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Abstract. In this paper we study new invariants Ẑa(q) attached to plumbed 3-manifolds that
were introduced by Gukov, Pei, Putrov, and Vafa. These remarkable q-series at radial limits
conjecturally compute WRT invariants of the corresponding plumbed 3-manifold. Here we inves-

tigate the series Ẑ0(q) for unimodular plumbing H-graphs with six vertices. We prove that for

every positive definite unimodular plumbing matrix, Ẑ0(q) is a depth two quantum modular form
on Q.

1. Introduction and statement of results

A quantum modular form is a complex-valued function defined on Q or a subset thereof, called
the quantum set, that exhibits modular-like transformation properties up to an obstruction term
with “nice” analytic properties (for instance, it can be extended to a real-analytic function on some
open subset of R). Quantum modular forms were introduced by Zagier in [23], where he described
several non-trivial examples. They have appeared in several areas including quantum invariants
of knots and 3-manifolds [16, 17, 18, 19], mock modular forms [13], meromorphic Jacobi forms [8],
mathematical physics [12], partial and false theta functions [7], and representation theory [7, 11].

Motivated on the one hand by the concept of higher depth mock modular forms and on the other
hand by the appearance of higher rank false theta functions in representation theory, Kaszian and
two of the authors [4] defined so-called higher depth quantum modular forms, and gave an infinite
family of examples coming from characters of representations of vertex algebras. If the depth is
two, these functions satisfy

f(τ)− (cτ + d)−kf(γτ) ∈ Q1O(R), γ =
(
a b
c d

)
∈ SL2(Z),

where Q1 is the space of quantum modular forms and O(R) is the space of real-analytic functions
on some subset R of R. All known examples of depth two quantum modular come from rank two
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partial theta functions (q := e2πiτ , τ ∈ H)∑
n∈N2

0+β

qan
2
1+bn2

2+cn1n2 ,

where β ∈ Q2 (throughout we write vectors in bold letters and their components with subscripts)
and a, 4ab − c2 > 0. Further examples of this kind were studied in [3, 20]. Depth two quantum
modular forms also appear as the coefficients of meromorphic Jacobi forms of negative matrix
index [5].

In [15], as a part of the construction of homological invariants for closed 3-manifolds, Gukov,
Pei, Putrov, and Vafa proposed a new approach to WRT invariants for a large class of 3-manifolds.
For any plumbed 3-manifold, homeomorphically represented by a plumbing graph and positive
definite linking matrix M 1, they [15] defined a certain family of q-series (called homological blocks)

Ẑa(q) :=
q
−3N+tr(M)

4

(2πi)N
PV

∫
|wj |=1

N∏
j=1

g(wj)
∏

(k,`)∈E

f(wk, w`)Θ−M,a(q;w)
dwj
wj

, (1.1)

where PV denotes the Cauchy principal value, integrals are oriented counterclockwise throughout,
and

∫
|wj |=1 indicates the integration

∫
|w1|=1 . . .

∫
|wN |=1. Moreover g(wj) and f(wk, w`) are certain

simple rational functions defined in (2.7) and (2.8), respectively and

Θ−M,a(q;w) :=
∑

`∈2MZN+a

q
1
4
`TM−1`w`, a ∈ 2coker(M) + δ,

where δ := (δj) such that δj ≡ deg(vj) (mod 2) with δj denoting the degree (or valency) of the

j-th node. Conjecturally, a suitable (explicit) linear combination of Ẑa(q), denoted by Ẑ(q) in

[15], is the universal WRT invariant, that is, as q → e
2πi
k its limit coincides with the SU(2) WRT

invariant of M at level k. This, in particular, leads to another conjecture (attributed in [6] to

Gukov) that Ẑa(q) and Ẑ(q) are quantum modular forms. This conjecture can be verified for
specific 3-manifolds obtained from unimodular 3-star plumbing graphs (e.g. the E8 graph) [6, 9]

due to the fact that Ẑa(q) can be expressed via one-dimensional unary false theta functions∑
n∈Z

sgn(n)qan
2+bn,

whose quantum modularity properties are well-understood [7, 17, 18, 19].

In this paper we investigate Ẑa(q) for a family of non-Seifert plumbed 3-manifolds. We consider
the simplest plumbing graph of this kind obtained by splicing two 3-star graphs. This way we
obtain the so-called H-graph with six vertices (Figure 1), with the linking matrix

1In [15], M is negative definite, which we account for by replacing it with −M when referring to their work.
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Figure 1. The H-graph

M =


b1 0 −1 0 0 0
0 b2 −1 0 0 0
−1 −1 b3 −1 0 0
0 0 −1 b4 −1 −1
0 0 0 −1 b5 0
0 0 0 −1 0 b6

 . (1.2)

We only consider positive definite unimodular matrices whose 3-manifolds are integral homology
spheres (i.e., H1(M3,Z) = 0 as explained further in Section 2.7 below). Due to the invariance of

Ẑδ(q) under a Kirby move [15], we may assume that bj ≥ 2, j ∈ {1, 2, 5, 6} (graphs with bj = 1,
j ∈ {1, 2, 5, 6} reduce to 3-star graphs whose quantum modularity is well-understood [6, 9]). With

these assumptions Ẑδ(q) (also denoted by Ẑ0(q) in [15]) is the only homological block and therefore
it conjecturally gives WRT invariants at roots of unity. An important feature of this family of

graphs is that Ẑδ(q) can be expressed via rank two false theta functions (β ∈ Q2, a, b, c ∈ N)∑
n∈Z2

sgn∗(n1)sgn∗(n2)qa(n1+β1)2+b(n2+β2)2+c(n1+β1)(n2+β2),

where sgn∗(x) := sgn(x) for x ∈ R \ {0} and sgn∗(0) := 1. Our first result is on quantum

modularity of certain partial theta functions needed to study Ẑδ(q).
More generally, we prove quantum modularity of an infinite family of false theta functions

which we now introduce. Define

FS,Q,ε(τ) :=
∑
α∈S

ε(α)
∑
n∈N2

0

qKQ(n+α),

where S ⊂ Q2∩(0, 1)2 is a finite set with the property that (1, 1)−α, (1−α1, α2), (α1, 1−α2) ∈ S
for α ∈ S, ε : S → C satisfies ε(α) = ε((1, 1)−α) = ε((1− α1, α2)), and K ∈ N is minimal such
that KS ⊂ N2. For convenience, we extend the domain of ε to S+Z2 by letting ε(α) = ε(α+n),
n ∈ Z2.

Theorem 1.1. The function FS,Q,ε is a quantum modular form of depth two, weight one, and
quantum set QS,Q,ε, defined in (3.1).

Theorem 1.1 is of independent interest and can be used to investigate other examples of quantum
modular forms.

Next we move on to studying unimodular matrices arising from H-graphs. Since the graph
has six vertices it is not surprising that there are only finitely many positive definite unimodular
matrices. We prove the following result.



4 KATHRIN BRINGMANN, KARL MAHLBURG, ANTUN MILAS

Theorem 1.2. There are, up to graph isomorphism, precisely 39 equivalence classes of unimodular
positive definite plumbing matrices (1.2) with bj ≥ 2, j ∈ {1, 2, 5, 6}.

Then our main result is the following.

Theorem 1.3. For any positive definite unimodular plumbing matrix as in Theorem 1.2 there

exists some cM ∈ Q such that qcM Ẑ0(q) is a quantum modular form of depth two, weight one, and
quantum set Q.

Based on the results here and in [6, 9, 14], we can slightly reformulate Gukov’s conjecture

mentioned in [6] on the quantum modularity of Ẑa(q) and Ẑ(q).

Conjecture 1.4. Let T be a plumbing graph (tree) with r nodes of degree at least three. Then

Ẑa(q) is a depth r quantum modular form. Moreover, for any unimodular plumbing matrix, Ẑ(q)
is quantum of depth r with quantum set Q.

Although it should be possible to give a more quantitative statement relating the structure of

the graph to the weight of Ẑ(q), we do not include such a claim here due to the lack of supporting
evidence beyond n-star graphs. For n-star graphs we strongly believe this weight to be 1

2 +(n−3)
(see [6, 9, 14]).

Combined with the conjecture on Ẑ(q) mentioned above, Conjecture 1.4 would imply that
(unified) WRT invariants of plumbed 3-manifolds are higher depth quantum modular forms. We
expect that the higher depth property also holds true for higher rank SU(N) invariants (see [10]).

For the remainder of the paper we primarily work with a modified version of the invariants for
plumbed 3-manifolds, which we denote by Z(q) (see (2.9)). In the case that M is unimodular we

see that Z(q) is closely related to Ẑ0(q), and thus our main result follows from determining the
quantum modularity of Z(q).

The paper is organized as follows. In Section 2, we discuss special functions, the Euler-
Maclaurin summation formula, higher depth quantum modular forms, and double Eichler in-

tegrals. We also define Z(q) and describe its relationship to Ẑ0(q). In Section 3 we show the
quantum modularity of FS,Q1,ε (see Theorem 3.1). In Section 4, we prove our main result on the
quantum modularity of Z(q) for unimodular plumbing graphs (see Theorem 4.1). The proof of
the classification of positive definite unimodular matrices (1.2) is given in Section 5. Finally, in
the appendix we list data for all 39 equivalence classes of positive unimodular matrices needed to
compute Z(q).

Acknowledgements: The authors thank S. Chun, S. Gukov, and C. Manolescu for helpful
discussion on some aspects of [15]. Moreover, we thank the anonymous referees for their helpful
comments.

2. Preliminaries

2.1. Special functions. Following [1] (with slightly different notation), for each κ ∈ R we define
a function E2 : R× R2 → R by

E2(κ;x) :=

∫
R2

sgn (w1) sgn (w2 + κw1) e−π((w1−x1)2+(w2−x2)2)dw1dw2.
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For x2, x1 − κx2 6= 0, we set

M2(κ;x) := − 1
π2

∫
R2−ix

e−πw
2
1−πw2

2−2πi(x1w1+x2w2)

w2(w1 − κw2)
dw1dw2.

The following formula relates M2 and E2 :

M2(κ;x1 + κx2, x2) = E2(κ;x1 + κx2, x2) + sgn(x1)sgn(x2)

− sgn(x2)E(x1 + κx2)− sgn(x1)E
(

κ√
1+κ2

x1 +
√

1 + κ2x2

)
, (2.1)

where for x ∈ R, we set E(x) := 2
∫ x

0 e
−πw2

dw.
The proof of the next result follows from the proof of [4, Lemma 6.1]. Here τ = u+ iv.

Proposition 2.1. For κ, x1, x2 ∈ R we have

M2(κ;x1, x2) = − x1

2
√
v

x2√
v
q
x21
4v

+
x22
4v

∫ i∞

−τ

e
πix21w1

2v√
−i(w1 + τ)

∫ i∞

w1

e
πix22w2

2v√
−i(w2 + τ)

dw2dw1 (2.2)

− x2 + κx1

2
√

(1 + κ2)v

x1 − κx2√
(1 + κ2)v

q
(x2+κx1)

2

4(1+κ2)v
+

(x1−κx2)
2

4(1+κ2)v

∫ i∞

−τ

e
πi(x2+κx1)

2w1
2(1+κ2)v√
−i(w1 + τ)

∫ i∞

w1

e
πi(x1−κx2)

2w2
2(1+κ2)v√
−i(w2 + τ)

dw2dw1.

2.2. Euler-Maclaurin summation formula. Let Bm(x) be the m-th Bernoulli polynomial
defined by wexw

ew−1 =:
∑

m≥0Bm(x)w
m

m! . We require

Bm(1− x) = (−1)mBm(x). (2.3)

The Euler-Maclaurin summation formula implies the following lemma.

Lemma 2.2. For α ∈ R2, F : R2 → R a C∞-function which has rapid decay, we have∑
n∈N2

0

F ((n+α)t)

∼ IF
t2
−
∑
n2≥0

Bn2+1(α2)

(n2 + 1)!

∫ ∞
0

F (0,n2)(x1, 0)dx1t
n2−1 −

∑
n1≥0

Bn1+1(α1)

(n1 + 1)!

∫ ∞
0

F (n1,0)(0, x2)dx2t
n1−1

+
∑

n1,n2≥0

Bn1+1(α1)

(n1 + 1)!

Bn2+1(α2)

(n2 + 1)!
F (n1,n2)(0, 0)tn1+n2 ,

where IF :=
∫∞

0

∫∞
0 F (x)dx1dx2. Here by ∼ we mean that the difference between the left- and the

right-hand side is O(tN ) for any N ∈ N.

2.3. Gauss sums. We define for a, b, c ∈ Z with c > 0 the quadratic Gauss sums

Gc(a, b) :=
∑

n (mod c)

e
2πi
c (an2+bn);
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see [2, Section 1.5] for some basic properties. We use the following elementary result on the
vanishing of Gc(a, b).

Proposition 2.3. If gcd(a, c) - b, then Gc(a, b) = 0.

2.4. Shimura theta functions. We require certain theta functions studied, for example, by
Shimura [22]. For ν ∈ {0, 1}, h ∈ Z, N,A ∈ N, with A|N , N |hA, define

ϑν(A, h,N ; τ) :=
∑
m∈Z

m≡h (modN)

mνq
Am2

2N2 .

Define the slash operator of weight k ∈ 1
2Z (( ·· ) the Jacobi symbol)

f
∣∣
k
γ(τ) :=

(
c
d

)2k
ε2k
d (cτ + d)−kf(γτ), γ =

(
a b
c d

)
∈ SL2(Z).

Note that if k ∈ Z+ 1
2 , we require that γ ∈ Γ0(4). Recall that Shimura’s modular transformation

formula [22, Proposition 2.1] states that for γ =
(
a b
c d

)
∈ Γ0(2N), with 2|b, we have

ϑν(A, h,N ; τ) |3
2
γ = e

(
abAh2

2N2

) (−2A
d

)
ϑν(A, ah,N ; τ). (2.4)

Here e(x) := e2πix and for odd d, we define εd = 1 or i, depending on whether d ≡ 1 (mod 4) or
d ≡ 3 (mod 4).

2.5. Integral evaluations. We require, for m ∈ Z,∫
|w|=1

(
w − w−1

)
wm

dw

w
=

∫
|w|=1

wmdw −
∫
|w|=1

wm−2dw = 2πi (δm,−1 − δm,1) , (2.5)

where δm,a = 0 unless m = a in which case it equals 1 and

1

2πi
PV

∫
|w|=1

wm

w − w−1

dw

w
=

1

2
sgno(m), (2.6)

where sgno(m) := 1
2sgn(m)(1− (−1)m).

2.6. Higher depth quantum modular forms. We now give the formal definition of quantum
modular forms, following [23].

Definition 2.4. A function f : Q → C (Q ⊆ Q) is called a quantum modular form of weight
k ∈ 1

2Z for a subgroup Γ of SL2(Z) (of Γ0(4) if k ∈ Z+ 1
2) and quantum set Q if for γ =

(
a b
c d

)
∈ Γ,

the function

f(τ)− f
∣∣
k
γ(τ)

can be extended to an open subset of R on which it is real-analytic. We denote the vector space
of such forms by Qk(Γ).

We next turn to the definition of higher-depth quantum modular forms (see Definition 3 of [4]).



HIGHER DEPTH QUANTUM MODULAR FORMS AND PLUMBED 3-MANIFOLDS 7

Definition 2.5. A function f : Q → C (Q ⊂ Q) is called a quantum modular form of depth
N ∈ N, weight k ∈ 1

2Z, and quantum set Q for Γ if for γ =
(
a b
c d

)
∈ Γ

f − f
∣∣
k
γ ∈

⊕
j

QNjκj (Γ)O(R),

where j runs through a finite set, κj ∈ 1
2Z, Nj ∈ N with maxj(Nj) = N − 1, Q1

k(Γ) := Qk(Γ),

Q0
k(Γ) := 1, and QNk (Γ) is the space of quantum modular forms of weight k and depth N for Γ.

For fj ∈ Skj (Γ), the space of cusp forms of weight kj for Γ with kj >
1
2 , define the (non-

holomorphic) Eichler integrals

If (τ) :=

∫ i∞

−τ

f(w)

(−i(w + τ))2−k dw,

If1,f2(τ) :=

∫ i∞

−τ

∫ i∞

w1

f1(w1)f2(w2)

(−i(w1 + τ))2−k1(−i(w2 + τ))2−k2 dw2dw1,

and the errors of modularity, for % ∈ Q

rf,%(τ) :=

∫ i∞

%

f(w)

(−i(w + τ))2−k dw,

rf1,f2,%(τ) :=

∫ i∞

%

∫ %

w1

f1(w1)f2(w2)

(−i(w1 + τ))2−k1(−i(w2 + τ))2−k2 dw2dw1.

The next result is [4, Theorem 5.1].

Theorem 2.6. We have, for γ =
(
a b
c d

)
∈ Γ∗ :=

(−1 0
0 1

)
Γ
(−1 0

0 1

)
,

If1,f2(τ)− If1,f2 |k1+k2−4 γ(τ) = rf1,f2,τ, dc
(τ) + If1(τ)rf2, dc

(τ).

Moreover rf1,f2, dc
∈ O(R).

2.7. Definitions and notation. In this section we recall the construction of Z(q) following [6],

which is another invariant that is closely related to Ẑa(q) from (1.1). Consider a tree G with N
vertices labeled by integers mjj , 1 ≤ j ≤ N , which is called a plumbing graph. To this data we
associate an N ×N matrix M = (mjk)1≤j,k≤N , called its linking (or plumbing) matrix, such that
mjk = −1 if vertex j is connected to vertex k and zero otherwise. We say that two plumbing
matrices M and M ′ are equivalent if their underlying graphs are isomorphic, and there is a graph
isomorphism that maps M to M ′. The first homology group of M3(G) (the plumbed 3-manifold
constructed from G and M) is

H1(M3(G),Z) ∼= coker(M) = ZN/MZN .

If M is invertible, then this group is finite and if M ∈ SLN (Z), then H1(M3,Z) = 0; this is the
case for the main results of this paper, as M is positive definite and unimodular.
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To each edge j − k in G we associate a rational function

f(wj , wk) :=
1(

wj − w−1
j

)(
wk − w−1

k

) (2.7)

and to each vertex wj a Laurent polynomial

g(wj) :=
(
wj − w−1

j

)2
. (2.8)

For a fixed tree G and positive definite M , set

Z(q) :=
q
−3N+

∑N
ν=1 aν

2

(2πi)N
PV

∫
|wj |=1

N∏
j=1

g(wj)
∏

(k,`)∈E

f(wk, w`)ΘM (q;w)
dwj
wj

, (2.9)

where we let aj := mjj for the vertex labels, wj := e2πizj , and

ΘM (q;w) :=
∑
n∈ZN

q
1
2
nTMne2πinTMz.

Note that we may write

ΘM (q;w) =
∑

m∈MZN
q

1
2
mTM−1me2πimT z. (2.10)

The following result is given in Proposition 3.4 of [6].

Proposition 2.7. If M is unimodular, then Z(q) = Ẑδ(q
2), where Ẑδ(q) is defined in (1.1).

3. A general construction

In this section we construct an infinite family of quantum modular forms of depth two closely
following the arguments in [4]. Define

QS,Q,ε :=

h
k ∈ Q : gcd(h, k) = 1, k ∈ N,

∑
α∈S

ε(α)
∑

` (mod k)

e2πih
k
KQ(`+α) = 0

 . (3.1)

We write Q(n) =: σ1n
2
1 + 2σ2n1n2 + σ3n

2
2, and denote its discriminant by D := σ1σ3 − σ2

2. We
also regularly use the relationship between the quadratic form and the associated bilinear form,
namely

Q(x+ y)−Q(x)−Q(y) = B(x,y). (3.2)

Theorem 3.1. The functions FS,Q,ε are quantum modular forms of depth two, weight one, on
some congruence subgroup containing Γ(8 · lcm(σ1, σ3)KD), and quantum set QS,Q,ε.

Before proving Theorem 3.1, we require some auxiliary lemmas. Set

ES,Q,ε(τ) :=
∑
α∈S

ε(α)FQ,α(τ),
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where

FQ,α(τ) := 1
2

∑
n∈Z2+α

M2

(
κ; (a1n1 + a2n2, b2n2)

√
Kv
)
q−KQ(n)

with

κ := σ2√
D
, a1 := 2

√
σ1, a2 := 2σ2√

σ1
, b2 := 2

√
D
σ1
.

We begin by determining the asymptotic expansions of these functions.

Lemma 3.2. If h
k ∈ QS,ε, then we have the asymptotic expansions (as t→ 0+)

FS,Q,ε
(
h
k + it

2π

)
=:
∑
m≥0

ah,k(m)tm, ES,Q,ε
(
h
k + it

2π

)
=
∑
m≥0

a−h,k(m)(−t)m. (3.3)

Proof. For the proof we abbreviate

F := FS,Q,ε, E := ES,Q,ε, Q := QS,Q,ε.
We first determine the asymptotic expansion of F using the Euler-Maclaurin summation for-

mula. We let n 7→ ` + kn with 0 ≤ ` ≤ k − 1 (i.e., 0 ≤ `j ≤ k − 1, j ∈ {1, 2}), n ∈ N2
0. The

assumption that KS ⊂ N2 implies that h
kKQ(`+α+ kn) ≡ h

kKQ(`+α) (mod 1), thus

F
(
h
k + it

2π

)
=
∑
α∈S

ε(α)
∑

0≤`≤k−1

e2πih
k
KQ(`+α)

∑
n∈N2

0+ 1
k

(`+α)

g
(
k
√
tn
)
,

where g(x) := e−KQ(x). The main term in Lemma 2.2 is

Ig
k2t

∑
α∈S

ε(α)
∑

0≤`≤k−1

e2πih
k
KQ(`+α).

Using that KS ⊂ N2 we may let ` run (mod k). Since h
k ∈ Q the sum vanishes.

The second term in Lemma 2.2 yields

−
∑
α∈S

ε(α)
∑

0≤`≤k−1

e2πih
k
KQ(`+α)

∑
n2≥0

Bn2+1

(
1
k (`2 + α2)

)
(n2 + 1)!

∫ ∞
0

g(0,n2)(x1, 0)dx1

(
k
√
t
)n2−1

.(3.4)

Making the change of variables ` 7→ (k− 1)(1, 1)− ` and using that (1, 1)−α ∈ S if α ∈ S, (2.3)
yields that only the odd values of n2 survive, and (3.4) becomes

−
∑
α∈S

ε(α)
∑

0≤`≤k−1

e2πih
k
KQ(`+α)

∑
n2≥0

B2n2+2

(
1
k (`2 + α2)

)
(2n2 + 2)!

∫ ∞
0

g(0,2n2+1)(x1, 0)dx1k
2n2tn2 .

In exactly the same way we obtain that the third term in Lemma 2.2 equals

−
∑
α∈S

ε(α)
∑

0≤`≤k−1

e2πih
k
KQ(`+α)

∑
n1≥0

B2n1+2

(
1
k (`1 + α1)

)
(2n1 + 2)!

∫ ∞
0

g(2n1+1,0)(0, x2)dx2k
2n1tn1 .

For the final term in Lemma 2.2 we obtain, pairing in exactly the same way
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∑
α∈S

ε(α)
∑

0≤`≤k−1

e2πih
k
KQ(`+α)

∑
n1,n2≥0

n1≡n2 (mod 2)

Bn1+1

(
1
k (`1 + α1)

)
(n1 + 1)!

Bn2+1

(
1
k (`2 + α2)

)
(n2 + 1)!

× g(n1,n2)(0, 0)
(
k
√
t
)n1+n2

.

In particular we obtain that the asymptotic expansion of F has the shape as claimed in (3.3).
We now turn to the asymptotic behavior of E. We use (2.1) and let M∗2 denote the function such

that the sgn in (2.1) is replaced by sgn∗, where sgn∗(x) := sgn(x) if x ∈ R \ {0} and sgn∗(0) := 1.
We obtain

M∗2 (κ; a1n1 + a2n2, b2n2) = E2(κ; a1n1 + a2n2, b2n2) + sgn∗(n1)sgn∗(n2)

− sgn∗(n2)E
(

2√
σ1

(σ1n1 + σ2n2)
)
− sgn∗(n1)E

(
2√
σ3

(σ2n1 + σ3n2)
)
.

Proceeding as above

E
(
h
k + it

2π

)
=
∑
α∈S

ε(α)

 ∑
0≤`≤k−1

e−2πih
k
KQ(`+α)

∑
n∈N2

0+α

G
(
k
√
tn
)

+
∑

0≤`≤k−1

e−2πih
k
KQ̃(`+α)

∑
n∈N2

0+α

G̃
(
k
√
tn
) ,

where

Q̃(x1, x2) := Q(−x1, x2)

G(x) := 1
2M

∗
2

(
κ;
√

K
2π (a1x1 + a2x2, b2x2)

)
eKQ(x), G̃(x1, x2) := G(−x1, x2).

We again use the Euler-Maclaurin summation formula. The main term in Lemma 2.2 is

4IG
k2t

∑
α∈S

ε(α)
∑

0≤`≤k−1

e−2πih
k
KQ(`+α) +

4I
G̃

k2t

∑
α∈S

ε(α)
∑

0≤`≤k−1

e−2πih
k
KQ̃(`+α) = 0

by conjugating the condition in Q.
The second term in Lemma 2.2 is, pairing terms as before,

−
∑
α∈S

ε(α)
∑

0≤`≤k−1

e−2πih
k
KQ(`+α)

∑
n2≥0

B2n2+2

(
1
k (`2 + α2)

)
(2n2 + 2)!

×
∫ ∞

0

(
G(0,2n2+1)(x1, 0) + G̃(0,2n2+1)(x1, 0)

)
dx1

(
k2t
)n2 .

It is now straightforward to verify, as in [4], that∫ ∞
0

(
G(0,2n2+1)(x1, 0) + G̃(0,2n2+1)(x1, 0)

)
dx1 = (−1)n2

∫ ∞
0

g(0,2n2+1)(x1, 0)dx1.
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Via symmetry the third term in Lemma 2.2 is treated in exactly the same way.
The fourth term in Lemma 2.2 is, pairing as before,∑
α∈S

ε(α)
∑

0≤`≤k−1

e−2πih
k
KQ(`+α)

∑
n1,n2≥0

n1≡n2 (mod 2)

Bn1+1

(
1
k (`1 + α1)

)
(n1 + 1)!

Bn2+1

(
1
k (`2 + α2)

)
(n2 + 1)!

×
(
G(n1,n2)(0, 0) + (−1)n1+1G̃(n1,n2)(0, 0)

)(
k
√
t
)n1+n2

.

It can now be shown that

G(n1,n2)(0, 0) + (−1)n1+1G̃(n1,n2)(0, 0) = in1+n2g(n1,n2)(0, 0).

Comparing terms gives the claim. �

Write A := KS, and define

B := {0 ≤ B < σ1K : B1 = σ1A1 + σ2A2 + %σ2K, B2 = A2 + %K, for some A∈A, % (modσ1)},
C := {0 ≤ C < σ3K : C1 = σ2A1 + σ3A2 + %σ2K, C2 = A2 + %K, for some A∈A, % (modσ3)}.

The following lemma rewrites E as a two-dimensional theta integral, which is essential in order
to calculate modular transformations.

Lemma 3.3. We have

ES,Q,ε(τ) = −
√
D

2σ1K

∑
B∈B

ε
(
B1−σ2B2
σ1K

, B2
K

)
IT1,T2(τ)−

√
D

2σ3K

∑
C∈C

ε
(
C2
K ,

C2−σ2C1
σ3K

)
IU1,U2(τ),

where

T1(w) := ϑ1(σ1K,B1, σ1K; 2w), T2(w) := ϑ1(σ1K,B2, σ1K; 2Dw),

U1(w) := ϑ1(σ3K,C1, σ3K; 2w), U2(w) := ϑ1(σ3K,C2, σ3K; 2Dw).

Proof. Using (2.2) we obtain

M2

(
κ; (a1n1 + a2n2, bn2)

√
Kv
)
q−KQ(n)

= −2
√
D

σ1
(σ1n1 + σ2n2)n2

∫ i∞

−Kτ

∫ i∞

w1

e
2πi
σ1

(σ1n1+σ2n2)2w1+
2πiDn22
σ1

w2√
−i(w1 +Kτ)

√
−i(w2 +Kτ)

dw2dw1

− 2
√
D

σ3
(σ2n1 + σ3n2)n1

∫ i∞

−Kτ

∫ i∞

w1

e
2πi
σ3

(σ2n1+σ3n2)2w1+
2πiDn21
σ3

w2√
−i(w1 +Kτ)

√
−i(w2 +Kτ)

dw2dw1.

This yields

ES,Q,ε(τ) = −K
√
D

σ1

∫ i∞

−τ

∫ i∞

w1

θ1(w)√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1
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− K
√
D

σ3

∫ i∞

−τ

∫ i∞

w1

θ2(w)√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1,

where

θ1(w) :=
∑
α∈S

ε(α)
∑

n∈Z2+α

(σ1n1 + σ2n2)n2e
2πiK
σ1

(σ1n1+σ2n2)2w1+ 2πiDK
σ1

n2
2w2 ,

θ2(w) :=
∑
α∈S

ε(α)
∑

n∈Z2+α

(σ2n1 + σ3n2)n1e
2πiK
σ3

(σ2n1+σ3n2)2w1+ 2πiDK
σ3

n2
1w2 .

We now rewrite the θj in terms of the Shimura theta functions. Letting n 7→ n
K , we obtain

θ1(w) = 1
K2

∑
A∈A

ε
(
A
K

) ∑
n≡A (modK)

(σ1n1 + σ2n2)n2e
2πi
σ1K

(σ1n1+σ2n2)2w1+ 2πiD
σ1K

n2
2w2 .

Set ν1 := σ1n1 +σ2n2 and ν2 := n2, so that n1 = ν1−σ2ν2
σ1

. Plugging in the restrictions on n yields

ν2 ≡ A2 + %K (modσ1K) for 0 ≤ % ≤ σ1 − 1,

ν1 = σ1n1 + σ2n2 ≡ σ1A1 + σ2A2 + %σ2K (modσ1K) .

This shows that ν ∈ B. Furthermore, if α ∈ A, there exists a corresponding B ∈ B such that

α =
(
A1
K , A2

K

)
≡
(
B1−σ2B2
σ1K

, B2
K

)
(mod 1) .

Overall, we therefore have

θ1(w) =
1

K2

∑
B∈B

ε
(
B1−σ2B2
σ1K

, B2
K

) ∑
ν1≡B1 (modσ1K)

ν1e
2πiν21w1
σ1K

∑
ν2≡B2 (modσ1K)

ν2e
2πiDν22w2

σ1K

=
1

K2

∑
B∈B

ε
(
B1−σ2B2
σ1K

, B2
K

)
ϑ1 (σ1K,B1, σ1K; 2w1)ϑ1 (σ1K,B2, σ1K; 2Dw2) .

In the same way, by setting ν1 := σ2n1 + σ3n2 and ν2 := n1, we can show that

θ2(w) =
1

K2

∑
C∈C

ε
(
C2
K ,

C2−σ2C1
σ3K

)
ϑ1(σ3K,C1, σ3K; 2w1)ϑ1(σ3K,C2, σ3K; 2Dw2). �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Suppose that f is one of the theta functions from Lemma 3.3 and γ ∈
Γ(8 · lcm(σ1, σ3)KD). Then the transformation (2.4) implies (after a short calculation) that
f| 3

2
γ =f . The theorem statement now follows from Lemmas 3.2 and 3.3, and Theorem 2.6. �
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4. A family with quantum set Q and unimodular matrices

In this section we construct a family of depth two quantum modular forms with quantum set Q.
Let N1, N2 ∈ 2N and write L := gcd(N1, N2), N1 := LR1, N2 := LR2, so that gcd(R1, R2) = 1. Set
Q(n) = σ1n

2
1 + 2σ2n1n2 + σ3n

2
2. We assume the factorizations σ1 = R1µ1, with gcd(R1, µ1) = 1,

and σ3 = R2µ3, with gcd(µ3, R2) = 1. Moreover we assume that 2σ2 = LR1R2 = lcm(N1, N2) and
that gcd(µ1, µ3) consists of at most one odd prime factor, and always satisfies gcd(L, gcd(µ1, µ3)) =
1. If 4 - L, then we also require that exactly one of R1, R2, µ3 is even. Set, with r1, r2, s1, s2 ∈ N
satisfying gcd(rj , Nj) = gcd(sj , Nj) = 1, r2

j ≡ s2
j (mod 2Nj),

S1 :=
{(

r1
N1
, r2N2

)
,
(

1− r1
N1
, r2N2

)
,
(
r1
N1
, 1− r2

N2

)
,
(

1− r1
N1
, 1− r2

N2

)
, (4.1)(

s1
N1
, s2N2

)
,
(

1− s1
N1
, s2N2

)
,
(
s1
N1
, 1− s2

N2

)
,
(

1− s1
N1
, 1− s2

N2

)}
,

S2 :=
{(

r1
N1
, s2N2

)
,
(

1− r1
N1
, s2N2

)
,
(
r1
N1
, 1− s2

N2

)
,
(

1− r1
N1
, 1− s2

N2

)
,(

s1
N1
, r2N2

)
,
(

1− s1
N1
, r2N2

)
,
(
s1
N1
, 1− r2

N2

)
,
(

1− s1
N1
, 1− r2

N2

)}
.

We define

ZQ,r,s(q) :=
∑

j∈{1,2}

(−1)j+1
∑
α∈Sj

∑
n∈N2

0

qLQ(n+α) = FS,Q,ε

(
τ

R1R2

)
,

where S := S1 ∪ S2 and ε(α) := (−1)j+1 if α ∈ Sj . We see in the proof of Theorem 4.1 that the
assumptions imply that the asymptotic expansion of ZQ,r,s(q) consists of several leading terms
with identical Gauss sums that always cancel, and thus the series converges for all Q.

Theorem 4.1. Under the assumption above, the function ZQ,r,s(q) is a quantum modular form
of depth two, weight one, group Γ (8 · lcm(σ1, σ2)LR1R2), and quantum set Q.

Proof. Note that the conditions of Theorem 3.1 are satisfied. We are left to show that we have
quantum set Q, which follows if we show that∑

j∈{1,2}

(−1)j+1
∑
α∈Sj

∑
` (mod k)

e2πih
k
LQ(`+α) = 0. (4.2)

Write L = 2ΛL1, k = gk1, where L1, k1 are odd and where g := gcd(k, L). We claim that the
sum on ` vanishes unless gcd(LR1R2, k1) = 1 and g ∈ {1, 2}. For this we first consider the
(one-dimensional) Gauss sum in `1, which is (aj := Njαj)∑

`1 (mod k)

e2πih
k (LR1µ1`21+(2µ1a1+L2R1R2`2+LR1a2)`1). (4.3)

The linear term reduces to 2µ1a1 (modR1), and µ1a1 is coprime to R1 by assumption. Thus
by Proposition 2.3 the expression in (4.3) is zero if gcd(R1, k1) > 1. Similarly, the linear term
reduces to 2µ1a1 (modL). The Gauss sum (4.3) vanishes if g > 1 and g - 2µ1. Now write an
alternative Gauss sum by grouping the `2 terms in (4.2), obtaining an analogous version of (4.3).
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As before, this immediately shows that (4.2) is zero if gcd(R2, k1) > 1, and also vanishes if g > 1
and g - 2µ3. If g > 1, then the only way the sum fails to vanish is if g | gcd(2µ1, 2µ3), which
implies that g = 2 by assumption. This shows that (4.2) vanishes if 4 | L.

Next, assuming g = 2, 4 - L, and 4 | k, we also show that (4.2) vanishes in this case. Recalling
the corresponding assumptions on the Rj and µj , one possibility is that 2|R1 and 2 - R2µ1µ2 (or
the analogous condition with `1 and `2 swapped if necessary). Then 4 divides the factor in front
of `21 in (4.3), and the linear term is congruent to 2 modulo 4 since a1 is odd. The sum therefore
vanishes by Proposition 2.3. Otherwise the condition on Rj and µj is that 2 - R1R2µ1, 2 | µ3, and
we again consider the analog of (4.3) for the sum in `2. Now 4 divides the coefficient in front of
`22, and the linear term is congruent to 2 (mod 4) so Proposition 2.3 again applies.

We next assume that gcd(LR1R2, k1) = 1, and g ∈ {1, 2} and prove that the sum on ` in (4.2)
is the same for all choices of α. We note that the multiplicative inverses Nj (mod k1) exist. Using
(3.2), we write

h

k
L
(
Q (`+α)−Q

(
`+

(
N1a1, N2a2

)))
=
hL

k

(
Q(α)−Q

(
N1a1, N2a2

)
+B (`,α)−B

(
`,
(
N1a1, N2a2

)))
. (4.4)

Since B(`,α)−B(`, (N1a1, N2a2)) ≡ 0 (mod k1) by construction, (4.4) implies that

hL

k1
Q (`+α) ≡ hL

k1

(
Q
(
`+

(
N1a1, N2a2

))
+Q(α)−Q

(
N1a1, N2a2

))
(mod 1) .

We now calculate
hL

k1

(
Q(α)−Q

(
N1a1, N2a2

))
=

h

kLR1R2
X,

where X := R2µ1a
2
1 + LR1R2a1a2 +R1µ3a

2
2 −N1N2Q(N1a1, N2a2).

If p is an odd prime such that pλ exactly divides LR1R2, then the assumptions on the parameters
easily imply that

X ≡ R2µ1a
2
1 +R1µ3a

2
2

(
mod pλ

)
is independent from α.

Finally, suppose that 2λ exactly divides LR1R2. Then the final congruence is

X ≡ R2µ1a
2
1 +R1R2 +R1µ3a

2
2

(
mod 2λg

)
,

which is independent from α due to the assumption that r2
j ≡ s2

j

(
mod 2λ+1

)
.

Therefore the sum on ` in (4.2) equals

e
2πi hX

kLR1R2

∑
` (mod k)

e2πih
k
LQ(`+(N1a1, N2a2)) = e

2πi hX
LR1R2

∑
` (mod k)

e2πih
k
LQ(`)

by shifting `; this overall expression is now clearly independent from choice of α. �
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5. Classification of positive unimodular H-matrices and the proofs of Theorem
1.2 and Theorem 1.3

5.1. Proof of Theorem 1.2. Let

M = M(b1, b2, b3, b4, b5, b6) :=


b1 0 −1 0 0 0
0 b2 −1 0 0 0
−1 −1 b3 −1 0 0
0 0 −1 b4 −1 −1
0 0 0 −1 b5 0
0 0 0 −1 0 b6

 . (5.1)

In this section, we classify all positive, unimodular (PU) matrices M with the additional property
that bj ≥ 2 (j ∈ {1, 2, 5, 6}). The determinant of M can be written as follows:

D = D(b1, b2, b3, b4, b5, b6) := det(M)

= b1b2b3b4b5b6 − b1b2b3b5 − b1b2b3b6 − b1b2b5b6 − b1b4b5b6 − b2b4b5b6 + (b1 + b2)(b5 + b6)

= b1b2b5b6

((
b3 − 1

b1
− 1

b2

)(
b4 − 1

b5
− 1

b6

)
− 1
)
.

The goal of this section is to show the following.

Proposition 5.1. If M(b1, b2, b3, b4, b5, b6) is a PU matrix with bj ≥ 2 (j ∈ {1, 2, 5, 6}), then (up
to equivalence)

b1 ≤ 23, b2 ≤ 133, 2 ≤ b3 ≤ 7, b4 = 1, b5 ≤ 13, b6 ≤ 97.

In particular, there are finitely many PU matrices M .

This then enables us to prove Theorem 1.2.

Proof of Theorem 1.2. Proposition 5.1 together with a computer search quickly shows there are
312 PU matrices. Since the group of automorphisms of an H-graph is Z2 × Z2 × Z2, we have 39
equivalence classes of such matrices; these are listed in the appendix. This gives the claim. �

We now prove the main statement of this section, namely Proposition 5.1.

Proof of Proposition 5.1. It is clear that gcd(b1, b2) | D, thus b1 and b2 must be coprime and with-
out loss of generality we may assume b1 < b2 and b5 < b6. This further implies that b1b2, b5b6 ≥ 6,
and 1

b1
+ 1

b2
≤ 5

6 . If b3, b4 ≥ 2 we therefore have

D ≥ b1b2b5b6
(

7
6 ·

7
6 − 1

)
= 13

36b1b2b5b6 > 1,

and thus M is not unimodular. Furthermore, the fact that 1 − 1
b1
− 1

b2
< 1 immediately shows

that if b3 = b4 = 1, then det(M) < 0. Thus without loss of generality we assume that b4 = 1 and
b3 6= 1. If b3 ≥ 8, then

D > b1b2b5b6
(
(b3 − 1)1

6 − 1
)
≥ b1b2b5b6

1

6
> 1.

Thus we must have b3 ≤ 7.
Now suppose that b5 ≥ 14. Then, since b6 > b5,

D ≥ b1b2b5b6
(

7
6

(
1− 1

14 −
1
15

)
− 1
)

= 2 · 3 · 14 · 15 1
180 > 1.
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Thus we must have b5 ≤ 13.
The remaining bounds require a case by case analysis based on the values of b5. If b5 = 2, then

for b2 = 2, D ≤ 0, thus we must have b3 ≥ 3. If b6 ≥ 28, then

D ≥ 6 · 2 · 27
((

3− 1
2 −

1
3

) (
1− 1

2 −
1
28

)
− 1
)
≥ 2.

We therefore conclude that b6 ≤ 27. However, in order to have D positive we also need

3
(

1
2 −

1
b6

)
> 1,

which implies that b6 ≥ 7.
We next determine the possible values of b1. In order to have D = 1, it must be true that

D > 0, thus

b3 − 1
b1
− 1

b2
>
(

1
2 −

1
b6

)−1
. (5.2)

Now suppose that 3 ≤ b3 ≤ 7 and 14 ≤ b6 ≤ 27 are fixed. Now suppose that b1 ≥ 11. Then

D ≥ 11 · 12 · 2 · 7
((

3− 1
11 −

1
12

) (
1
2 −

1
7

)
− 1
)

= 17,

so we must have b1 ≤ 10.
In this case a Maple calculation shows that the right-side is at most 5 (which occurs for b3 = 3

and b6 = 7), and thus all b1 > 10 are not possible; in other words, we must have b1 ≤ 10. To
complete this case, we now consider fixed 2 ≤ b1 ≤ 10, 3 ≤ b3 ≤ 7, and 3 ≤ b6 ≤ 27. If there is a
solution, then following (5.2), it must be for the minimal value of b2 such that

b2 > −
((

1
2 −

1
b6

)−1
− b3 + 1

b1

)−1

. (5.3)

A Maple search shows that the maximum value of the right-side is 30 (which occurs with b1 =
6, b3 = 3 and b6 = 7), b2 ≤ 31.

Next, let b5 = 3. If b3 ≥ 4, then

D ≥ 6 · 3 · 4
((

4− 1
2 −

1
3

) (
1− 1

3 −
1
4

)
− 1
)

= 23.

Thus b3 ≤ 3, and we begin with b3 = 3. Very similar calculations show, in turn, that b6 ≤ 5, and
b1 ≤ 3. As in (5.3), checking

b2 > −
((

2
3 −

1
b6

)−1
− b3 + 1

b1

)−1

.

in these ranges now gives a maximum right-side value of 10 (with b1 = 2, b3 = 3, and b6 = 4),
then b2 ≤ 11.

For the case b5 = 3 and b3 = 2, if b6 ≤ 6, then

D = b1b2b5b6

((
2− 1

b1
− 1

b2

)(
1− 1

3 −
1
b6

)
− 1
)
< b1b2b5b6

(
2 · 1

2 − 1
)

= 0,

and thus we must have b6 ≥ 7. However, in order for D > 0, it also must be true that

2− 1
b1
− 1

b2
>
(

2
3 −

1
b6

)−1
> 3

2 . (5.4)
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The largest values of b6 occurs when the left side is as close to 3
2 as possible (while being larger,

so b1 ≥ 3), which occurs for b1 = 3 and b2 = 7 (and then 2 − 1
3 −

1
7 = 32

21). Plugging in to (5.4),
this implies that the first inequality holds for b6 > 96, and again by monotonicity, this gives the
bound b6 ≤ 97.

Furthermore, if b1 ≥ 24, then

D ≥ 24 · 25 · 3 · 7
((

2− 1
24 −

1
25

) (
1− 1

3 −
1
7

)
− 1
)

= 61,

thus we must have b1 ≤ 23. Finally, checking

b2 > −
((

2
3 −

1
b6

)−1
− 2 + 1

b1

)−1

over the ranges 3 ≤ b1 ≤ 23, and 7 ≤ b6 ≤ 97 shows that the right-side is at most 132 (which
occurs at b1 = 12 and b6 = 7), so b2 ≤ 133.

For the remaining values 4 ≤ b5 ≤ 13, we proceed similarly. First, if b3 ≥ 3, then

D ≥ 2 · 3 · 4 · 5
(

13
6

(
1− 1

4 −
1
5

)
− 1
)

= 23,

thus we must have b3 = 2. Furthermore, if b1 ≥ 11, then

D ≥ 11 · 12 · 4 · 5
((

2− 1
11 −

1
12

)
· 11

20 − 1
)

= 11,

thus b1 ≤ 10.
Now we bound b6 as in the previous case. For example, if b5 = 4, then D > 0 requires that

2− 1
b1
− 1

b2
>
(

3
4 −

1
b6

)−1
> 4

3 .

This is only possible if 1
b1

+ 1
b2
< 2

3 , and the largest value of b6 occurs when the sum is as close

as possible to 2
3 . This occurs with b1 = 2, b2 = 7, which implies that b6 ≤ 77. Repeating the

argument for b5 ≥ 5 never gives a larger range for b6 (and b5 ≥ 8 can be treated as a single case,

since then the maximal case is always 1
2 + 1

3 <
b5−2
b5−1). Finally, plugging in b1 ≤ 10, 4 ≤ b5 ≤ 13,

and b6 ≤ 77 to

b2 > −
((

1− 1
b5
− 1

b6

)−1
− 2 + 1

b1

)−1

gives the bound b2 ≤ 71. �

5.2. Calculation of Z(q) and the proof of Theorem 1.3. Let M be as in (5.1), with inverse
matrix M−1 = (`jk)1≤j,k≤6. We need the central 2× 2 sub-matrix of M−1, which we write as

A :=

(
`33 `34

`43 `44

)
=

(
b1b2(b4b5b6 − b5 − b6) b1b2b5b6

b1b2b5b6
b5b6(b1b2b5b6+1)
b4b5b6−b5−b6

)
.

In order to write Z(q) as a double series of the type found in Section 4, we use a linear algebra
identity, which can be verified by a Maple computation.
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Lemma 5.2. If r = (ε1, ε2, 2n1 + 1, 2n2 + 1, ε5, ε6)T with n1, n2 ∈ Z and εj ∈ {±1}, then

1

2
rTM−1r =

1

2

(
2n1 + 2α1, 2n2 + 2α2

)
A

(
2n1 + 2α1

2n2 + 2α2

)
+ c,

where

α = α(ε) =

(
α1

α2

)
:=

1

2

(
1 + ε1

b1
+ ε2

b2
1 + ε5

b5
+ ε6

b6

)
, c := 1

2

(
1
b1

+ 1
b2

+ 1
b5

+ 1
b6

)
.

Remark. Importantly, note that c is independent of the εj’s.

We can now evaluate Z(q) for any positive unimodular M .

Proposition 5.3. With S := {α(ε)}, we have

Z(q) =
q−9+

tr(M)
2

+c

4

∑
α∈S

(−1)j+1
∑
n∈Z2

sgn∗(n1)sgn∗(n2)qQ1(n+α), (5.5)

where Q1(n) := 1
2m

TM−1m, with m := (0, 0, 2n1, 2n2, 0, 0)T .

Proof. An application of formula (2.9) for the H-graph gives

Z(q) :=
q−9+

tr(M)
2

(2πi)6
PV

∫
|wj |=1

(
w1 − w−1

1

) (
w2 − w−1

2

) (
w5 − w−1

5

) (
w6 − w−1

6

)(
w3 − w−1

3

) (
w4 − w−1

4

) ΘM (q;w)
6∏
j=1

dwj
wj

,

where by (2.10) (because M is unimodular) we have

ΘM (q;w) =
∑
m∈Z6

q
1
2
mTM−1me2πimT z.

Applying (2.5) and (2.6) we find that

Z(q) =
q−9+

tr(M)
2

4

∑
r=(ε1,ε2,2n1,2n2,ε5,ε6)

T

εj∈{±1},(n1,n2)∈Z2

(ε1ε2ε5ε6)sgn∗(n1)sgn∗(n2)q
1
2
rTM−1r.

Applying Lemma 5.2 completes the proof. �

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. By splitting the summation over Z2 in (5.5) into summations over N0×N0,
(−N)× (−N), N0× (−N), and (−N)×N0, a case-by-case computation for each unimodular matrix
(5.1) gives ∑

α∈S
(−1)j+1

∑
m∈Z2

sgn∗(m1)sgn∗(m2)qQ(m+α) = Z1(q)−Z2(q)

where

Z1(q) := ZQ,r,s(q) =
∑

j∈{1,2}

(−1)j+1
∑
α∈Sj

∑
n∈N2

0

qLQ(n+α)
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Z2(q) := ZQ∗,r,s(q) =
∑

j∈{1,2}

(−1)j+1
∑
α∈Sj

∑
n∈N2

0

qLQ
∗(n+α)

and Q∗(n) := Q(−n1, n2).
The quadratic form Q and constants N1, N2, r1, r2, s1, s2 (recall, L = gcd(N1, N2)) are given

in the appendix. In Section 4, Theorem 4.1 establishes that Z1(q) is a quantum modular form
of weight one and depth two on Q. The same result also applies to Z2(q). Finally, we let
cM := 9− 1

2tr(M)− c, where c is also listed in the appendix. �

Appendix: Data for positive unimodular matrices

Here we list all positive unimodular matrices of the form (5.1), and the corresponding parame-
ters that appear in Z(q) (see (4.1) and Proposition 5.3). In each case one can directly check that
the assumptions in Section 4 are satisfied.

The value of c and the quadratic form Q are given below, and the data for Sj are presented in
condensed form.
1. M(2, 3, 7, 1, 2, 3)

Q(n) = n21 + 12n1n2 + 37n22, c = 5
6 , N1 = N2 = 12, r1 = r2 = 1, s1 = s2 = 5.

2. M(2, 7, 4, 1, 5, 2)

Q(n) = 21n21 + 140n1n2 + 235n22, c = 47
70 , N1 = 28, N2 = 20, r1 = 5, s1 = 9, r2 = 3, s2 = 7.

3. M(6, 31, 3, 1, 2, 7)

Q(n) = 465n21 + 2604n1n2 + 3647n22, c = 274
651 , N1 = 372, N2 = 28, r1 = 149, s1 = 161, r2 = 5, s2 = 23.

4. M(7, 18, 3, 1, 2, 7)

Q(n) = 45n21 + 252n1n2 + 353n22, c = 53
126 , N1 = 252, N2 = 28, r1 = 101, s1 = 115, r2 = 5, s2 = 9.

5. M(3, 11, 3, 1, 2, 9)

Q(n) = 77n21 + 396n1n2 + 510n22, c = 205
396 , N1 = 66, N2 = 36, r1 = 19, s1 = 25, r2 = 7, s2 = 11.

6. M(2, 19, 3, 1, 2, 11)

Q(n) = 171n21 + 836n1n2 + 1023n22, c = 239
418 , N1 = 76, N2 = 44, r1 = 17, s1 = 21, r2 = 9, s2 = 13.

7. M(2, 3, 3, 1, 2, 27)

Q(n) = 25n21 + 108n1n2 + 117n22, c = 37
54 , N1 = 12, N2 = 108, r1 = 1, s1 = 5, r2 = 25, s2 = 29.

8. M(2, 3, 3, 1, 3, 5)

Q(n) = 14n21 + 60n1n2 + 65n22, c = 41
60 , N1 = 12, N2 = 30, r1 = 1, s1 = 5, r2 = 7, s2 = 13.

9. M(2, 11, 3, 1, 3, 4)

Q(n) = 55n21 + 264n1n2 + 318n22, c = 155
264 , N1 = 44, N2 = 24, r1 = 9, s1 = 13, r2 = 5, s2 = 11.

10. M(3, 4, 3, 1, 3, 4)

Q(n) = 5n21 + 24n1n2 + 29n22, c = 155
264 , N1 = N2 = 24, r1 = 5, s1 = 11, r2 = 5, s2 = 11.
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11. M(3, 7, 2, 1, 3, 97)

Q(n) = 1337n21 + 4074n1n2 + 3104n22, c = 835
2037 , N1 = 42, N2 = 582, r1 = 11, s1 = 17, r2 = 191, s2 = 197.

12. M(3, 8, 2, 1, 3, 56)

Q(n) = 109n21 + 336n1n2 + 259n22, c = 17
42 , N1 = 48, N2 = 336, r1 = 13, s1 = 19, r2 = 109, s2 = 115.

13. M(3, 47, 2, 1, 3, 17)

Q(n) = 1457n21 + 4794n1n2 + 3944n22, c = 895
2397 , N1 = 282, N2 = 102, r1 = 91, s1 = 97, r2 = 31, s2 = 37.

14. M(3, 88, 2, 1, 3, 16)

Q(n) = 319n21 + 1056n1n2 + 874n22, c = 391
1056 , N1 = 528, N2 = 96, r1 = 173, s1 = 179, r2 = 29, s2 = 35.

15.M(4, 5, 2, 1, 3, 47)

Q(n) = 1820n21 + 5640n1n2 + 4371n22, c = 2263
5640 , N1 = 40, N2 = 282, r1 = 11, s1 = 19, r2 = 91, s2 = 97.

16. M(4, 77, 2, 1, 3, 11)

Q(n) = 532n21 + 1848n1n2 + 1605n22, c = 635
1848 , N1 = 616, N2 = 66, r1 = 227, s1 = 235, r2 = 19, s2 = 25.

17. M(5, 16, 2, 1, 3, 11)

Q(n) = 1520n21 + 5280n1n2 + 4587n22, c = 1813
5280 , N1 = 160, N2 = 66, r1 = 59, s1 = 69, r2 = 19, s2 = 25.

18. M(7, 92, 2, 1, 3, 8)

Q(n) = 2093n21 + 7728n1n2 + 7134n22, c = 2365
7728 , N1 = 1288, N2 = 48, r1 = 545, s1 = 559, r2 = 13, s2 = 19.

19. M(8, 35, 2, 1, 3, 8)

Q(n) = 455n21 + 1680n1n2 + 1551n22), c = 257
840 , N1 = 560, N2 = 48, r1 = 237, s1 = 253, r2 = 13, s2 = 19.

20. M(11, 16, 2, 1, 3, 8)

Q(n) = 286n21 + 1056n1n2 + 975n22, c = 323
1056 , N1 = 352, N2 = 48, r1 = 149, s1 = 171, r2 = 13, s2 = 19.

21. M(12, 133, 2, 1, 3, 7)

Q(n) = 836n21 +3192n1n2 +3047n22, c = 905
3192 , N1 = 3192, N2 = 42, r1 = 1451, s1 = 1475, r2 = 11, s2 = 17.

22. M(13, 72, 2, 1, 3, 7)

Q(n) = 3432n21+13104n1n2+12509n22, c = 3715
13104 , N1 = 1872, N2 = 42, r1 = 851, s1 = 877, r2 = 11, s2 = 17.

23. M(3, 4, 2, 1, 4, 23)

Q(n) = 195n21 + 552n1n2 + 391n22, c = 121
276 , N1 = 24, N2 = 184, r1 = 5, s1 = 11, r2 = 65, s2 = 73.

24. M(3, 10, 2, 1, 4, 9)

Q(n) = 115n21 + 360n1n2 + 282n22, c = 143
360 , N1 = 60, N2 = 72, r1 = 17, s1 = 23, r2 = 23, s2 = 31.

25. M(3, 52, 2, 1, 4, 7)

Q(n) = 663n21 + 2184n1n2 + 1799n22, c = 407
1092 , N1 = 312, N2 = 56, r1 = 101, s1 = 107, r2 = 17, s2 = 25.

26. M(6, 67, 2, 1, 4, 5)
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Q1(n) = 2211n21 + 8040n1n2 + 7310n22, c = 2539
8040 , N1 = 804, N2 = 40, r1 = 329, s1 = 341, r2 = 11, s2 = 19.

27. M(2, 7, 2, 1, 4, 77)

Q(n) = 227n21 + 616n1n2 + 418n22), c = 279
616 , N1 = 28, N2 = 616, r1 = 5, s1 = 9, r2 = 227, s2 = 235.

28. M(7, 26, 2, 1, 4, 5)

Q(n) = 1001n21 + 3640n1n2 + 3310n22, c = 1149
3640 , N1 = 364, N2 = 40, r1 = 149, s1 = 163, r2 = 11, s2 = 19.

29. M(2, 11, 2, 1, 4, 25)

Q(n) = 781n21 + 2200n1n2 + 1550n22, c = 969
2200 , N1 = 44, N2 = 200, r1 = 9, s1 = 13, r2 = 71, s2 = 79.

30. M(2, 19, 2, 1, 4, 17)

Q(n) = 893n21 + 2584n1n2 + 1870n22, c = 1113
2584 , N1 = 76, N2 = 136, r1 = 17, s1 = 21, r2 = 47, s2 = 55.

31. M(2, 71, 2, 1, 4, 13)

Q(n) = 2485n21 + 7384n1n2 + 5486n22, c = 3105
7384 , N1 = 284, N2 = 104, r1 = 69, s1 = 73, r2 = 35, s2 = 43.

32. M(3, 7, 2, 1, 5, 7)

Q(n) = 69n21 + 210n1n2 + 160n22, c = 43
105 , N1 = 42, N2 = 70, r1 = 11, s1 = 17, r2 = 23, s2 = 33.

33. M(2, 5, 2, 1, 5, 33)

Q(n) = 254n21 + 660n1n2 + 429n22, c = 307
660 , N1 = 20, N2 = 330, r1 = 3, s1 = 7, r2 = 127, s2 = 137.

34. M(2, 7, 2, 1, 5, 16)

Q(n) = 413n21 + 1120n1n2 + 760n22, c = 507
1120 , N1 = 28, N2 = 160, r1 = 5, s1 = 9, r2 = 59, s2 = 69.

35.M(2, 21, 2, 1, 5, 9)

Q(n) = 434n21 + 1260n1n2 + 915n22, c = 541
1260 , N1 = 84, N2 = 90, r1 = 19, s1 = 23, r2 = 31, s2 = 41.

36. M(2, 55, 2, 1, 5, 8)

Q(n) = 297n21 + 880n1n2 + 652n22, c = 371
880 , N1 = 220, N2 = 80, r1 = 53, s1 = 57, r2 = 27, s2 = 37.

37. M(2, 3, 2, 1, 8, 57)

Q(n) = 391n21 + 912n1n2 + 532n22, c = 445
912 , N1 = 12, N2 = 912, r1 = 1, s1 = 5, r2 = 391, s2 = 407.

38. M(2, 3, 2, 1, 9, 32)

Q(n) = 247n21 + 576n1n2 + 336n22, c = 281
576 , N1 = 12, N2 = 576, r1 = 1, s1 = 5, r2 = 247, s2 = 265.

39. M(2, 3, 2, 1, 12, 17)

Q(n) = 175n21 + 408n1n2 + 238n22, c = 199
408 , N1 = 12, N2 = 408, r1 = 1, s1 = 5, r2 = 175, s2 = 199.
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