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1. Introduction and statement of results

The interplay between (multi) q-hypergeometric series and modular forms has been 
studied extensively over the years. In theoretical physics and representation theory, q-
hypergeometric series famously appeared in connection with so-called fermionic formulas 
of characters of rational conformal field theories. If their summands involve a positive 
definite quadratic form they are sometimes called Nahm sums [38]. Important examples 
of this type emerged much earlier as “sum sides” of several classical q-series identities (e.g. 
Andrews–Gordon identities). More recently, Nahm sums have appeared in several areas 
including vertex algebras [26,33,37,40], DAHA [18], wall-crossing phenomena and quivers 
[17,28,34], in connection to colored HOMFLY-PT polynomials [29], and in formulas for 
the “tail” of colored Jones polynomials [9,22,27].

To define a Nahm sum we choose a positive definite quadratic form Q : Zr → Q and 
consider

∑
n∈Nr

0

qQ(n)+b·n+c

(q)n1 · · · (q)nr

, (1.1)

where n = (n1, ..., nr), (a; q)n = (a)n :=
∏n−1

j=0 (1 − aqj), b ∈ Qr, c ∈ Q, and N0 :=
N ∪ {0} with N := {n ∈ Z : n > 0}. One important aspect in the study of these 
series is to investigate their modularity by considering a suitable constant term in the 
asymptotic expansion (see [14]). Another interesting question is how to express (1.1)
using more familiar q-series, which may or may not be modular. Prominent examples 
of Nahm sums come from Cartan matrices of classical type and their inverses, as they 
are all expected to be modular for specific choices of b and c (see [42] for some recent 
results).

In this paper, we study closely related but different q-hypergeometric series that have 
origin in algebra and representation theory. Unlike many previous works that link char-
acters of representations of affine Lie algebras with q-series, here we focus on certain 
q-series coming from commutative algebras and graphs. Our aim is to investigate graph 
series defined as

HΓ(q) :=
∑

n∈Nr
0

q
1
2nCΓn

T +n1+···+nr

(q)n1 · · · (q)nr

, (1.2)

where CΓ is the (symmetric) adjacency matrix of a graph Γ. For many graphs, including 
all simple graphs, this series is not a Nahm sum (the adjacency matrix is not positive 
definite!). Another issue is that the matrix CΓ is often singular, so it is important that we 
include the linear term in the exponent. The main motivation for studying graph series 
comes from two sources. As explained in Section 2, for a given graph Γ, there is a graded 
commutative algebra J∞(R), the ring of functions of the infinite jet scheme X∞, where 
X = Spec(R), whose Hilbert series is given by (1.2). This infinitely-generated algebra 
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is closely related to a certain principal subspace vertex algebra constructed from the 
adjacency matrix of Γ [26,33,37,40], in the sense that its character is the Hilbert series 
of J∞(R).

In this paper we make the first steps in addressing modularity properties of graph 
series. We focus on examples coming from Dynkin diagrams of finite type, as well as 
several affine Dynkin diagrams. We show that in many examples their modular properties 
can be quite interesting in spite of the simplicity of the graph. Since the form of (1.2)
does not give any clues about modularity, we first must obtain suitable combinatorial 
formulas in terms of functions whose modular properties are transparent. For graph 
series of type A (paths), studied in [25], our first result is two new representations for 
graph series of type A7 and A8 (i.e., paths with seven and eight nodes, respectively).

Theorem 1.1. We have

HA7(q) = q−1

(1 − q)(q)4∞
(−1 + (q)∞D(q) + G(q) + (q)∞) ,

HA8(q) = q−2

(q)4∞

(
−1 + (q)∞ + 3D(q) − 2G(q)

)
,

where D(q) :=
∑

n≥1
qn

1−qn and G(q) :=
∑

n≥0((q)n − (q)∞).

Following Zagier [45], quantum modular forms are functions f : Q → C (Q ⊂ Q)
whose obstruction to modularity

f(x) − (cx + d)−kf

(
ax + b

cx + d

)
,

(
a b
c d

)
∈ SL2 (Z)

is “nice” (see Subsection 2.2 for more details). Combined with known q-series represen-
tations for HAj

(q), 1 ≤ j ≤ 6, given in [25, Section 7], we obtain the following result.

Corollary 1.2. For every j, 1 ≤ j ≤ 8, HAj
(q) ∈ C[ 1

1−q , q
−1, 1

(q)∞ , D(q), G(q)]. More 
precisely, q(q)2∞HA4(q) is a holomorphic quantum modular form of weight one, while 
q(q)3∞HA5(q) and q(1 − q)(q)3∞HA7(q) are quantum modular forms of weight 3

2 .

This indicates the possibility of accommodating all A-type graph series inside a finitely 
generated ring. We also investigate asymptotic properties of these graph series as t → 0+, 
where q = e−t (see Proposition 3.1). Such analysis is important from the geometric 
viewpoint as we would like to understand the growth of coefficients of the Hilbert series 
of J∞(R).

Graph with cycles are more complicated to analyze. However, for several examples 
related to 5-cycles we obtain elegant formulas.



4 K. Bringmann et al. / Journal of Combinatorial Theory, Series A 197 (2023) 105749
Theorem 1.3. Let C5 be a 5-cycle graph and Γ8 the graph in Fig. 1 (see Section 4). Then

HC5(q) = q−1

(q)2∞

∑
n≥1

nqn

1 − qn
, (1.3)

HΓ8(q) = q−1

(q)3∞

∑
n≥1

n2qn

1 − qn
. (1.4)

For several examples of graphs of D and E-type, due to a trivalent node, we get graph 
series with somewhat different combinatorial and modular properties. For this recall that 
mixed mock modular forms are linear combinations of modular forms multiplied by mock 
modular forms (holomorphic parts of certain non-holomorphic automorphic objects). 
Here is our main result in this direction.

Theorem 1.4. We have

HD4(q) = 1
(q)4∞

∑
n,m≥0

(−1)n+m(2n + 1)q n2
2 + 3m2

2 +2nm+ 3n
2 + 5m

2 , (1.5)

HD5(q) = 1
(q)5∞

⎛⎝ ∑
n,m≥0

−
∑

n,m<0

⎞⎠ (−1)n+1(n + 1)2q
n2+3n

2 +3nm+3m2+4m, (1.6)

HE6(q) = q−1

(q)3∞

∑
n≥1

nqn

1 − qn
. (1.7)

All three series are mixed mock modular forms.

Although q-series associated to graphs with multiple edges do not directly relate 
to Hilbert series of jet algebras, they can be viewed as characters of certain principal 
subspaces (see Section 2). We obtain several q-series identities for graph series of type 
B2 and B3 (ignoring the orientation) and related “coset” series (see Proposition 7.1). For 
several cases we obtain mixed quantum modular forms (linear combinations of modular 
forms multiplied by quantum modular forms). This indicates a possible connection with 
quantum invariants of 3-manifolds and knots where similar series appear [24,30,43]. We 
also investigate several examples of graph series associated to affine Dynkin diagrams 
whose modular properties seem more intricate (see Section 8).

The paper is organized as follows. In Section 2 we present the main concepts and 
definitions, along with preliminary results. In particular, we define the notion of the 
jet scheme of an affine scheme X, discuss principal subspaces associated to lattices and 
graphs, and present a few results on mock modular forms. In Section 3, we give two new 
results on the graph series of type A7 and A8 (see Theorem 1.1) and study modular 
properties and the asymptotic behavior of graph series of type An, 1 ≤ n ≤ 8 (see 
Proposition 3.1). In Section 4 we analyze certain graph series coming from 5-cycles. 
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Section 5 is concerned with the D4 graph series. The main result here is a new q-
representation of the graph series in terms of an indefinite theta function of signature 
(1, 1) (see (1.5)). Moreover, we show that this graph series is a mixed mock modular 
form. In Section 6, we do a similar analysis for the D5 graph, but this time we use 
(mixed) mock modular forms to obtain an indefinite theta function representation (see 
Theorem 6.2). Section 7 deals with a few examples of graphs with multiple edges of 
Dynkin type B2 and B3. Finally, in Section 8, we investigate graph series from the E6
Dynkin diagram, 3-cycles (affine type A(1)

2 ), and affine Dynkin graphs of type D(1)
5 and 

E
(1)
6 .
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2. Preliminaries

In this part we introduce the main objects of study and present some preliminary 
results.

2.1. Graph schemes and graph series

This subsection outlines a construction of the arc space. We define the arc space and 
the arc algebra (or algebra of infinite jets) of a finitely generated commutative ring R. 
As usual, let C[x1, x2, . . . , x�] denote the polynomial algebra in xj (1 ≤ j ≤ �), let 
f1, f2, . . . , fn be a set of polynomials, and define the quotient algebra

R := C[x1, x2, . . . , x�]
(f1, f2, . . . , fn) .

We now introduce new variables xj,(−1−k) for k ∈ {0, . . . , m}. We define a derivation T
on

C[xj,(−1−k) : 0 ≤ k ≤ m, 1 ≤ j ≤ �],

by letting

T
(
xj,(−1−k)

)
:=

{
(−1 − k)xj,(−k−2) for k ≤ m− 1,
0 for k = m.
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We also identify xj with xj,(−1). Set

Rm :=
C[xj,(−1−k) : 0 ≤ k ≤ m, 1 ≤ j ≤ �]

(T jfk : 1 ≤ k ≤ n, j ≥ 0) ,

the algebra of m-jets of R. The arc algebra of R is defined as the direct limit

J∞(R) := lim
→
m

Rm =
C[xj,(−1−k) : 0 ≤ k, 1 ≤ j ≤ �]

(T jfk : k = 1, . . . n, j ≥ 0) .

The scheme X∞ = lim
←
m

Xm (another notation is J∞(X)), where Xm = Spec(Rm), is 

called the infinite jet scheme of X = Spec(R). By construction, the arc algebra J∞(R)
is a differential commutative algebra. If R is graded, then J∞(R) is also graded, and we 
can define its Hilbert–(Poincare) series as:

HSq(J∞(R)) :=
∑
m∈Z

dim
(
J∞ (R)(m)

)
qm.

We introduce a grading on R by letting deg(xj,(−1−k)) := k + 1.
Let V be a vertex algebra. Provided that V is strongly finitely generated, we obtain 

a surjective map from J∞(RV ) to gr(V ), the associated graded algebra of V , where 
RV is Zhu’s commutative algebra of a vertex algebra V . A vertex algebra for which 
this map is injective is said to be classically free [6,7,33–35]. Although this notion is 
relatively new, non-trivial examples of vertex algebras with this property appeared earlier 
in the framework of principal subspaces [15,16,20] and Virasoro minimal models [19]. The 
following theorem was announced in [25, Section 9], it was motivated by [37] and full 
details were provided in [32,33].

Theorem 2.1. Let Γ be any simple graph with r nodes and without multiple edges. Con-
sider the scheme XΓ defined by the quadratic equation xkxj = 0, if k and j are adjacent 
i.e., (k, j) ∈ E(Γ), and denote by J∞(XΓ) the infinite jet algebra of XΓ. Then the Hilbert 
series of J∞(X), with deg(xj) = 1, is given by

HΓ(q) =
∑

n∈Nr
0

q
1
2
∑

(k,j)∈E(Γ) nknj+n1+···+nr

(q)n1 · · · (q)nr

.

Another important result in this context is the following theorem (see [33] and also 
[37,40]).

Theorem 2.2. For any Γ (not necessarily simple), the q-series HΓ(q) computes the charac-
ter of the principal subspace WΓ [33, Subsection 5.3] of a lattice vertex algebra associated 
to the adjacency matrix of Γ, equipped with a certain grading.
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We also note that the previous theorem can be used, with slight modifications, for 
graphs with loops. In that case we need to adjust the linear term of the q-exponent of 
HΓ(q) (see [34] for some examples). We now give some modular examples.

Examples.
(1) (Affine space A�) For R = C[x1, ..., x�], we have

J∞(R) = C
[
x1,(−1), ..., x1,(−n), ..., x�,(−1), ..., x�,(−n), ...

]
.

Since deg(xr,(−j)) = j, we immediately get

HSq(J∞(R)) = 1
(q)�∞

.

(2) (Union of two lines) Let R = C[x, y]/(xy). Then by [7,12,25] we have

HSq(J∞(R)) =
∑

n1,n2≥0

qn1n2+n1+n2

(q)n1(q)n2

= 1
(1 − q)(q)∞

.

(3) (“Fat” point) Let R = C[x]/(x2). Then by [8,12,15,20] we have

HSq(J∞(R)) =
∑
n≥0

qn
2

(q)n
= 1

(q; q5)∞(q4; q5)∞
,

where the last equality is the first Rogers–Ramanujan identity.

2.2. Modularity results

In this subsection we record some modularity results required for this paper. We start 
with the transformation laws of the Dedekind η-function η(τ) := q

1
24 (q)∞:

η(τ + 1) = e
πi
12 η(τ), η

(
−1
τ

)
=

√
−iτη(τ).

We define the weight two Eisenstein series (q := e2πiτ )

E2(τ) := 1 − 24
∑
n≥1

∑
d|n

dqn. (2.1)

This function is not quite a modular form, but transforms with an additional term under 
inversion. To be more precise, we have

E2

(
−1

)
= τ2E2(τ) + 6τ

. (2.2)

τ πi
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We also require the following representation of E2 as a Lerch-type sum. Although the 
next result is probably known, we include a proof for the sake of completeness.

Lemma 2.3. We have

1 − E2(τ)
24 =

∑
n≥1

qn

(1 − qn)2 =
∑
n≥1

(−1)n+1(1 + qn)q
n(n+1)

2

(1 − qn)2 .

Proof. The first equality is just rewriting (2.1). Using L’Hôpital’s rule twice the second 
equality follows from taking the limit ζ → 1 of the following identity (valid for 0 < |ζ| <
|q| < 1):

− ζ

(1 − ζ)2 + ζ(q)2∞
(1 − ζ) (ζ)∞(ζ−1q)∞

=
∑
n≥1

(−1)n+1(1 + qn)q
n(n+1)

2

(1 − ζqn)(1 − ζ−1qn) . (2.3)

Note that (2.3) is implied by the well-known formula (see for instance [31])

(q)2∞
(ζ)∞(ζ−1q)∞

=
∑
n∈Z

(−1)nq
n(n+1)

2

1 − ζqn
. �

We also require modularity properties of

F(τ) :=
∑

n∈Z\{0}

(−1)n+1q
3n(n+1)

2

(1 − qn)2
.

For this define (τ = u + iv) the completion of F as

F̂(τ) := F(τ) − 1
24 + E2(τ)

8 − 3η(τ)
2
√
π

∑
n∈Z− 1

6

(−1)n+ 1
6 |n|Γ

(
−1

2 , 6πn
2v

)
q−

3n2
2 ,

where the incomplete gamma function is defined as Γ(α, x) :=
∫∞
x

e−ttα−1dt for x ∈ R+

and α ∈ R. We then have the following modularity result.

Proposition 2.4. We have for 
(
a b
c d

)
∈ SL2 (Z),

F̂
(
aτ + b

cτ + d

)
= (cτ + d)2F̂(τ).

Proof. Set

r(τ) := r+(τ) + r−(τ), with

r+(τ) := 2πi
(
F(τ) − 1 + E2(τ)

)
,
η(τ) 24 8
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r−(τ) := 1
2πi

[
∂
∂z

(
ζ−1q−

1
6R(3z + τ ; 3τ)e−

π2

2 E2(τ)z2
)]

z=0
.

Here z := x + iy, ζ := e2πiz, and

R(z; τ) :=
∑

n∈Z+ 1
2

(−1)n− 1
2

(
sgn(n) −E

((
n + y

v

)√
2v

))
q−

n2
2 e−2πinz,

with E(x) := 2 
∫ x

0 e−πt2dt. By using [11] we obtain that for 
(
a b
c d

)
∈ SL2 (Z),

η

(
aτ + b

cτ + d

)
r

(
aτ + b

cτ + d

)
= (cτ + d)2η(τ)r(τ). (2.4)

We compute

r−(τ)

= 1
2πiq

− 1
6

∑
n∈Z+ 1

2

(−1)n− 1
2

[
∂

∂z

((
sgn(n)−E

((
n+ 1

3 + y

v

)√
6v

))
ζ−3n−1

)]
z=0

q−
3n2
2 −n

= − 1
2πi

∑
n∈Z− 1

6

(−1)n+ 1
6

[
∂

∂z

((
sgn(n) − E

((
n + y

v

)√
6v

))
ζ−3n

)]
z=0

q−
3n2
2 .

We now use the identities

E′(x) = 2e−πx2
, E(x) = sgn(x)

(
1 − 1√

π
Γ
(

1
2 , πx

2
))

, (2.5)

Γ
(

1
2 , x

)
= −1

2Γ
(
−1

2 , x
)

+ x− 1
2 e−x (2.6)

to obtain that[
∂

∂z

((
sgn(n) − E

((
n + y

v

)√
6v

))
ζ−3n

)]
z=0

= 3
√
πi|n|Γ

(
−1

2 , 6πn
2v

)
.

This gives that

r−(τ) = − 3
2
√
π

∑
n∈Z− 1

6

(−1)n+ 1
6 |n|Γ

(
−1

2 , 6πn
2v

)
q−

3n2
2 .

Thus we have that F̂(τ) = η(τ)r(τ). The claim then follows from (2.4). �
We also require certain indefinite theta functions, considered by Zwegers in his thesis 

[47]. We let A be a symmetric r × r matrix with integral coefficients that is non-
degenerate, Q(x) := 1xTAx the corresponding quadratic form, and B(x, y) := xTAy
2
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the associated bilinear form. We assume that Q has signature (r−1, 1). Fix c0 ∈ Rr and 
let

CQ := {c ∈ Rr : Q(c) < 0, B(c, c0) < 0} .

For c1, c2 ∈ CQ, set

	(n) = 	c1,c2
A (n; τ) := E

(
B(c1,n)√
−Q(c1)

√
v

)
−E

(
B(c2,n)√
−Q(c2)

√
v

)
.

Then define

ΘA (z; τ) = Θc1,c2
A (z; τ) :=

∑
n∈Zr

	

(
n + Im(z)

v

)
e2πiB(n,z)qQ(n).

We have the following properties (see Proposition 2.7 of [47]).

Proposition 2.5.

(1) We have

ΘA

(
z

τ
;−1

τ

)
= i√

− det(A)
(−iτ) r

2
∑

�∈A−1Zr/Zr

e
2πi
τ Q(z+�τ)ΘA(z + �τ ; τ).

(2) We have

ΘA(−z; τ) = −ΘA(z; τ).

(3) For n ∈ Z2, m ∈ A−1Z2, we have

ΘA(z + nτ + m; τ) = e−2πiB(n,z)q−Q(n)ΘA(z; τ).

We finish this subsection by defining quantum modular forms, following Zagier [45].

Definition. A function f : Q → C (here Q ⊆ Q) is a quantum modular form of weight 
k ∈ 1

2Z and multiplier χ for a subgroup Γ of SL2(Z) and quantum set Q, if for M =(
a b
c d

)
∈ Γ the function

f(τ) − χ(M)−1(cτ + d)−kf(Mτ) (2.7)

can be extended to an open subset of R and is real-analytic there.

Remark. Zagier [46] recently also defined holomorphic quantum modular forms. These 
are holomorphic functions f : H → C, such that (2.7) is holomorphic in a larger domain 
than H.
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An example of a holomorphic quantum modular form is the generating function for 
the number of divisors. We have the following by [10, Theorem 1] (see also [39]).

Lemma 2.6. The function

D(q) :=
∑
n≥1

∑
d|n

qn =
∑
n≥1

qn

1 − qn

is a holomorphic quantum modular form of weight one. Moreover, 
∑

n≥1
n2qn

1−qn is a holo-
morphic quantum modular form of weight 3.

2.3. q-series results

We finish this section by recalling several q-series identities needed in the paper. We 
often use Euler’s identity

1
(ζ)∞

=
∑
n≥0

ζn

(q)n
. (2.8)

We also require Bailey’s pairs [1, Chapter 3]. Recall that a pair of sequences (αn, βn)
is called a Bailey pair relative to (a, q) if

βn =
∑

0≤j≤n

αj

(q)n−j(aq)n+j
.

Bailey’s Lemma is as follows.

Lemma 2.7. [1, Theorem 3.4] If (αn, βn) is a Bailey pair relative to (a, q), then (assuming 
convergence conditions) we have

∑
n≥0

(	1)n(	2)n
(

aq

	1	2

)n

βn =

(
aq
�1

)
∞

(
aq
�2

)
∞

(aq)∞
(

aq
�1�2

)
∞

∑
n≥0

(	1)n(	2)n
(

aq
�1�2

)n

(
aq
�1

)
n

(
aq
�2

)
n

αn.

Recall an identity by Andrews and Freitas [5, Corollary 4.3]:

1
(q)∞

∑
n≥0

ζn ((q)n − (q)∞) =
∑
n≥1

qn

(1 − ζqn) (q)n
, (2.9)

and another identity [23, formula (5.1)]∑
n≥0

ζn ((q)n − (q)∞) =
∑
n≥1

qn
(
1 + ζ + · · · + ζn−1) (q)n−1. (2.10)
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If ζ = 1, this recovers Zagier’s identity [43, formula (16)], and for ζ = 0 we get∑
n≥0

qn+1(q)n = 1 − (q)∞. (2.11)

We also require an identity of Andrews, Garvan, and Liang [4, Theorem 3.5]

∑
n≥0

ζn
((
qn+1)

∞ − 1
)

=
∑
n≥1

(−1)nq
n(n+1)

2

(1 − ζqn) (q)n
. (2.12)

Finally, we require two of Fine’s identities [21, equations (12.42),(12.45)]

∑
n≥1

(−1)n+1q
n2+n

2

(1 − qn) (q)n
= D(q), (2.13)

∑
n≥0

(
1

(q)∞
− 1

(q)n

)
= 1

(q)∞
D(q). (2.14)

3. A-series and the proof of Theorem 1.1

We start our investigation of mock and quantum modular properties of graph series 
by focusing on the path graphs (i.e., Dynkin diagrams of type A) denoted by Ak, k ≥ 1
(as usual A1 is just a single node):

1 − 2 − 3 − · · · − k

The corresponding graph series are given by

HAk
(q) =

∑
n∈Nk

0

qn1n2+···+nk−1nk+n1+···+nk

(q)n1 · · · (q)nk

.

Using (2.8) on the sums for n1, n2, nk+3, and nk+4 and relabeling, it is easy to see that 
for k ≥ 3,

HAk+4(q) = 1
(q)2∞

HAk
(q), (3.1)

where for k ≥ 2

HAk
(q) :=

∑
n∈Nk

0

qn1n2+···+nk−1nk+n1+···+nk

(q)n1+1(q)n2 · · · (q)nk−1(q)nk+1
.

Further applications of Euler’s formula (2.8) give
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HAk
(q) = q−2

∑
n1,...,nk−2≥0

(
1

(q)∞
− 1

(q)nk−2

)

×
(

1
(q)∞

− 1
(q)n1

)
qn1n2+...+nk−3nk−2+n2+···+nk−3

(q)n2 · · · (q)nk−3

.

The following identities are taken from [25]:

HA1(q) = 1
(q)∞

, HA2(q) = 1
(1 − q)(q)∞

,

HA3(q) = q−1 (1 − (q)∞)
(q)2∞

, HA4(q) = q−1

(q)2∞
D(q),

HA5(q) = q−1

(q)3∞

∑
n≥0

((q)n − (q)∞) , HA6(q) = 2q−1

(q)3∞
D(q) − q−1

(q)3∞
+ q−1

(q)2∞
.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. For the first identity, we compute

HA7(q) = 1
(q)2∞

HA3(q) = 1
(q)3∞

∑
n≥0

q−n−2
(

1
(q)∞

− 1
(q)n

)(
(q)n − (q)∞

)
.

To analyze the last sum, we introduce a new parameter ζ and consider

Fζ(q) :=
∑
n≥0

ζn
(

1
(q)∞

− 1
(q)n

)(
(q)n − (q)∞

)
=

∑
n≥0

ζn
((

qn+1)
∞ + 1

(qn+1)∞
− 2

)
.

Adding (2.12) and (2.9) results in cancellation of the term n = 1, so we have

Fζ(q) =
∑
n≥2

(−1)nq
n(n+1)

2 + qn

(1 − ζqn) (q)n
.

Letting ζ = q−1 (which is now allowed) gives

Fq−1(q) =
∑
n≥0

q−n

(
1

(q)∞
− 1

(q)n

)(
(q)n − (q)∞

)
=

∑
n≥2

(−1)nq
n(n+1)

2 + qn

(1 − qn−1) (q)n
.

Next we split the right-hand side into two sums. For the first sum we recall (2.13) and 
also observe

1
1 − q

∑ (−1)n+1q
n2+n

2 +1

(1 − qn) (q)n
− q2

(1 − q)2 =
∑ (−1)nq n2+n

2

(1 − qn−1) (q)n
,

n≥1 n≥2
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which follows from the “finite” identity (here k ≥ 2)(
1

1 − q

k−1∑
n=1

(−1)n+1q
n2+n

2 +1

(1 − qn) (q)n
− q2

(1 − q)2

)
−

(
k∑

n=2

(−1)nq n2+n
2

(1 − qn−1) (q)n

)
= q

k2
2 + k

2 +1

(1 − q)(q)k
,

after letting k → ∞. Combined this implies that

∑
n≥2

(−1)nq
n(n+1)

2

(1 − qn−1)(q)n
= q

1 − q

∑
n≥2

qn

1 − qn
. (3.2)

For the second sum we reintroduce the parameter ζ and use that

∑
n≥2

qn

(1 − ζqn)(q)n
=

∑
n≥1

qn

(1 − ζqn)(q)n
− q

(1 − q)(1 − ζq) .

Employing (2.10) and

q

(1 − q)(1 − ζq) =
∑
n≥1

(
1 + · · · + ζn−1) qn

we get

∑
n≥2

qn

(1 − ζqn)(q)n
=

∑
n≥1

qn
(
1 + ζ + · · · + ζn−1)( 1

(qn)∞
− 1

)
. (3.3)

We let ζ = q−1 in (3.3) to obtain∑
n≥2

qn

(1−qn−1)(q)n

=
∑
n≥1

qn
(
1 + q−1 + · · · + q−n+1) ( 1

(qn)∞ − 1
)

= q
1−q

∑
n≥1

(1 − qn)
(

1
(qn)∞ − 1

)
= − q

1−q

∑
n≥1

qn
(

1
(qn)∞ − 1

)
+ q

1−q

∑
n≥1

(
1

(qn)∞ − 1
)
.

The first sum evaluates as

− q2

1−q

∑
n≥0

qn
(

1
(qn+1)∞ − 1

)
= − q2

(1−q)(q)∞

∑
n≥0

qn((q)n−(q)∞)=− q
(1−q)(q)∞ + q

1−q+ q2

(1−q)2 ,

where we use (2.9) with ζ = q and (2.8). Thus

∑
n≥2

qn

(1 − qn−1) (q)n
= − q

(1 − q)(q)∞
+ q

1 − q
+ q2

(1 − q)2 + q

1 − q

∑
n≥1

(
1

(qn)∞
− 1

)
.
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Combined with (3.2), the previous relation gives

∑
n≥2

(−1)nq
n(n+1)

2 + qn

(1 − qn−1) (q)n

= q

1 − q

∑
n≥2

qn

1 − qn
− q

(1 − q)(q)∞
+ q

1 − q
+ q2

(1 − q)2 + q

1 − q

∑
n≥1

(
1

(qn)∞
− 1

)

= q

1 − q

(
D(q) − 1

(q)∞
+ 1 + 1

(q)∞
G(q)

)
.

Finally, after we multiply by q−2

(q)3∞
we get the claimed formula.

For HA8(q), using (3.1), we first get

HA8(q) = q−2

(q)2∞

∑
n1,n2≥0

(
1

(q)∞
− 1

(q)n1

)(
1

(q)∞
− 1

(q)n2

)
qn1n2

= q−2

(q)2∞

∑
n1,n2≥0

(
qn1n2

(q)2∞
− qn1n2

(q)n1(q)∞
− qn1n2

(q)n2(q)∞
+ qn1n2

(q)n1(q)n2

)
.

We would like to separate this into four sums but there is a convergence issue. For this 
reason, we first evaluate the terms with n1n2 = 0. For n1 = n2 = 0 we have

q−2

(q)2∞

(
1

(q)2∞
− 2

(q)∞
+ 1

)
.

For n2 ≥ 1, n1 = 0 and n1 ≥ 1, n2 = 0 (due to symmetry) we get the contribution

−2q−2

(q)2∞

∑
n≥1

(
−1 + 1

(q)∞

)(
1

(q)∞
− 1

(q)n

)
.

We are left with

∑
n1,n2≥1

(
qn1n2

(q)2∞
− qn1n2

(q)n1(q)∞
− qn1n2

(q)n2(q)∞
+ qn1n2

(q)n1(q)n2

)

= D(q)
(q)2∞

− 2
(q)∞

∑
n≥0

(
1

(qn+1)∞
− 1

)
+

∑
n1,n2≥1

qn1n2

(q)n1(q)n2

.

For the final sum we use an identity from [25, Section 7.3] (which is essentially (2.14)):

∑
n1,n2≥1

qn1n2

(q)n1(q)n2

= 1 + 2D(q)
(q)∞

− 1
(q)∞

.

Combining with the above, and using (2.13), yields the claim. �
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Remark. As discussed in [25], Theorem 1.1 implies the formula

HA7(q) = q−1

(1 − q)(q)4∞

⎛⎝∑
n≥1

(−1)n(−3n + 1)q
3n2+n

2 +
∑
n≤−1

(−1)n(3n + 2)q
3n2+n

2

⎞⎠ .

Note however that the conjecture for HA8(q) given in [25] does not hold.

The following result describes the asymptotic behaviors and quantum modular prop-
erties of these graph series.

Proposition 3.1. As t → 0+, we have:

(1) (e−t)∞HA2(e−t) = 1
t + O(1),

(2) (e−t)2∞HA3(e−t) = 1 + O(t),
(3) (e−t)2∞HA4(e−t) = γ−log(t)

t + O(1), where γ is the Euler–Mascheroni constant,
(4) (e−t)3∞HA5(e−t) = 1 + O(t),
(5) (e−t)3∞HA6(e−t) = 2(γ−log(t))

t + O(1),
(6) (e−t)4∞HA7(e−t) = 1 + O(t),
(7) (e−t)4∞HA8(e−t) = 3(γ−log(t))

t + O(1).

Moreover, q(q)2∞HA4(q) is a holomorphic quantum modular form of weight one, while 
q(q)3∞HA5(q) and q(1 − q)(q)4∞HA7(q) + 1 are quantum modular forms of weight 3

2 .

Proof. (1) and (2) are immediate. The asymptotic behavior in (3) is well-known and 
can easily be concluded using the Euler–Maclaurin summation formula [44]. Quantum 
modular properties of q(q)2∞HA4(q) = D(q) are given in Lemma 2.6. For (4), we rewrite 
(see Theorem 2 of [43]):

G(q) = −1
2H(q) + (q)∞

(
1
2 −D(q)

)
, (3.4)

where

G(q) :=
∑
n≥0

((q)n − (q)∞), H(q) :=
∑
n≥1

n

(
12
n

)
q

n2−1
24 .

Since H(q) is a quantum modular of weight 3
2 and (q)∞ vanishes at all roots of unity 

it follows that q(q)3∞HA5(q) = G(q) is also a quantum modular of weight 3
2 . The series 

H(q) satisfies the asymptotic behavior [43, Theorem 3]

H
(
e−t

)
= −2 − 2t + O

(
t2
)
,

and thus
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(
e−t

)3
∞ HA5

(
e−t

)
= −1

2H
(
e−t

)
(1 + O(t)) = 1 + O(t).

To see (5), we use part (3). For (6) we recall an identity from [25, Subsection 7.4]

∑
n≥1

(−3n+1)(−1)nq
3n2+n

2 +
∑

n≤−1
(3n+2)(−1)nq

3n2+n
2 = −1+ (q)∞D(q)+G(q)+ (q)∞.

Using (3.4) we get

−1 + G
(
e−t

)
= t + O

(
t2
)
.

Since 1
1−e−t = 1

t + O(t), the asymptotics in (6) follow. To see quantum modularity of 
q(1 − q)(q)4∞HA7(q) + 1, we recall the first formula in Theorem 1.1:

q(1 − q)(q)4∞HA7(q) = −1 + (q)∞D(q) + G(q) + (q)∞. (3.5)

This formula implies that q(1 − q)(q)4∞HA7(q) + 1 and G(q) agree at all roots unity 
and it is argued above that G(q) is quantum modular. For (7) we use exactly the same 
argument as in (5). �

Based on Proposition 3.1, we conjecture that the following is true.

Conjecture 3.2. For n ≥ 1, there exist an, bn, cn ∈ R+ such that

(
e−t

)n
∞ HA2n

(
e−t

)
∼ an + cn log(t)

t
,

(
e−t

)n
∞ HA2n−1

(
e−t

)
∼ bn, as t → 0+.

4. 5-cycles, sums of divisors, and the proof of (1.3) and (1.4)

In this part we are concerned with series coming from certain graphs obtained by 
glueing 5-cycles. Generally, graph series associated to graphs with cycles are more com-
plicated to analyze. We start from an auxiliary result that, quite surprisingly, allows us 
to perform computations for several interesting examples of graphs. The next lemma can 
be viewed as a generalization of the A2-identity discussed in the previous section.

Lemma 4.1. For a, b ∈ N0, we have

A(a, b) : =
∑

n1,n2≥0

qn1n2+(a+1)n1+(b+1)n2

(q)n1(q)n2

= 1
(qb+1)a+1 (qa+1)∞

= 1
(qa+1)b+1 (qb+1)∞

.

Proof. The second equality follows due to the symmetry A(a, b) = A(b, a). To show the 
first, we recall a well-known formula (see [21, equation (6.2)])
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∑
n≥0

(sq)n
(q)n

tn = (stq)∞
(t)∞

. (4.1)

We compute

A(a, b) =
∑
n2≥0

q(b+1)n2

(qn2+a+1)∞ (q)n2

= 1
(qa+1)∞

∑
n≥0

(
qa+1)

n
q(b+1)n

(q)n
= 1

(qa+1)∞ (qb+1)a+1
,

where the last equality follows from (4.1), letting s = qa+1 and t = qb+1. �
Equipped with this result we can now give elegant representations of several (shifted) 

graph series associated to C5 (5-cycle)

4

5

1

2

3

,

in particular proving (1.3).

Proposition 4.2. We have

HC5(q) =
∑
n∈N5

0

qn1n2+n1n5+n2n3+n3n4+n4n5+n1+n2+n3+n4+n5

(q)n1(q)n2(q)n3(q)n4(q)n5

= q−1

(q)2∞

∑
n≥1

nqn

1 − qn
,

∑
n∈N5

0

qn1n2+n1n5+n2n3+n3n4+n4n5+2n1+n2+n3+n4+n5

(q)n1(q)n2(q)n3(q)n4(q)n5

= 1
(1 − q)2(q)2∞

,

∑
n∈N5

0

qn1n2+n1n5+n2n3+n3n4+n4n5+n1+2n2+n3+n4+2n5

(q)n1(q)n2(q)n3(q)n4(q)n5

= q−2

(q)2∞

∑
n≥2

nqn

1 − qn
.

Proof. Let

B1(q) :=
∑
n≥1

nqn

1 − qn
, B2(q) := 1

(1 − q)2(q)2∞
, B3(q) := q−2

(q)2∞

∑
n≥2

nqn

1 − qn
.

Note that B2(q) + qB3(q) = B1(q). It is easy to see that the same relation holds for the 
left-hand sides. Thus it suffices to prove the first two identities. We start with the second 
identity. Euler’s identity (2.8) gives

∑
5

qn1n2+n1n5+n2n3+n3n4+n4n5+2n1+n2+n3+n4+n5

(q)n1(q)n2(q)n3(q)n4(q)n5
n∈N0
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=
∑

n2,n3,n4,n5≥0

qn2n3+n3n4+n4n5+n2+n3+n4+n5

(qn2+n5+2)∞ (q)n2(q)n3(q)n4(q)n5

= 1
(q)∞

∑
n2,n3,n4,n5≥0

qn2n3+n3n4+n4n5+n2+n3+n4+n5(q)n2+n5+1

(q)n2(q)n3(q)n4(q)n5

= 1
(q)∞

∑
n2,n5≥0

qn2+n5(q)n2+n5+1

(q)n2(q)n5

∑
n3,n4≥0

qn3n4+(n2+1)n3+(n5+1)n4

(q)n3(q)n4

.

Using this equals

1
(q)∞

∑
n2,n5≥0

qn2+n5(q)n2+n5+1

(q)n2(q)n5

1
(qn2+1)∞ (qn5+1)n2+1

= 1
(q)2∞

∑
n2,n5≥0

qn2+n5

= 1
(1 − q)2(q)2∞

.

For the first identity we use a similar argument. We get

∑
n∈N5

0

qn1n2+n1n5+n2n3+n3n4+n4n5+n1+n2+n3+n4+n5

(q)n1(q)n2(q)n3(q)n4(q)n5

=
∑

n2,n3,n4,n5≥0

qn2n3+n3n4+n4n5+n2+n3+n4+n5

(qn2+n5+1)∞ (q)n2(q)n3(q)n4(q)n5

= 1
(q)∞

∑
n2,n5≥0

qn2+n5

1 − qn2+n5+1 = q−1

(q)2∞

∑
n≥1

nqn

1 − qn
,

as claimed. �
Next we consider the graph series associated to the graph

4

5

1

2

3

67 8

Fig. 1. Graph Γ8.

We need a result for the sum of squares of divisors.

Lemma 4.3. We have

∑
3

qn1+n2+n3+1

(1 − qn1+n2+1)(1 − qn1+n2+n3+1) =
∑
n≥1

n2qn

1 − qn
.

n∈N0
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Proof. We can write the left-hand side as

∑
0≤�≤k
k≥0

(� + 1)qk+1

(1 − q�+1)(1 − qk+1)

=
∑

1≤�≤k
k≥1

�qk

(1 − q�)(1 − qk) =
∑

1≤�≤k
k≥1

�qk
(
q� + 1 − q�

)
(1 − qk) (1 − q�)

=
∑

1≤�≤k
k≥1

�qk+�

(1 − q�)(1 − qk) + 1
2
∑
k≥1

k(k + 1)qk

1 − qk

= 1
2

∑
k,�≥1

min(k, �)qk+�

(1 − qk)(1 − q�) + 1
2
∑
k≥1

kq2k

(1 − qk)2 + 1
2
∑
k≥1

k(k + 1)qk

1 − qk
.

Finally plugging in [2, equations (5.4) and (6.5)]

∑
k,�≥1

min(k, �)qk+�

(1 − qk)(1 − q�) =
∑
n≥1

n(n− 1)qn

1 − qn
−

∑
n≥1

nq2n

(1 − qn)2 ,

gives the claim. �
Remark. Recall Bell’s identity for the sum of squares of divisors [2, equation (2.3)]

∑
n≥1

qn

(1 − qn)2

(
1

1 − q
+ 1

1 − q2 + · · · + 1
1 − qn

)
=

∑
n≥1

n2qn

1 − qn
.

Curiously, in Lemma 4.3 we prove a slightly different identity

∑
n≥1

qn

1 − qn

(
1

1 − q
+ 2

1 − q2 + · · · + n

1 − qn

)
=

∑
n≥1

n2qn

1 − qn
.

Now we are ready to prove (1.4).

Proof of (1.4). We enumerate the vertices of Γ8 as on Fig. 1. We use (2.8) for n1 to 
obtain∑
n∈N8

0

qn1n2+n1n5+n1n6+n2n3+n2n7+n3n4+n3n6+n4n5+n6n8+n7n8+n1+n2+n3+n4+n5+n6+n7+n8

(q)n1(q)n2(q)n3(q)n4(q)n5(q)n6(q)n7(q)n8

=
∑

n2,n3,n4,n5,n6,n7,n8≥0

qn2n3+n2n7+n3n4+n3n6+n4n5+n6n8+n7n8+n2+n3+n4+n5+n6+n7+n8

(qn2+n5+n6+1)∞(q)n2(q)n3(q)n4(q)n5(q)n6(q)n7(q)n8

= 1
(q)∞

∑ (q)n2+n5+n6q
n2n7+n6n8+n7n8+n2+n5+n6+n7+n8

(q)n2(q)n5(q)n6(q)n7(q)n8
n2,n5,n6,n7,n8≥0
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×
∑

n3,n4≥0

qn3n4+(n2+n6+1)n3+(n5+1)n4

(q)n3(q)n4

= 1
(q)∞

∑
n2,n5,n6,n7,n8≥0

(q)n2+n5+n6q
n2n7+n6n8+n7n8+n2+n5+n6+n7+n8

(qn5+1)∞(qn2+n6+1)n5+1(q)n2(q)n5(q)n6(q)n7(q)n8

= 1
(q)2∞

∑
n2,n5,n6,n7,n8≥0

(q)n2+n5+n6q
n2n7+n6n8+n7n8+n2+n5+n6+n7+n8

(qn2+n6+1)n5+1(q)n2(q)n6(q)n7(q)n8

using Lemma 4.1 in the penultimate step. Using (2.8), we then rewrite this as

1
(q)2∞

∑
n2,n5,n6≥0

(q)n2+n5+n6q
n2+n5+n6

(q)n2(q)n6(qn2+n6+1)n5+1(qn2+1)∞(qn6+1)n2+1

= 1
(q)3∞

∑
n2,n5,n6≥0

(q)n2+n5+n6q
n2+n5+n6

(q)n6(qn2+n6+1)n5+1(qn6+1)n2+1

= q−1

(q)3∞

∑
n2,n5,n6≥0

qn2+n5+n6+1

(1 − qn2+n6+1)(1 − qn2+n5+n6+1) = q−1

(q)3∞

∑
n≥1

n2qn

1 − qn
,

where the last equality is due to Lemma 4.3. �
Remark. Lemma 2.6 implies that q(q)3∞HΓ8(q) is a weight 3 holomorphic quantum mod-
ular form.

5. D4 graph series and the proof of (1.5)

In this part we investigate graph series associated to the graph of type D4:

HD4(q) =
∑

n∈N4
0

qn1n2+n1n3+n1n4+n1+n2+n3+n4

(q)n1(q)n2(q)n3(q)n4

.

We first obtain a representation for HD4(q) using Appell–Lerch sums. Using this result 
we then rewrite it as an indefinite theta function of signature (1, 1). We also discuss 
mock modular properties and the asymptotic behavior as q → 1−. To view modularity 
properties of HD4 , we use

I1(q) :=
∑

n∈Z\{0}

(−1)n+1q
n(3n+1)

2

(1 − qn)2
, I2(q) :=

∑
n∈Z\{0}

(−1)n+1nq
n(n+1)

2

1 − qn
,

which are mock modular. Moreover, we require the generating function for so-called 
ranks of strongly unimodal sequences, explicitly given by U(−ζ; q), where

U(ζ; q) :=
∑

qn+1(ζq)n
(
ζ−1q

)
n
.

n≥0
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Proposition 5.1. We have

HD4(q) = q−1

(q)4∞

(
I1(q) + 1

24(1 − E2(τ)) + I2(q)
)

= q−1

(q)3∞
U(1; q).

Proof. We use Euler’s identity (2.8) three times (for n2, n3, and n4) to write

HD4(q) =
∑
n≥0

qn

(q)n(qn+1)3∞
= 1

(q)3∞

∑
n≥0

qn(q)2n = q−1

(q)3∞
U(1; q).

To see the first identity, we use an identity of Andrews [3, equation (1.2)], giving

U(1; q) = 1
(q)∞

⎛⎝∑
n≥1

(−1)n+1(1 + qn)q
n(3n+1)

2

(1 − qn)2

−
∑
n≥1

qn

(1 − qn)2 + 2
∑
n≥1

(−1)n+1nq
n(n+1)

2

1 − qn

⎞⎠ .

Rewriting the first and the third sum and using that 
∑

n≥1
qn

(1−qn)2 = 1−E2(τ)
24 yields the 

claim. �
We next prove the indefinite theta function representation of HD4 as stated in (1.5). 

We note that similar formulas already exist in the literature; see for instance [13, Theorem 
1.5].

Proof of (1.5). We have

(q)∞U(1; q) =
∑
n≥1

(−1)n+1(1 + qn)q
n(3n+1)

2

(1 − qn)2 −
∑
n≥1

qn

(1 − qn)2 + 2
∑
n≥1

(−1)n+1nq
n(n+1)

2

1 − qn
.

We first apply Lemma 2.3 to combine the first and second sum in F (q) to obtain

(q)∞U(1; q) = −
∑
n≥1

(−1)n+1 (1 + qn) q
n(n+1)

2

(
1 − qn

2
)

(1 − qn)2 + 2
∑
n≥1

(−1)n+1nq
n(n+1)

2

1 − qn
.

Next we use the identity:

−
(1 + qn)

(
1 − qn

2
)

(1 − qn)2 = −
n−1∑
m=0

(2m + 1)qnm − 2n
∑
m≥n

qnm,

which follows from expanding the left-hand side as a geometric series. Plugging this in, 
we have
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(q)∞U(1; q) =
∑
n≥1

(−1)nq
n(n+1)

2

⎛⎝n−1∑
m=0

(2m + 1)qnm + 2n
∑
m≥n

qnm

⎞⎠
+

∑
n≥1

∑
m≥0

(−1)n+12nq
n(n+1)

2 +nm

=
∑
n≥1

(−1)nq
n(n+1)

2

n−1∑
m=0

(2m + 1 − 2n)qnm.

The claim now follows by changing n �→ n + m + 1 and using Proposition 5.1. �
Remark. Quantum modular and mock modular properties of U(1; q) are well-understood 
and therefore follow for HD4(q). In particular, this gives (as t → 0+)

(
e−t

)3
∞ e−

23t
24 HD4

(
e−t

)
=

∑
n≥0

Tn

n!

(
−t

24

)n

,

where Tn are Glaisher’s numbers [13, Theorem 1]. Moreover, by [41], (q)3∞q
1
24HD4(q) is 

a mixed mock modular form.

Remark (�-star graphs). It is worth noting that for every �-star graph X�, � ≥ 3, we can 
write

HX�
(q) = 1

(q)�∞

∑
n≥0

qn(q)�−1
n . (5.1)

For � = 2 we obtain the A3-graph function discussed in Section 3, via (2.11). However 
for � > 3, we are not aware of any Appell–Lerch type series representation for the sum 
in (5.1). It would be interesting to determine their quantum modular properties.

6. D5 graph series and the proof of (1.6)

In this section we consider the graph series of type D5:

HD5(q) =
∑

n∈N5
0

qn1n2+n1n3+n1n4+n4n5+n1+n2+n3+n4+n5

(q)n1(q)n2(q)n3(q)n4(q)n5

. (6.1)

Our first result is the following Lerch-type sum representation.

Proposition 6.1. We have

HD5(q) = q−1

(q)3∞

∑ (−1)n+1 (1 + qn) q
n(n+1)

2

(
1 − qn

2
)

(1 − qn)2
.

n≥1
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Proof. To begin we use (6.1), and apply (2.8) three times to write

HD5(q) = 1
(q)3∞

∑
n1,n4≥0

qn1n4+n1+n4(q)n1 = 1
(q)3∞

∑
n≥0

qn(q)n
1 − qn+1 . (6.2)

Using [36, Theorem 8], with a = q2, d = b2 → 0, and c = q and a direct calculation 
yields that the following are a Bailey pair relative to (q2, q),

αn :=
(−1)nq

n(n+1)
2

(
1 + qn+1) (1 − qn

2+2n+1
)

1 − q2 , βn := 1
(q2)n

.

Inserting this Bailey pair into Lemma 2.7, with 	1 = 	2 = q, yields

∑
n≥0

qn(q)n
1 − qn+1 = 1

1 − q

∑
n≥0

qn(q)2nβn =
(
q2)2

∞
(1 − q) (q3, q)∞

∑
n≥0

qn(q)2nαn

(q2)2n

=
∑
n≥0

(−1)n
(
1 + qn+1) q n2+3n

2

(
1 − qn

2+2n+1
)

(1 − qn+1)2

= −q−1
∑
n≥1

(−1)n (1 + qn) q
n(n+1)

2

(
1 − qn

2
)

(1 − qn)2
.

Plugging into (6.2) gives the claim. �
We next give an indefinite theta function representation for the series of interest, 

proving (1.6).

Theorem 6.2. We have

∑
n≥1

(−1)n (1 + qn) q
n(n+1)

2

(
1 − qn

2
)

(1 − qn)2

= − q

(q)2∞

⎛⎝ ∑
n,m≥0

−
∑

n,m<0

⎞⎠ (−1)n(n + 1)2q
n2+3n

2 +3nm+3m2+4m.

Proof. Let us first give a sketch of proof. The idea is to view this as an identity between 
modular forms in trivial spaces. For this, denote the left-hand side by L(τ) and the right-
hand side by R(τ). Then define the completion L̂(τ) and R̂(τ) (see (6.3) and (6.4)). We 
then show that L̂ and L as well as R̂ and R differ by the same function (see (6.5)). We 
finish the proof by showing modulation of L̂ and R̂ (see (6.9) and (6.13)).
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To find L̂ we write, using Lemma 2.3,

∑
n≥1

(−1)n (1 + qn) q
n(n+1)

2

(1 − qn)2
= E2(τ) − 1

24 ,

−
∑
n≥1

(−1)n (1 + qn) q
n(3n+1)

2

(1 − qn)2
=

∑
n∈Z\{0}

(−1)n+1q
n(3n+1)

2

(1 − qn)2
=: F(τ),

changing n �→ −n for the contribution from the term +qn. Thus

L(τ) = F(τ) + E2(τ) − 1
24 =

(
F(τ) − 1

24 + E2(τ)
8

)
− E2(τ)

12 .

Define

L̂(τ) := F̂(τ) − E2(τ)
12 . (6.3)

To find R̂, we write

1
2

∑
n,m∈Z

(
sgn

(
n + 1

2

)
+ sgn

(
m + 1

2

))
(−1)n(n + 1)2q

n2+3n
2 +3nm+3m2+4m

= −q−1

2
∑
n∈Z2

(
sgn

(
n1 −

1
2

)
+ sgn

(
n2 + 1

2

))
(−1)n1n2

1q
n2
1
2 +n1

2 +3n1n2+3n2
2+n2

= q−1

8π2

[
∂2

∂z2

∑
n∈Z2

(
sgn

(
n1 −

1
2

)
+ sgn

(
n2 + 1

2

))
e2πi

(
n1

( 1
2+z+ τ

2
)
+n2τ

)
qQ(n)

]
z=0

,

where Q(n) := n2
1
2 + 3n1n2 + 3n2

2. Setting z := (−2z, τ6 + 1
6 + z), c1 := (−2, 1), c2 :=

(−1, 13 ), and choosing y > 0 sufficiently small, we may write, using the notation from 
Section 2,

∑
n∈Z2

(
sgn

(
n1 −

1
2

)
+ sgn

(
n2 + 1

2

))
e2πi

(
n1

( 1
2+z+ τ

2
)
+n2τ

)
qQ(n)

=
∑
n∈Z2

(
sgn

(
B

(
n + Im(z)

v
, c1

))
− sgn

(
B

(
n + Im(z)

v
, c2

)))
e2πiB(n,z)qQ(n).

Define

Φ(z; τ) := Θc1,c2( 1 3
3 6

)(z; τ), G(τ) := q
1
12

8π2

[
∂2

∂z2 Φ(z; τ)
]
z=0

, R̂(τ) := − G(τ)
η(τ)2 . (6.4)

We next show that



26 K. Bringmann et al. / Journal of Combinatorial Theory, Series A 197 (2023) 105749
L−(τ) := L̂(τ) − L(τ) = R̂(τ) −R(τ) =: R−(τ). (6.5)

For this, we rewrite the right-hand side of this identity. We start by computing

[
∂2

∂z2 Φ(z; τ)
]
z=0

=
∑
n∈Z2

(−1)n1q
n2
1
2 +n1

2 +3n1n2+3n2
2+n2

×
[
∂2

∂z2

((
E

((
n1 −

2y
v

)√
v

)
+ E

((
n2 + 1

6 + y

v

)√
6v

))
e2πin1z

)]
z=0

. (6.6)

For the first summand, write

n2
1
2 + n1

2 + 3n1n2 + 3n2
2 + n2 = 3

(
n2 + n1

2

)2
+

(
n2 + n1

2

)
− n2

1
4 ,

make the change of variables n1 �→ 2n1+δ, δ ∈ {0, 1}, n1 ∈ Z, and then let n2 �→ n2−n1. 
Using the second identity in (2.5), the contribution to R− is

− 1√
π

∑
n∈Z2

(−1)n1f(n1)q3
(
n2+n1

2
)2+(

n2+n1
2

)
−n2

1
4

= − 1√
π

∑
δ∈{0,1}

(−1)δ
∑
n1∈Z

f(2n1 + δ)q− 1
4 (2n1+δ)2

∑
n2∈Z

q3
(
n2+ δ

2
)2+n2+ δ

2 ,

where

f(n) :=
[
∂2

∂z2

(
sgn

(
n− 2y

v

)
Γ
(

1
2 , π

(
n− 2y

v

)2
)
e2πinz

)]
z=0

.

By changing n1 �→ −n1 − δ one sees that the sum on n1 vanishes (since f is an odd 
function).

For the second term in (6.6), write

n2
1
2 + n1

2 + 3n1n2 + 3n2
2 + n2 = 1

2 (n1 + 3n2)2 + 1
2 (n1 + 3n2) −

3n2
2

2 − n2

2 .

Then we shift n1 �→ n1 − 3n2 to obtain that the contribution of the second term to R−

is

− 1√
π

∑
n∈Z2

(−1)n1g(n1, n2)q
1
2 (n1+3n2)2+ 1

2 (n1+3n2)−
3n2

2
2 −n2

2

= − 1√
π

∑
n∈Z2

(−1)n1+n2g(n1 − 3n2, n2)q
n2
1
2 +n1

2 − 3n2
2

2 −n2
2 , (6.7)

where
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g(n) :=
[
∂2

∂z2

(
sgn

(
n2 + 1

6 + y

v

)
Γ
(

1
2 , 6π

(
n2 + 1

6 + y

v

)2

v

)
e2πin1z

)]
z=0

.

Making the change of variables n1 �→ −n1 − 1, we see that

∑
n1∈Z

(−1)n1h

(
n1 + 1

2

)
q

n1(n1+1)
2 = 0

for any even function h. Thus we obtain that (6.7) equals

− 4
√
πi

∑
n1∈Z

(−1)n1

(
n1 + 1

2

)
q

n1(n1+1)
2

×
∑
n2∈Z

(−1)n2sgn
(
n2 + 1

6

)
q−

3n2
2

2 −n2
2

×
[
∂

∂z

(
Γ
(

1
2 , 6π

(
n2 + 1

6 + y

v

)2

v

)
e−6πi

(
n2+ 1

6
)
z

)]
z=0

.

The sum on n1 is

q−
1
8
∑
n1≥0

(−1)n1(2n1 + 1)q 1
8 (2n1+1)2 = q−

1
8 η(τ)3.

The sum on n2 is

q
1
24

∑
n2∈Z+ 1

6

(−1)n2− 1
6 sgn(n2)q−

3n2
2

2

[
∂

∂z

(
Γ
(

1
2 , 6π

(
n2 + y

v

)2
v

)
e−6πin2z

)]
z=0

. (6.8)

We then compute, using (2.6),[
∂

∂z

(
Γ
(

1
2 , 6π

(
n2 + y

v

)2
v

)
e−6πin2z

)]
z=0

= 3πin2Γ
(
−1

2 , 6πn
2
2v

)
.

Thus (6.8) equals (upon changing n2 �→ −n2)

3πiq 1
24

∑
n2∈Z+ 1

6

(−1)n2− 1
6 |n2|Γ

(
−1

2 , 6πn
2
2v

)
q−

3n2
2

2

= 3πiq 1
24

∑
n2∈Z− 1

6

(−1)n2+ 1
6 |n2|Γ

(
−1

2 , 6πn
2
2v

)
q−

3n2
2

2 .

From this we obtain (6.5).
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We next determine the transformation laws of L̂ and of R̂. By Proposition 2.4 and 
(2.2),

L̂(τ + 1) = L̂(τ), L̂
(
−1
τ

)
= τ2L̂(τ) + iτ

2π . (6.9)

We show that R̂ satisfies the same transformation laws as L̂. By Proposition 2.5 we 
obtain

Φ
(
z

τ
;−1

τ

)
= τ√

3

∑
� (mod 3)

e
2πi
τ Q

(
−2z,− 1

6+ τ
6 +z+ �τ

3
)
Θ( 1 3

3 6

) ((−2z,−1
6 + τ

6 + z + �τ

3

)
; τ
)
.

Changing z �→ −z and using Proposition 2.5 (2), we compute

[
∂2

∂z2

(
e

2πi
τ Q

(
−2z,− 1

6+ τ
6 +z+ �τ

3
)
Θ( 1 3

3 6

) ((−2z,−1
6 + τ

6 + z + �τ

3

)
; τ
))]

z=0

= −
[
∂2

∂z2

(
e

2πi
τ Q

(
−2z, 16− τ

6 +z− �τ
3
)
Θ( 1 3

3 6

) ((−2z, 1
6 − τ

6 + z − �τ

3

)
; τ
))]

z=0
.

Thus

G
(
−1
τ

)
= −τ3 e−

πi
6τ

8
√

3π2

×
∑

� (mod 3)

[
∂2

∂z2

(
e

2πi
τ Q

(
−2z, 16− τ

6 +z− �τ
3
)
Θ( 1 3

3 6

) ((−2z, 1
6 − τ

6 + z − �τ

3

)
; τ
))]

z=0
.

Now we choose � ∈ {0, −1, −2}. Using Proposition 2.5 (2) and (3), we see that the 
contribution for � = −2 is an odd function evaluated at zero, and as such vanishes.

Using Proposition 2.5 again to relate the remaining theta functions we obtain

G
(
−1
τ

)
= − iτ3

8π2 q
1
12

[
∂2

∂z2

(
e−

2πiz2
τ Θ( 1 3

3 6

) ((2z, 1
6 + τ

6 + z

)
; τ
))]

z=0
. (6.10)

Now[
∂2

∂z2

(
e−

2πiz2
τ Θ( 1 3

3 6

) ((2z, 1
6 + τ

6 + z

)
; τ
))]

z=0

=
[
∂2

∂z2 Θ( 1 3
3 6

) ((2z, 1
6 + τ

6 + z

)
; τ
)]

z=0
− 4πi

τ
Θ( 1 3

3 6

) ((0, 1
6 + τ

6

)
; τ
)
.

The first summand contributes



K. Bringmann et al. / Journal of Combinatorial Theory, Series A 197 (2023) 105749 29
−iτ3G(τ). (6.11)

We next claim that

Θ( 1 3
3 6

) ((0, 1
6 + τ

6

)
; τ
)

= (q)2∞. (6.12)

For this, we make the same changes of variables as in the proof of (6.5) to obtain that

Θ( 1 3
3 6

) ((0, 1
6 + τ

6

)
; τ
)

=
∑
n∈Z2

(−1)n1

(
sgn(n1) + sgn

(
n2 + 1

2

))
q

n2
1
2 +n1

2 +3n1n2+3n2
2+n2 .

One can now show (as above) that both sides of (6.12) satisfy the same transformation 
law and lie in a one-dimensional space. Computing one coefficient then gives that they 
are equal.

Using (6.9), (6.10), and (6.11), we obtain that

R̂(τ + 1) = R̂(τ), R̂
(
−1
τ

)
= τ2R̂(τ) + iτ

2π . (6.13)

This shows that R(τ) − L(τ) is a weakly holomorphic modular form of weight two for 
SL2(Z). Since one can prove that it does not grow it has to be zero. �
Remark. Propositions 6.1 and 6.2 give that HD5 is a mixed mock modular form, as 
claimed in Theorem 1.4.

7. Graphs with multiple edges: Kontsevich–Zagier type series

In this part we contemplate graph series with multiple edges. Series of this type do 
not connect directly with the geometry of jet schemes, but they do naturally appear in 
vertex algebras (see Theorem 2.2). Here we focus on the two simplest examples coming 
from the graph

• = •

of type B2, and from the graph

• − • = •

of type B3. In the setup of principal subspaces, we consider additional q-series arising 
from cosets in the dual lattices (these compute characters of modules). Thus for B2 we 
obtain three q-series
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F1(q) :=
∑

n1,n2≥0

q2n1n2+n1+n2

(q)n1(q)n2

, F2(q) :=
∑

n1,n2≥0

q2n1n2+n1+2n2

(q)n1(q)n2

,

F3(q) :=
∑

n1,n2≥0

q2n1n2+2n1+2n2

(q)n1(q)n2

.

Let us now recall two remarkable false theta functions used to compute unified WRT 
invariants of the Poincaré 3-sphere [30]. For this we let

χ+(n) :=
{

(−1)
⌊

n
30

⌋
if n2 ≡ 1 (mod 120),

0 otherwise,

χ−(n) :=
{

(−1)
⌊

n
30

⌋
if n2 ≡ 49 (mod 120),

0 otherwise.

Then the two q-series

Θ̃+(q) :=
∑
n≥1

χ+(n)q
n2−1
120 , Θ̃−(q) :=

∑
n≥1

χ−(n)q
n2−49

120 ,

combine into a vector-valued quantum modular form of weight 1
2 [30, Section 4]. The 

following proposition relates the functions F1, F2, and F3 to these false theta functions.

Proposition 7.1. We have

F1(q) = Θ̃−(q)
(q)∞

, F2(q) =
q−1

(
Θ̃+(q) − 1

)
(q)∞

, F3(q) =
q−2

(
Θ̃−(q) − Θ̃+(q)

)
(q)∞

.

Proof. Using (2.8), we obtain

F2(q) =
∑

n1,n2≥0

qn1+(2n1+2)n2

(q)n1(q)n2

=
∑
n1≥0

qn1

(q)n1 (q2n1+2)∞
= 1

(q)∞

∑
n≥0

qn
(
qn+1)

n+1 .

The sum is known to be q−1(Θ̃+(q) − 1) by (3.14) of [24]. For the first identity, we write

F1(q) =
∑

n1,n2≥0

qn1+(2n1+1)n2

(q)n1(q)n2

=
∑
n1≥0

qn1

(q)n1 (q2n1+1)∞
= 1

(q)∞

∑
n≥0

qn
(
qn+1)

n
,

and use (3.13) of [24]. Easy manipulations then yield

F3(q) = q−2F1(q) − q−1F2(q) −
q−2

(q)∞
,

which implies the formula for F3(q). �
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For a graph Γ of type B3 we record similar identities. We first consider a slightly 
shifted version of HΓ(q) given by

H1(q) :=
∑

n∈N3
0

q2n1n2+n2n3+n1+2n2+n3

(q)n1(q)n2(q)n3

.

As before, using Euler’s identity (2.8) gives

H1(q) = q−1

(q)∞

∑
n1≥0

qn1+1

(1 − q2n1+2) (q)n1

= q−1

(q)∞

∑
n≥0

qn+1

(1 + qn+1) (q)n+1

= q−1

(q)∞

∑
n≥1

qn

(1 + qn) (q)n
.

We can rewrite the right-hand side using a sum of tails identity [5, Theorem 4.1] as

H1(q) = q−1

(q)2∞

∑
n≥1

(−1)n ((q)n − (q)∞) .

By (2.10) with ζ = −1, we have∑
n≥0

(−1)n ((q)n − (q)∞) =
∑
n≥1

q2n−1(q)2n−2.

This can be further expressed, using (2.11), as

1
2

⎛⎝−(q)∞ + 1 +
∑
n≥0

(−1)nqn+1(q)n

⎞⎠ .

The last sum, σ(q) = 1 +
∑

n≥0(−1)nqn+1(q)n, is a quantum modular of weight zero 
(see the examples in [45]).

For the graph series

H2(q) :=
∑

n∈N3
0

q2n1n2+n2n3+n1+n2+n3

(q)n1(q)n2(q)n3

,

we first deduce that

H2(q) = 1
(q)∞

∑
n1≥0

qn1

(1 − q2n1+1)(q)n1

= 1
(1 − q)(q)∞

+ 1
(q)2∞

∑
n≥0

qn((q)2n − (q)∞),

by [5, Theorem 4.1] and [43, Theorem 2]. Recall formula (2.10):
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∑
n≥0

ζn ((q)n − (q)∞) =
∑
n≥1

qn
(
1 + ζ + · · · + ζn−1) (q)n−1.

We extract all even powers of ζ on both sides of this equation:

∑
n≥0

ζ2n ((q)2n − (q)∞)

=
∑
n≥1

(
1 + ζ2 + · · · + ζ2n−2) q2n−1(q)2n−2 +

∑
n≥1

(
1 + ζ2 + · · · + ζ2n−2) q2n(q)2n−1.

Letting ζ = q
1
2 , the right-hand side can be written as

1
1 − q

∑
n≥1

(
(1 − qn)q2n−1(q)2n−2 + (1 − qn)q2n(q)2n−1

)
.

Next we use (2.11) to get∑
n≥1

(
q2n−1(q)2n−2 + q2n(q)2n−1

)
=
∑
n≥0

qn+1(q)n = 1 − (q)∞.

We rewrite the remaining sum∑
n≥1

(
−qnq2n−1(q)2n−2 − qnq2n(q)2n−1

)
= −

∑
n≥0

q3n+2(q)2n −
∑
n≥0

q3n+3(q)2n+1.

Hence we have

H2(q) = 1
(1 − q)(q)2∞

⎛⎝1 −
∑
n≥0

(
q3n+2(q)2n + q3n+3(q)2n+1

)⎞⎠ .

8. Further examples and the proof of (1.7)

Here we consider a few more complicated graphs.

8.1. 3-cycle

As shown in [25], for the three cycle graph Γ we have

∑
n∈N3

0

qn1n2+n1n3+n2n3+n1+n2+n3

(q)n1(q)n2(q)n3

= 1
(q)∞

∑
n≥0

qn

(qn+1)n+1
,

where the sum on the right-hand side is χ1(q), a fifth order mock theta function of 
Ramanujan. Such mock theta functions were introduced in Ramanujan’s last letter to 
Hardy.
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Since det(CΓ) = 2 for CΓ =
(

0 1 1
1 0 1
1 1 0

)
, it is natural to consider an additional q-series 

coming from the nontrivial coset. We obtain a related identity for another fifth order 
mock theta function χ0

∑
n∈N3

0

qn1n2+n1n3+n2n3+2n1+n2+n3

(q)n1(q)n2(q)n3

= 1
(q)∞

∑
n≥0

qn

(qn+2)n+1
= q−1

(q)∞
(χ0(q) − 1)) .

Interestingly, χ0(q) and χ1(q) combine into a vector-valued quantum modular form [24].

8.2. Graph series of E6

Now Γ is

•
|

• −− • − − • −− • − − •

and the graph series is

HE6(q) =
∑

n∈N6
0

qn1n2+n1n3+n1n4+n2n5+n3n6+n1+n2+n3+n4+n5+n6

(q)n1(q)n2(q)n3(q)n4(q)n5(q)n6

.

We next prove (1.7).

Proof of (1.7). We compute

HE6(q) =
∑

n∈N6
0

qn1(n2+n3+n4)+n2n5+n3n6+n1+n2+n3+n4+n5+n6

(q)n1(q)n2(q)n3(q)n4(q)n5(q)n6

= 1
(q)2∞

∑
n1,n2,n3,n4≥0

qn1(n2+n3+n4)+n1+n2+n3+n4

(q)n1(q)n4

= 1
(q)3∞

∑
n1,n2,n3≥0

qn1(n2+n3)+n1+n2+n3

= 1
(q)3∞

∑
n≥0

qn

(1 − qn+1)2
= q−1

(q)3∞

∑
n≥1

qn

(1 − qn)2
= q−1

(q)3∞

∑
n≥1

nqn

1 − qn
. �

We finish with two examples coming from affine Dynkin diagrams.
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8.3. H-graph (or D(1)
5 )

Here we consider Γ to be an H graph as in the picture:

• −− • − − •
|

• −− • − − •

This graph series is given by

HΓ(q) =
∑

n∈N6
0

qn1n2+n1n3+n1n4+n4n5+n4n6+n1+n2+n3+n4+n5+n6

(q)n1(q)n2(q)n3(q)n4(q)n5(q)n6

.

From this we easily find that

HΓ(q) = 1
(q)4∞

∑
n,m≥0

qmn+m+n(q)m(q)n.

It would be interesting to explore modular properties of this double series. We believe 
that it is a (higher depth) quantum modular form.

8.4. T2-graph (or E(1)
6 )

The next example is obtained by adding an extra node to an E6 graph.

•
|
•
|

• −− • − − • −− • − − •

Here we get

HT2(q) =
∑

n∈N7
0

qn1n6+n2n4+n2n5+n2n6+n3n4+n3n5+n1+n2+n3+n4+n5+n6+n7

(q)n1(q)n2(q)n3(q)n4(q)n5(q)n6(q)n7

= 1
(q)4∞

∑
n1,n2,n3≥0

qn1+n2+n3(q)n1+n2+n3 = 1
2(q)4∞

∑
n≥0

(
n2 + 3n + 2

)
qn(q)n.

The last sum can be expressed as a sum of tails by differentiating (2.10) with respect to 
ζ and then letting ζ = 1. This immediately gives

HT2(q) = q−1

(q)4∞

∑
(n + 1) ((q)n − (q)∞) .
n≥0



K. Bringmann et al. / Journal of Combinatorial Theory, Series A 197 (2023) 105749 35
Since 
∑

n≥0((q)n − (q)∞) is a quantum modular form, it would be interesting to inves-
tigate modular properties of the sum∑

n≥0
n ((q)n − (q)∞) .

9. Conclusion and open questions

We hope that this paper generates interest in graph series and their modular proper-
ties. However, unlike Nahm sums, they seem not to give rise to usual modular forms even 
for very simple graphs. Instead we obtain interesting combinations of mixed quantum 
and mock modular forms. This raises two natural questions:

Is there a simple graph Γ, not totally disconnected, and a ∈ Q, such that qaHΓ(q) is a 
modular form? Can we characterize which graphs have which types of modular properties?

We point out that for many examples we are not aware of any modular properties. 
This is the case for the following graphs:

q−1

(q)4∞

∑
n≥0

(n + 1) ((q)n − (q)∞) , 1
(q)�∞

∑
n≥0

qn(q)�−1
n , � ≥ 4

1
(q)4∞

∑
n,m≥0

qnm+m+n(q)n(q)m,
1

(q)∞

∑
n,m≥1

qnm

(q)n+m−1
,

corresponding to T2, �-star graphs X�, � ≥ 4, H, and 4-cycle graphs, respectively. We 
hope to return to these examples in future work.
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