

e
π
4

(

y+ 1
y
−v

)

)
,

where the bound is again locally uniform around w = 1.

The function Gw(z, τ) is related to H∗
z via the following proposition.

Proposition 2.8. We have

G1(z, τ) = −2πiH∗
z (τ).

Proof. Lemma 2.4 and Lemma 2.6 (with w = 1) imply that

Gτ (z) := lim
z→z

(
G1(z, τ) + 2πiH∗

z
(τ)
)
,

is a polar harmonic Maass form of weight zero on SL2(Z). We claim that it vanishes identically.
Without loss of generality, it suffices to assume that τ ∈ H is not an elliptic fixed point. For
z ∈ H which is not SL2(Z)-equivalent to τ , Gτ does not have a singularity at z = z because
neither summand has a singularity by Lemmas 2.4 and 2.6. Moreover, (2.7) and (2.9) yield that
limz→τ (z − τ)Gτ (z) = 0. We conclude that Gτ is an SL2(Z)-invariant harmonic function that
does not have any singularities. Since the only weight zero harmonic functions on SL2(Z) without
singularities are constant, we conclude that Gτ (z) is independent of z and limz→i∞Gτ (z) = 0 by
Lemma 2.5 and Lemma 2.7 (1) implies that Gτ (z) = 0 for all z ∈ H, yielding the result. �

3. The definition of (generalized) L-functions and the proof of Theorem 1.1
(1)–(3)

In this section we define the relevant (generalized) L-functions. In Section 3.1, we relate an
L-function to the weight two Eisenstein series. This L-function plays an important role in the
proof of Theorem 1.1 (4) in Section 4. We then define Lz(s) in Section 3.2 and investigate its main
properties, proving Theorem 1.1 (1)–(3).
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3.1. An L-function associated to the weight two Eisenstein series. In order to relate Lz(s)
to the Riemann zeta function and prove Theorem 1.1 (4), we first recall the well-known construction

of an L-function for the weight two Eisenstein series E2 and its completion Ê2. Following a trick
of Riemann [15] (used to obtain the zeta function as a regularized Mellin transform), for t0 > 0 we
define

L
(
Ê2, s

)
:=

∫ ∞

t0

(
Ê2(it)− 1 +

3

πt

)
ts−1dt

+

∫ t0

0

(
Ê2(it) +

1

t2
− 3

πt

)
ts−1dt− ts0

s
− ts−2

0

s− 2
+

6

π

ts−1
0

s− 1
. (3.1)

We give the main properties of L(Ê2, s) and evaluate it in the following lemma, which may be easily

proven using the modularity of Ê2, the growth of Ê2(it) as t → ∞, and the identity (see e.g. [10,
Theorem 291])

ζ(s)ζ(s− ℓ) =

∞∑

n=1

σℓ(n)

ns
. (3.2)

Lemma 3.1.

(1) The integrals on the right-hand side of (3.1) converge absolutely and define meromorphic func-
tions on the complex s-plane with simple poles for s ∈ {0, 1, 2}.

(2) The definition of L(Ê2, s) is independent of the choice of t0.
(3) We have

L
(
Ê2, s

)
= − 24

(2π)s
Γ(s)ζ(s)ζ(s− 1).

(4) We have

L
(
Ê2, 2− s

)
= −L

(
Ê2, s

)
.

3.2. Definition of a generalized L-function for polar harmonic Maass forms. The goal of
this section is to define Lz(s) and to prove Theorem 1.1 (1)–(3).

For s, s0, w ∈ C with Re(s),Re(w) sufficiently large, we set

Lz(w, s0; s) :=

∫ ∞

0
Gw(z, it)rz(it)

s0rz

(
i

t

)s0

ts−1dt, rz(τ) := |Xz(τ)|. (3.3)

Lemma 3.2. Let s0, s ∈ C and z ∈ H and if z is equivalent under SL2(Z) to a point in iR+, then
assume that Re(s0) is sufficiently large. Then the integral defining Lz(w, s0; s) converges absolutely
and locally uniformly for w ∈ C with Re(w) sufficiently large (depending on Re(s)).

Proof. Using the modularity from Lemma 2.6, one may write (for Re(w) sufficiently large)

Lz(w, s0; s) = Jw,s,s0,z(t0)− Jw,2−s,s0,z

(
1

t0

)

9



with

Jw,s,s0,z(t0) :=

∫ ∞

t0

Gw(z, it)rz(it)
s0rz

(
i

t

)s0

ts−1dt.

The claim then follows by Lemma 2.7 (2). �

We next assume that z 6∈ S. In this case, we set

Lz(w; s) := Lz(w, 0; s).

Theorem 3.3. For each z ∈ H \ S and s ∈ C, the function w 7→ Lz(w; s) has a meromorphic con-
tinuation to the whole complex plane. Furthermore, the resulting function in z is an eigenfunction
under ∆0,z with eigenvalue w(1 − w) and it is invariant under the action of SL2(Z). Moreover,
Lz(w; s) satisfies the functional equation

Lz(w; s) = −Lz(w; 2 − s).

We prove Theorem 3.3 through a series of lemmas and propositions. For t0 > 0 we define

Iw,s(z) :=

2∑

j=1

Ij,w,s(t0; z)−
2∑

j=1

Ej,w,s(t0; z), (3.4)

where

I1,w,s(t0; z) :=

∫ t0

0

(
Gw(z, it) +

2πi(w − 1)

1− 2w
E0(w; z)t

w−2

)
ts−1dt,

I2,w,s(t0; z) :=

∫ ∞

t0

(
Gw(z, it) −

2πi(w − 1)

1− 2w
E0(w; z)t

−w

)
ts−1dt,

E1,w,s(t0; z) :=
2πi(w − 1)ts+w−2

0 E0(w; z)

(1− 2w)(s +w − 2)
,

E2,w,s(t0; z) :=
2πi(w − 1)ts−w

0 E0(w; z)

(1− 2w) (s− w)
.

We claim that Iw,s(z) is independent of the choice of t0 (see the remark after Lemma 3.4) and
we show in Lemma 3.4 below that it agrees with Lz(w; s) for Re(w) sufficiently large. Following
this, we prove in Proposition 3.5 that Iw,s(z) gives a meromorphic continuation of Lz(w; s) to the
whole complex w-plane. We then show the functional equation of Iw,s (and hence also of Lz(w; s)
by Lemma 3.4) in Proposition 3.6. The function Lz(s) is then defined by the special value of this
function at w = 1 (see (3.5)). By using the absolute convergence of the integral in Lemma 3.2 for
Re(w) sufficiently large and computing some elementary integrals, one easily sees that the functions
Iw,s(z) and Lz(w; s) indeed coincide.

Lemma 3.4. Let s ∈ C and z ∈ H \ S. For Re(w) sufficiently large, Iw,s(z) = Lz(w; s).

Remark. Note that Lemma 3.4 implies that Iw,s is independent of the choice of t0 for Re(w) suffi-
ciently large because it agrees with Lz(w; s). The Identity Theorem implies that it is independent
of t0 for all w for which its analytic continuation exists.
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The next step of the proof of Theorem 3.3 is to prove that Iw,s(z) gives a meromorphic continu-
ation of Lz(w; s) to the entire complex w-plane.

Proposition 3.5. For each s ∈ C, z ∈ H\S, and t0 > 0, the functions w 7→ Ij,w,s(t0; z) (j ∈ {1, 2})
converge absolutely and locally uniformly for s,w ∈ C outside of a discrete set of singularities at
w = 1

2 and at the poles of (w − 1)E0(w; z). Moreover, if w /∈ {1
2 , s, 2 − s} and w is not a pole

of (w − 1)E0(w; z), then the function z 7→ Iw,s(z) is an eigenfunction under ∆0 with eigenvalue
w(1 −w) on H \ S and it is invariant under the action of SL2(Z).

Proof. First assume that w 6= 1
2 and w is not a pole of (w − 1)E0(w; z). By Lemma 2.7 (2), the

part of the integral defining I2,w,s(t0; z) with t > y + 1
y
+ ε converges absolutely. Similarly, using

the weight two modularity of Gw from Lemma 2.6, Lemma 2.7 (2) implies that for t < (y + 1
y
)−1

Gw(z, it) =
1

(it)2
Gw

(
z,

i

t

)
= −2πi(w − 1)

1− 2w
E0(w; z)t

w−2 +O

(
t−2y

1
2 e

c
(

y+ 1
y
− 1

t

))
.

Hence the integral in I1,w,s(t0; z) with t < (y+ 1
y
+ε)−1 also converges absolutely. One sees directly

that w 7→ Ej,w,s(t0; z) is meromorphic with possible poles for w ∈ {1
2 , s, 2 − s}, and the poles of

(w − 1)E0(w; z).
We next show that Iw,s(z) is an eigenfunction under ∆0,z. Since the function E0(w; z) is an

eigenfunction with eigenvalue w(1−w) under ∆0,z, we see that z 7→ Ej,w,s(t0; z) are eigenfunctions
under ∆0,z with eigenvalue w(1 − w). Moreover, since the integrals Ij,w,s(t0; z) are absolutely and
locally uniformly convergent, we may take the operator ∆0,z inside the integrals. Combining the
fact that E0(w; z) is an eigenfunction under ∆0,z with the fact that Gw(z, it) is also an eigenfunction
with the same eigenvalue by Lemma 2.6, the resulting integrals are also eigenfunctions. Modular
invariance in z also follows directly from the modularity of E0(z, w) and Gw(z, it), using Lemma
2.6. �

Using the modularity from Lemma 2.6, implies the functional equation of Iw,s(z) in the usual
way.

Proposition 3.6. Suppose that z ∈ H \ S and w ∈ C \ {1
2} is not a pole of (w− 1)E0(w; z). Then

for s /∈ {w, 2 − w} we have
Iw,2−s(z) = −Iw,s(z).

Since Iw,s(z) provides the analytic continuation of Lz(w; s) by Lemma 3.4 and Proposition 3.5,
we set

Lz(s) := I1,s(z). (3.5)

Remark. Due to the connection between H∗
z and Ê2 in (2.8), one may naively consider L(Ê2, s)

as the generalized L-function at z = i∞. Although one cannot legally interchange the limit with
the integrals defining I1,s(z) (and hence Lz(s)) to make this connection rigorous, the relationship
between these (generalized) L-functions is investigated in Section 4.

Proof of Theorem 3.3. Combining Lemma 3.4 with Propositions 3.5 and 3.6 yields Theorem 3.3. �

Proof of Theorem 1.1 (1)–(3). This follows from (3.5) and Theorem 3.3. �
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4. Behavior of the generalized L-functions towards infinity and the proof of
Theorem 1.1 (4)

The goal of this section is to investigate the growth of Lz(s) as z → i∞, ultimately proving
Theorem 1.1 (4). In particular, in Theorem 4.3 we obtain an expansion of the type

Lz(s) = 2πiL
(
Ê2, s

)
+

⌊Re(s)⌋∑

ℓ=0

cℓ,s(x)y
s−ℓ +

⌊2−Re(s)⌋∑

ℓ=0

dℓ,s(x)y
2−s−ℓ + o(1). (4.1)

Due to the functional equations for Lz(s) and L(Ê2, s), an expansion of the type (4.1), if it exists,
has a further restricted shape.

Lemma 4.1. An expansion of the type (4.1) exists if and only if

Lz(s) = 2πiL
(
Ê2, s

)
+

⌊Re(s)⌋∑

ℓ=0

cℓ,s(x)y
s−ℓ −

⌊2−Re(s)⌋∑

ℓ=0

cℓ,2−s(x)y
2−s−ℓ + o(1). (4.2)

Moreover, such an expansion holds if and only if it holds for Re(s) ≥ 1.

We next relate Lz(s) to L(Ê2, s). For ease of notation, we define (with 0 ≤ y1 ≤ y2 ≤ ∞)

Jz,s,0(y1, y2) :=

∫ y2

y1

(
Hz(it) +

1

t2

)
ts−1dt,

Jz,s,i∞(y1, y2) :=

∫ y2

y1

(Hz(it)− 1) ts−1dt,

where the subscripts 0 and i∞ indicate that we subtract the main growth of Hz(it), which is defined
in (2.5), towards 0 or i∞, respectively.

Lemma 4.2. Suppose that z ∈ H \ S. Then for any t0 > 0 we have

Lz(s) = 2πiL
(
Ê2, s

)
− 2πiJz,s,0(0, t0)− 2πiJz,s,i∞(t0,∞) + 2πi

ts0
s
+ 2πi

ts−2
0

s − 2
.

Proof. Recalling the definition (3.5) and the absolute and locally uniform convergence of Iw,s(z)
shown in Proposition 3.5, we may directly plug w = 1 into (3.4). It is well-known that (see [8, p.
239, before (2.14)])

lim
w→1

(w − 1)E0(w; z) =
3

π
.

Plugging this into the definition following (3.4), we see directly that

E1,1,s(t0; z) = E2,1,s(t0; z) = −6its−1
0

s− 1
.

Moreover, using Proposition 2.8, we obtain

2∑

j=1

Ij,1,s(t0; z) = −2πi

∫ t0

0

(
H∗

z (it) +
3

πt

)
ts−1dt− 2πi

∫ ∞

t0

(
H∗

z (it)−
3

πt

)
ts−1dt. (4.3)
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We then use an identity of Asai, Kaneko, and Ninomiya [1, Theorem 3] and the second remark
following [5, Theorem 1.1] to rewrite

H∗
z (τ) = Hz(τ)− Ê2(τ).

Plugging this into (4.3) and recalling the definition (3.1) yields the claim. �

Setting

Cℓ,s(x) :=





2πi
s

if ℓ = 0,

4πi
(1−s)ℓ−1

(2π)ℓ
Re
(
Liℓ
(
e2πix

))
if 2 ≤ ℓ ≤ ⌊Re(s)⌋ is even,

−4π
(1−s)ℓ−1

(2π)ℓ
Im
(
Liℓ
(
e2πix

))
if 1 ≤ ℓ ≤ ⌊Re(s)⌋ is odd,

the generalized L-function Lz(s) = I1,s(z) is related to the Riemann zeta function via the following
theorem.

Theorem 4.3. An expansion of the type (4.2) exists. More precisely, for fixed x ∈ R \ Z we have

lim
y→∞


Lx+iy(s)−

⌊Re(s)⌋∑

ℓ=0

Cℓ,s(x)y
s−ℓ +

⌊2−Re(s)⌋∑

ℓ=0

Cℓ,2−s(x)y
2−s−ℓ


 = 2πiL

(
Ê2, s

)

= − 24i

(2π)s−1
Γ(s)ζ(s)ζ(s− 1).

Proof. By the Identity Theorem, it suffices to prove the claim for s /∈ Z and Re(s) ≥ 1. Lemma 4.2
and Lemma 3.1 (3) then imply that the claim of Theorem 4.3 is equivalent to

lim
y→∞


Jz,s,0 (0, t0) + Jz,s,i∞ (t0,∞)− i

2π

⌊Re(s)⌋∑

ℓ=0

Cℓ,s(x)y
s−ℓ +

i

2π

⌊2−Re(s)⌋∑

ℓ=0

Cℓ,2−s(x)y
2−s−ℓ




=
ts0
s
+

ts−2
0

s− 2
. (4.4)

We assume without loss of generality that 2
y
< t0 < y

2 and further split the integrals inside the

limit. We claim that, as y → ∞,

Jz,s,0

(
0,

1

y

)
= − 1

2π
Li1
(
e−2πix

)
y1−s + ox,s(1), (4.5)

Jz,s,0

(
1

y
, t0

)
=

ts−2
0 − y2−s

s− 2
+

1

2π
Li1
(
e2πix

)
y1−s + ox,s(1), (4.6)

Jz,s,i∞ (t0, y) =
ts0 − ys

s
−

⌊Re(s)⌋∑

ℓ=1

(1− s)ℓ−1

(2π)ℓ
Liℓ
(
e2πix

)
ys−ℓ + ox,s(1), (4.7)

Jz,s,i∞ (y,∞) =

⌊Re(s)⌋∑

ℓ=1

(−1)ℓ+1 (1− s)ℓ−1

(2π)ℓ
Liℓ
(
e−2πix

)
ys−ℓ + ox,s(1). (4.8)
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Before proving these, note that (4.5), (4.6), (4.7), and (4.8) imply (4.4) because

−Liℓ
(
e2πix

)
+ (−1)ℓ+1 Liℓ

(
e−2πix

)
=

{
−2Re

(
Liℓ
(
e2πix

))
if ℓ is even,

−2i Im
(
Liℓ
(
e2πix

))
if ℓ is odd.

We next show (4.5). Changing t 7→ 1
t
and using the weight two modularity of Hz(τ), we have

Jz,s,0

(
0,

1

y

)
= −Jz,2−s,i∞(y,∞) = − lim

ε→0+
Jz,2−s,i∞((1 + ε)y,∞). (4.9)

As t > (1 + ε)y, for y sufficiently large the asymptotics in (2.6) imply that |J(it)| > |J(z)| and
hence, for all s ∈ C,

Jz,2−s,i∞((1 + ε)y,∞) =

∫ ∞

(1+ε)y




∞∑

j=1

e−2πj(iz+t) +Ox

(
e−2πt

)
∣∣∣∣∣∣

∞∑

j=0

e−2πj(iz+t)

∣∣∣∣∣∣


 t1−sdt

=

∫ ∞

(1+ε)y

∞∑

j=1

e−2πj(iz+t)t1−sdt+Ox,s

(
e−πy

)
. (4.10)

By the Dominated Convergence Theorem, one can interchange the integral and sum for the main
term. Thus the main term of (4.10) gives a contribution to (4.9) of

− lim
ε→0+

∞∑

j=1

e−2πijz

∫ ∞

(1+ε)y
e−2πjtt1−sdt = − lim

ε→0+

∞∑

j=1

e−2πijz(2πj)s−2Γ (2− s, 2πj(1 + ε)y) (4.11)

= −y1−s lim
ε→0+

∞∑

j=1

e−2πj(ix+εy)

2πj(1 + ε)

(
1 +O

(
j−1y−1

))
,

taking (2.1) with s 7→ 2− s, y 7→ 2π(1 + ε)jy, and N = 1. It is not hard to see that

−y1−s lim
ε→0+

∞∑

j=1

e−2πj(ix+εy)

2πj(1 + ε)
O
(
j−1y−1

)
≪ y−1 → 0

as y → ∞. We then obtain (4.5) by (2.4).
We next prove (4.6). We write

Jz,s,0

(
1

y
, t0

)
=

∫ t0

1
y

Hz(it)t
s−1dt+

ts−2
0 − y2−s

s− 2
. (4.12)

In the integral we make the change of variables t 7→ 1
t
and use the modularity of the integrand to

obtain that ∫ t0

1
y

Hz(it)t
s−1dt = lim

ε→0+

∫ (1−ε)y

1
t0

Hz(it)t
1−sdt.
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Using (2.6), a straightforward calculation shows that for 1
t0

< t < (1− ε)y and x /∈ Z we have

1

J(z)− J(it)
=

e2πiz

1− e2π(t+iz)

(
1 +Ox

(
e−2π(t+y)

))
.

Combining this with the second equation from (2.6), we obtain that the integral on the right-hand
side of (4.12) equals

lim
ε→0+

∫ (1−ε)y

1
t0

(
e2πt +O(1)

) e2πiz

1− e2π(t+iz)

(
1 +Ox

(
e−2π(t+y)

))
t1−sdt

= lim
ε→0+

∫ (1−ε)y

1
t0

e2π(t+iz)

1− e2π(t+iz)

(
1 +Ox

(
e−2πt

))
t1−sdt. (4.13)

The O-term in (4.13) vanishes as y → ∞ due to exponential decay of the integrand. To evaluate

the main term, we expand e2π(t+iz)

1−e2π(t+iz) as a geometric series to write the main term as

lim
ε→0+

∫ (1−ε)y

1
t0

e2π(t+iz)

1− e2π(t+iz)
t1−sdt = lim

ε→0+

∞∑

ℓ=1

∫ (1−ε)y

1
t0

e2πℓ(t+iz)t1−sdt. (4.14)

Taking t 7→ − t
2πℓ and then plugging in (2.2) yields that the main term in (4.13) is

lim
ε→0+

∞∑

ℓ=1

∫ (1−ε)y

1
t0

e2πℓ(t+iz)t1−sdt = lim
ε→0+

∞∑

ℓ=1

e2πiℓzeπi(s−2)(2πℓ)s−2Γ

(
2− s,−2πℓ

t0
,−2πℓ(1− ε)y

)

=
y2−s

2− s
lim
ε→0+

∞∑

ℓ=1

e2πiℓz1F1 (2− s; 3− s; 2πℓ(1 − ε)y)

− ts−2
0

2− s

∞∑

ℓ=1

e2πiℓz1F1

(
2− s; 3− s;

2πℓ

t0

)
. (4.15)

Plugging in (2.3) with s 7→ 2 − s and N = 0, we obtain that for |(ℓ + 1)Z| → ∞ (recall that we
assume s /∈ Z above)

1F1 (2− s; 3− s; 2πℓZ) = (2− s)e2πℓZ
(

1

2πℓZ
+Os

(
1

ℓ2Z2

))
. (4.16)

Taking Z = t−1
0 , the second term in (4.15) vanishes as y → ∞.

We now take Z = (1 − ε)y in (4.16) and plug into the first term in (4.15) to obtain that (4.15)
equals

y2−s lim
ε→0+

∞∑

ℓ=1

e2πℓ(iz+(1−ε)y)

(
1

2π(1 − ε)ℓy
+Os

(
1

ℓ2y2

))
. (4.17)

The error term in (4.17) is absolutely convergent uniformly in ε ≥ 0 and gives a contribution

≪ y−Re(s), which vanishes because Re(s) ≥ 1 by assumption. Plugging (2.4) with x 7→ −x into the
main term of (4.17) implies (4.6).
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We next show (4.8). Noting that the left-hand side of (4.8) is the negative of the second expression
of (4.9) with s 7→ 2−s, we may plug (4.11) with s 7→ 2−s into (4.10) and then use (2.1) to compute

Jz,s,i∞(y,∞) =

⌊Re(s)⌋−1∑

ℓ=0

(s − ℓ)ℓy
s−ℓ−1

× lim
ε→0+

∞∑

j=1

e−2πj(ix+εy)
(
(2πj(1 + ε))−ℓ−1 +O

(
j−1−⌊Re(s)⌋yℓ−⌊Re(s)⌋

))
+ ox,s(1).

The error term converges absolutely and uniformly in ε ≥ 0 and decays as y → ∞. Hence

Jz,s,i∞(y,∞) = lim
ε→0+

⌊Re(s)⌋−1∑

ℓ=0

(s− ℓ)ℓy
s−ℓ−1

∞∑

j=1

e−2πj(ix+εy)

(2πj(1 + ε))ℓ+1
+ ox,s(1). (4.18)

Plugging (2.4) into the main term in (4.18) yields that the main term in (4.18) equals

⌊Re(s)⌋−1∑

ℓ=0

(s− ℓ)ℓ
1

(2π)ℓ+1
Liℓ+1

(
e−2πix

)
ys−ℓ−1 =

⌊Re(s)⌋∑

ℓ=1

(s+ 1− ℓ)ℓ−1

(2π)ℓ
Liℓ
(
e−2πix

)
ys−ℓ.

To obtain (4.8), we evaluate (s+ 1− ℓ)ℓ−1 = (−1)ℓ+1(1− s)ℓ−1.
It remains to prove (4.7). By taking t 7→ 1

t
we have

Jz,s,i∞ (t0, y) = −Jz,2−s,0

(
1

y
,
1

t0

)
.

Plugging (4.13) with s 7→ 2− s and t0 7→ 1
t0

into (4.12) hence yields

Jz,s,i∞ (t0, y) = − lim
ε→0+

∫ (1−ε)y

t0

e2π(t+iz)

1− e2π(t+iz)

(
1 +Ox

(
e−2πt

))
ts−1dt+

ts0 − ys

s
. (4.19)

As in (4.13), the O-term in (4.19) again vanishes as y → ∞. Expanding the main term as done in
(4.14), we then plug in (4.15) with t0 7→ 1

t0
and s 7→ 2− s to obtain

lim
ε→0+

∫ (1−ε)y

t0

e2π(t+iz)

1− e2π(t+iz)
ts−1dt = lim

ε→0+

∞∑

ℓ=1

∫ (1−ε)y

t0

e2πℓ(t+iz)ts−1dt

=
ys

s
lim
ε→0+

∞∑

ℓ=1

e2πiℓz1F1 (s; s+ 1; 2πℓ(1 − ε)y)− ts0
s

∞∑

ℓ=1

e2πiℓz1F1 (s; s+ 1; 2πℓt0) . (4.20)

We then take s 7→ 2 − s and Z = t0 in (4.16) to see that the second term in (4.20) vanishes as
y → ∞.

Plugging Z = 2πℓ(1 − ε)y and N = ⌊Re(s)⌋ into (2.3), the first term in (4.20) becomes

ys lim
ε→0+

∞∑

ℓ=1

e2πiℓze2πℓ(1−ε)y




⌊Re(s)⌋−1∑

j=0

(1− s)j

(2πℓ(1− ε)y)j+1
+Os

(
(ℓ(1− ε)y)−⌊Re(s)⌋−1

)

 . (4.21)
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Since |e2πiℓze2πℓ(1−ε)y| = e−2πℓεy ≤ 1, the contribution from the error term may be bounded against
a constant times

yRe(s)−⌊Re(s)⌋−1
∞∑

ℓ=1

ℓ−⌊Re(s)⌋−1.

Since −⌊Re(s)⌋ − 1 ≤ −2 (using the assumption Re(s) ≥ 1), the sum on ℓ converges absolutely
and Re(s)− ⌊Re(s)⌋ − 1 < 0 implies that the error term in (4.21) vanishes as y → ∞.

We then interchange the sum in ℓ and j in the main term of (4.21) (noting the exponential decay
in the sum on ℓ) to rewrite (4.21) as

⌊Re(s)⌋−1∑

j=0

(1− s)jy
s−j−1 lim

ε→0+

∞∑

ℓ=1

e2πℓ(ix−εy)

(2πℓ(1 − ε))j+1
+ o(1).

Plugging in (2.4) with x 7→ −x yields that the above equals

⌊Re(s)⌋−1∑

j=0

(1− s)j
(2π)j+1

Lij+1

(
e2πix

)
ys−1−j + o(1) =

⌊Re(s)⌋∑

j=1

(1− s)j−1

(2π)j
Lij
(
e2πix

)
ys−j + o(1),

giving (4.7) and completing the proof. �

As a corollary, we obtain Theorem 1.1 (4).

Proof of Theorem 1.1 (4). For 1 < Re(s) < 2, the only terms that occur in Theorem 4.3 are the
terms ℓ = 0 and ℓ = 1 in the first sum and the ℓ = 0 term in the second sum. Hence in this case
Theorem 4.3 states that

lim
y→∞

(
Lx+iy(s)−

2πi

s
ys − 2πi

s− 2
y2−s + 2 Im

(
Li1
(
e2πix

))
ys−1

)
= − 24i

(2π)s−1
Γ(s)ζ(s)ζ(s− 1).

The proof follows noting that

Li1(z) = −Log(1− z), Im (Log(1− z)) = Arg(1− z). �
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