HIGHER DEPTH QUANTUM MODULAR FORMS AND PLUMBED
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ABSTRACT. In this paper we study new invariants Za (¢) attached to plumbed 3-manifolds that
were introduced by Gukov, Pei, Putrov, and Vafa. These remarkable ¢-series at radial limits
conjecturally compute WRT invariants of the corresponding plumbed 3-manifold. Here we inves-
tigate the series Zo(q) for unimodular plumbing H-graphs with six vertices. We prove that for
every positive definite unimodular plumbing matrix, Eo(q) is a depth two quantum modular form

on Q.

1. INTRODUCTION AND STATEMENT OF RESULTS

A quantum modular form is a complex-valued function defined on Q or a subset thereof, called
the quantum set, that exhibits modular-like transformation properties up to an obstruction term
with “nice” analytic properties (for instance, it can be extended to a real-analytic function on some
open subset of R). Quantum modular forms were introduced by Zagier in [23], where he described
several non-trivial examples. They have appeared in several areas including quantum invariants
of knots and 3-manifolds [16, 17, 18, 19], mock modular forms [13], meromorphic Jacobi forms [§],
mathematical physics [12], partial and false theta functions [7], and representation theory [7, 11].

Motivated on the one hand by the concept of higher depth mock modular forms and on the other
hand by the appearance of higher rank false theta functions in representation theory, Kaszian and
two of the authors [4] defined so-called higher depth quantum modular forms, and gave an infinite
family of examples coming from characters of representations of vertex algebras. If the depth is
two, these functions satisfy

f(1) = (em+d) " f(y7) € Q'O(R), v =(2}) € SLa(2),

where Q! is the space of quantum modular forms and O(R) is the space of real-analytic functions
on some subset R of R. All known examples of depth two quantum modular come from rank two
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partial theta functions (q := e>™7, 7 € H)

an% +bn§+cn1 no
§ q )
neNZ+p3

where 3 € Q? (throughout we write vectors in bold letters and their components with subscripts)
and a,4ab — ¢ > 0. Further examples of this kind were studied in [3, 20]. Depth two quantum
modular forms also appear as the coefficients of meromorphic Jacobi forms of negative matrix
index [5].

In [15], as a part of the construction of homological invariants for closed 3-manifolds, Gukov,
Pei, Putrov, and Vafa proposed a new approach to WRT invariants for a large class of 3-manifolds.
For any plumbed 3-manifold, homeomorphically represented by a plumbing graph and positive
definite linking matrix M !, they [15] defined a certain family of g-series (called homological blocks)

—3N+tr(1bl)

Zala) = LV /wjllr[gwj I 7o w0® walew)tr, (1)

(k)EE J

where PV denotes the Cauchy principal value, integrals are oriented counterclockwise throughout,

and flw'|*1 indicates the integration f|w1|71 -+ Jjwy|=1- Moreover g(w;) and f(wy, wy) are certain
il= - -

simple rational functions defined in (2.7) and (2.8), respectively and

O_Malg;w) == Z qizTM_le'wg, a € 2coker(M) + 9,
Le2M7ZN +a

where  := (J;) such that 0; = deg(v;) (mod2) with ¢; denoting the degree (or Valency) of the
j-th node. Conjecturally, a suitable (explicit) linear comblnatlon of Zg(q), denoted by Z(q) in

[15], is the universal WRT invariant, that is, as ¢ — e *F its limit coincides with the SU(2) WRT
invariant of M at level k. This, in particular, leads to another conjecture (attributed in [6] to

Gukov) that 2a(q) and Z (q) are quantum modular forms. This conjecture can be verified for
specific 3-manifolds obtained from unimodular 3-star plumbing graphs (e.g. the Eg graph) [6, 9]

due to the fact that Zl(q) can be expressed via one-dimensional unary false theta functions
Z Sgn(n>qan2+bn’
ne”L

whose quantum modularity properties are well-understood [7, 17, 18, 19].

In this paper we investigate Zl(q) for a family of non-Seifert plumbed 3-manifolds. We consider
the simplest plumbing graph of this kind obtained by splicing two 3-star graphs. This way we
obtain the so-called H-graph with six vertices (Figure 1), with the linking matrix

lp [15], M is negative definite, which we account for by replacing it with —M when referring to their work.
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FiGure 1. The H-graph

b1 0 -1 0 0 0

0 by —1 0 0 0

=1 10 0
M=1{"970 s -1 |- (1.2)

0 0 0 —1bs 0

0 0 0 —10 bg

We only consider positive definite unimodular matrices whose 3-manifolds are integral homology
spheres (i.e., H1(M3,Z) = 0 as explained further in Section 2.7 below). Due to the invariance of
Zs(q) under a Kirby move [15], we may assume that b; > 2,5 €{1,2,5,6} (graphs with b; =1,
j €41,2,5,6} reduce to 3-star graphs whose quantum modularity is well-understood [6, 9]). With
these assumptions Eg(q) (also denoted by Zo(q) in [15]) is the only homological block and therefore
it conjecturally gives WRT invariants at roots of unity. An important feature of this family of
graphs is that Zs (q) can be expressed via rank two false theta functions (3 € Q?, a,b,c € N)

Z sgn* (ny)sgn* (ng)q@("1 A1) +b(na+52) elnitf1) (na+62),
nez?

where sgn*(z) := sgn(x) for x € R\ {0} and sgn*(0) := 1. Our first result is on quantum
modularity of certain partial theta functions needed to study 25 (q).

More generally, we prove quantum modularity of an infinite family of false theta functions
which we now introduce. Define

Fsqe(r) =Y ela) Y ¢"onte),

acsS neNg

where S € Q%N (0, 1)? is a finite set with the property that (1,1) — e, (1—ay, a2), (a1, 1—a2) €S
fora € S, e: S — C satisfies e(a) = ¢((1,1) — ) = ¢((1 — a1, a2)), and K € N is minimal such
that KS C N2. For convenience, we extend the domain of ¢ to S+ Z? by letting e(a) = e(a+n),
n € 72.

Theorem 1.1. The function Fs g is a quantum modular form of depth two, weight one, and
quantum set Qs g, defined in (3.1).

Theorem 1.1 is of independent interest and can be used to investigate other examples of quantum
modular forms.

Next we move on to studying unimodular matrices arising from H-graphs. Since the graph
has six vertices it is not surprising that there are only finitely many positive definite unimodular
matrices. We prove the following result.
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Theorem 1.2. There are, up to graph isomorphism, precisely 39 equivalence classes of unimodular
positive definite plumbing matrices (1.2) with b; > 2, j € {1,2,5,6}.

Then our main result is the following.

Theorem 1.3. For any positive definite unimodular plumbing matriz as in Theorem 1.2 there
exists some cpr € Q such that ¢°M Zy(q) is a quantum modular form of depth two, weight one, and
quantum set Q.

Based on the results here and in [6, 9, 14], we can slightly reformulate Gukov’s conjecture
mentioned in [6] on the quantum modularity of Z,(¢) and Z(q).

Con_]ecture 1.4. Let T be a plumbing graph (tree) with r nodes of degree at least three. Then

Za(q) 1s a depth v quantum modular form. Moreover, for any unimodular plumbing matrix, Z( )
18 quantum of depth r with quantum set Q.

Although it should be possible to give a more quantitative statement relating the structure of
the graph to the weight of Z (¢), we do not include such a claim here due to the lack of supporting
evidence beyond n-star graphs. For n-star graphs we strongly believe this weight to be % +(n—3)
(see [6, 9, 14]).

Combined with the conjecture on Z (¢) mentioned above, Conjecture 1.4 would imply that
(unified) WRT invariants of plumbed 3-manifolds are higher depth quantum modular forms. We
expect that the higher depth property also holds true for higher rank SU(V) invariants (see [10]).

For the remainder of the paper we primarily work with a modified version of the invariants for
plumbed 3-manifolds, which we denote by Z(g) (see (2.9)). In the case that M is unimodular we
see that Z(q) is closely related to Zo(g), and thus our main result follows from determining the
quantum modularity of Z(q).

The paper is organized as follows. In Section 2, we discuss special functions, the Euler-
Maclaurin summation formula, higher depth quantum modular forms, and double Eichler in-
tegrals. We also define Z(q) and describe its relationship to Zy(g). In Section 3 we show the
quantum modularity of Fs g, - (see Theorem 3.1). In Section 4, we prove our main result on the
quantum modularity of Z(gq) for unimodular plumbing graphs (see Theorem 4.1). The proof of
the classification of positive definite unimodular matrices (1.2) is given in Section 5. Finally, in
the appendix we list data for all 39 equivalence classes of positive unimodular matrices needed to
compute Z(q).

Acknowledgements: The authors thank S. Chun, S. Gukov, and C. Manolescu for helpful
discussion on some aspects of [15]. Moreover, we thank the anonymous referees for their helpful
comiments.

2. PRELIMINARIES

2.1. Special functions. Following [1] (with slightly different notation), for each x € R we define
a function Ey : R x R? = R by

Es(k;x) := / sgn (w1 ) sgn (wg + Kw) e_”((wl_xl)z"'(wr”)z)dwldwg.
R2
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For xo,x1 — kxo # 0, we set
e—7rwf—7rw§—2ﬂ'i(rlw1+x2w2)
M . Pp— _L
2(K; ) 1= — 3
R2 iz wz(wy — Kwz)

dwidws.
The following formula relates My and Es :
Ms(k; 1 + Koo, 2) = Fo(k;x1 + KXo, x2) + sgn(xy)sgn(xs)
—sgn(ze)E(x1 + kxg) — sgn(xp)E (ﬁml + mm) ,

where for z € R, we set E(z) :=2 [ =™ o
The proof of the next result follows from the proof of [4, Lemma 6.1]. Here 7 = u + iv.

Proposition 2.1. For k,z1,x2 € R we have

2 2 ico wiw%wl 0o ﬂiac%wg
r1 T *1,% e 2v e 2v
My(r; 01, 22) = —5—=—=q " ® —dwgdwl (2.2)
ff —T VvV — wl +T w1 \/ — w2 +T)
i m2+~11) wq ) mi(w] —kwg)2we
To + KT 1 — KXo (:c2+m:1) +(x1 rg)? T 2(14R2)u 0o o 2(14R%)u

_ q 4(1+k2) 4(1+k2)0
24/ (1 + &2)v /(1 + k2)v -7 —i(wr +7) Juy, /—i(wa+T)

2.2. Euler-Maclaurin summation formula. Let B,,(z) be the m-th Bernoulli polynomial
we =: > om0 By (z)“5r. We require

Bp(1 — ) = (=1)™ By (). (2.3)

The Euler-Maclaurin summation formula implies the following lemma.

dwgdwl.

Lemma 2.2. For a € R?, F : R?> = R a C®-function which has rapid decay, we have

> F((n+a)t)

nEN%
Ip By 11(a2) / © 1 By y1(a1) /OO _
~— — = FOm2) (31 0)dz ™" — s F00(0, 2)dzot™ 1
t2 2;0 (712 + 1 ( ! ) ! HZ;(] (n1 + 1)! 0 ( 2) 2
+ Z n1+1 al Bn2+1(a2)F(n1,n2)(O O)tn1+n2
a0 nl + 1 (TLQ =+ 1)
where I = [° [° F(x)dzidzy. Here by ~ we mean that the difference between the left- and the

right-hand side is O(tN) for any N € N.

2.3. Gauss sums. We define for a, b, c € Z with ¢ > 0 the quadratic Gauss sums

27

Ge(a,b) :== Z e c (“”24‘1’”)’

n (modc)
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see [2, Section 1.5] for some basic properties. We use the following elementary result on the
vanishing of G.(a, b).

Proposition 2.3. If gcd(a,c) tb, then G.(a,b) = 0.

2.4. Shimura theta functions. We require certain theta functions studied, for example, by
Shimura [22]. For v € {0,1}, h € Z, N, A € N, with A|N, N|hA, define

'I'n/2
V(A h,N;T) := Z m”q;N2 .
meZ
m=h (mod N)
Define the slash operator of weight k € 7 ((+) the Jacobi symbol)
o\ 2k _ u
f|k’Y(7') = (%) e (et +d) R f(vyr), v=(2Y) € SLy(Z).

Note that if k € Z+ 1, we require that v € Tg(4). Recall that Shimura’s modular transformation
formula [22, Proposition 2.1] states that for v = (2%) € I'o(2N), with 2|b, we have

Bu(A,h Ni7) |3 7y = e (45) (=24) 94, ah, N 7). (2.4)

Here e(z) := e*™® and for odd d, we define 4 = 1 or 4, depending on whether d =1 (mod4) or
d=3 (mod4).

2.5. Integral evaluations. We require, for m € Z,

d
/ (w — w_l) wm—w = / w"dw — / W™ 2dw = 2mi (Om,—1 — Om.1), (2.5)
|lw|=1 w |w|=1 |lw|=1
where 0,, , = 0 unless m = a in which case it equals 1 and
1 w™  dw 1
—PV _— == 2.6
27 /|w|:1 w—w-1 w ngno(m), (2.6)

where sgn,(m) := 3sgn(m)(1 — (—1)™).

2.6. Higher depth quantum modular forms. We now give the formal definition of quantum
modular forms, following [23].

Definition 2.4. A function f : Q — C (Q C Q) is called a quantum modular form of weight
ke %Z for a subgroup T of SLa2(Z) (of To(4) if k € Z+3) and quantum set Q if fory = (24) €T,
the function

f(r) = fl(r)
can be extended to an open subset of R on which it is real-analytic. We denote the vector space
of such forms by Qp(T).

We next turn to the definition of higher-depth quantum modular forms (see Definition 3 of [4]).
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Definition 2.5. A function f : Q@ — C (Q C Q) is called a quantum modular form of depth
N € N, weight k € %Z, and quantum set Q for I' if for v = (‘C’ Z) el

f=flyye P asmom),
J

where j runs through a finite set, k; € %Z, N; € N with max;(N;) = N — 1, Qi(T') := Q(T),
ONI) := 1, and QN () is the space of quantum modular forms of weight k and depth N for T

For f; € Sk, ('), the space of cusp forms of weight k; for I' with k; > %, define the (non-
holomorphic) Eichler integrals

Mﬂ:/ qﬁfw%m,

Iy p(r / / J1(w1) fa(w2) s,

i(wy + 7))2 k1 (—i(wg + 7))2 k2

and the errors of modularity, for o € @

rf’ / dw7
o ( 'lU +T )
oo re fi(w1) fa(wz)
T dw dwy.
frofzaef /Q wy, (—i(wi + 7))27 R (—i(wg + 7))2~ 20W1

The next result is [4, Theorem 5.1].
Theorem 2.6. We have, for v = (‘C‘ 3) el = (_01 (1)) r (_01 (1)),
I (T) = It bitha—a Y(T) = 7, g, 2 a(T) + Ipy (T)7, a(T)

Moreover T fard € O(R).

2.7. Definitions and notation. In this section we recall the construction of Z(q) following [6],
which is another invariant that is closely related to Zg(q) from (1.1). Consider a tree G with N
vertices labeled by integers mj;, 1 < j < N, which is called a plumbing graph. To this data we
associate an N x N matrix M = (mji)1<jr<n, called its linking (or plumbing) matriz, such that
mjr = —1 if vertex j is connected to vertex k and zero otherwise. We say that two plumbing
matrices M and M’ are equivalent if their underlying graphs are isomorphic, and there is a graph
isomorphism that maps M to M’. The first homology group of M3(G) (the plumbed 3-manifold
constructed from G and M) is

Hy(M3(G),7) = coker(M) = ZN /M 7V

If M is invertible, then this group is finite and if M € SLy(Z), then Hy(Ms3,Z) = 0; this is the
case for the main results of this paper, as M is positive definite and unimodular.
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To each edge 7 — k in G we associate a rational function

1
-1 -1
(w; - w; ) (wr —wy )
and to each vertex w; a Laurent polynomial
—1\2
g(w;) == (wj — w; )”. (2.8)
For a fixed tree G and positive definite M, set

f(ug,u%)::

73N+EV 1 av

dw;
2(0) = TPV / Hg w) [ flonwiOul@w)™,  (29)
7T7, w]| 1 wy
(k)eE
where we let a; := m;; for the vertex labels, w; := e?™% and
Z qfnTMn 27rznTMz‘
nezZN
Note that we may write
Z quTM Im 2mmTz (210)
meMZN

The following result is given in Proposition 3.4 of [6].

Proposition 2.7. If M is unimodular, then Z(q) = Zs(q?), where 25(q) is defined in (1.1).

3. A GENERAL CONSTRUCTION

In this section we construct an infinite family of quantum modular forms of depth two closely
following the arguments in [4]. Define

Qsge =40 eQ:gedhk)=1,keN, Y (o) Y ¥l —gF, (3.1)
acsS £ (modk)

We write Q(n) =: o1n? + 209n1n2 + o3n3, and denote its discriminant by D := o103 — 05. We
also regularly use the relationship between the quadratic form and the associated bilinear form,
namely

Qz +y) - Q(x) — Qy) = Bz, y). (3.2)

Theorem 3.1. The functions Fs g, are quantum modular forms of depth two, weight one, on
some congruence subgroup containing I'(8 - lem(o1, 03) K D), and quantum set Qs ..

Before proving Theorem 3.1, we require some auxiliary lemmas. Set

EsQe(r) =Y e(a)Fg.alr),

acs
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where
Foa(r) =3 Y M (ki (aim + azns, bynz) Vv ) g™
neZ?+a
with

(o9 209 D

K = ﬁ’ ay = 21/0'1, as = ﬁ’ b2 =2 o1

We begin by determining the asymptotic expansions of these functions.

Lemma 3.2. If% € Qs., then we have the asymptotic expansions (ast — 07)
Fsge(b+ L) = Z apk(m)t™, Esqe (k+ L&) = Z a_pr(m)(=t)". (3.3)
m>0 m>0
Proof. For the proof we abbreviate
F:=Fs Qe E:=Es Qe Q:=0s5Q.-

We first determine the asymptotic expansion of F' using the Euler-Maclaurin summation for-
mula. We let n +— £+ kn with 0 < £ <k—1 (ie, 0< ¢ <k—1,j€ {1,2}), n € N3. The
assumption that KS C N? implies that %KQ(E +a+kn)= %KQ(Z + a) (mod1), thus

F(h+i) =Y ela) Y emireee S g (kvin),
acS 0<e<k-—1 TLEN%-F%(K—FOL)

where g(z) := e KQ®)  The main term in Lemma 2.2 is

By ey Y et
ktaes 0<e<k—1

Using that KS C N? we may let £ run (mod k). Since % € Q the sum vanishes.
The second term in Lemma 2.2 yields

_ Z £(a) Z o2 KQ(e+cx) Z By (%(52 + a2)) /Oo g(o’m)(whO)dml (k\/anz—l (3.4)

n 1!
acs 0<t<k—1 na>0 (n2 +1) 0

Making the change of variables £ — (k —1)(1,1) — £ and using that (1,1) —a € Sifa € S, (2.3)
yields that only the odd values of ng survive, and (3.4) becomes

h Bong 2 (£(£ o
. Z 5(a) Z 627rz%KQ(£+a) Z 2ng+2 (k( 2 +Oé2)) /0 g(0’2n2+1)($1,O)dﬂ?lk2n2tn2.

1
aces 0<e<k—1 n2>0 (2n2 +2)!

In exactly the same way we obtain that the third term in Lemma 2.2 equals

. Bop, 12 (:(¢ >
. ZE(O‘) Z eQm%KQ(Z-‘,—a) Z 2n1+2 (k( 1 +O‘1)) /0 g(2n1+1,0)(0’I2)dl,2k2mtm'

1
aces 0<e<k—1 n1>0 (21 +2)!

For the final term in Lemma 2.2 we obtain, pairing in exactly the same way
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doela) Y i KQEre) > By 41 (5(4 + 01)) Bnysa (3 (£2 + 02))

! |
acsS 0<e<k—1 n1,n2>0 (nl + 1)‘ (n2 + 1)‘
ni=ng (mod2)

x g m(0,0) (kvi) "

In particular we obtain that the asymptotic expansion of F' has the shape as claimed in (3.3).
We now turn to the asymptotic behavior of E. We use (2.1) and let M3 denote the function such
that the sgn in (2.1) is replaced by sgn*, where sgn*(z) := sgn(x) if x € R\ {0} and sgn*(0) := 1.
We obtain
M5 (k;a1ng + agng, bang) = Ea(k;aing + agng, bang) + sgn™(nq)sgn™(ng)
— Sgn*(nQ)E (\/%—1(0'17”&1 + 02712)) — Sgn*(nl)E (\/%—3(0‘2711 + 03112)) .

Proceeding as above

E(f+at)=) cla)| D e~ 2miEKQ(t+a) Y G (k:ﬁn)

a€EeS 0<£<k—1 neENZ+a

n Z o2t KQ(eta) Z é(k:ﬂn) ’

0<e<k—1 neNZta

where

Q(x1,22) 1= Q(—x1,22)

Gx) := %MQ* </€; \/ %(alxl + agxg,b2x2)> eKQ(m), é($1,$2) = G(—x1,x2).
We again use the Euler-Maclaurin summation formula. The main term in Lemma 2.2 is
% (a) Z —2mhKQ L+0) —I— e Ay Z Z e—QNi%KQ(Z—i—a) -0
aes 0<£<k—1 aes 0<£<k—1

by conjugating the condition in Q.
The second term in Lemma 2.2 is, pairing terms as before,

e Y emitraea) 3 Doz (5t o)

1
acs 0<t<k—1 n2>0 (212 +2)!

oo ~
% / (G(0,2n2+1)(x170) + G(072n2+1)<$170)> dzy (th)nz
0
It is now straightforward to verify, as in [4], that

/ (G220 (1, 0) + GO (2,0)) iy = (~1) / 024 (21 0)day.
0 0
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Via symmetry the third term in Lemma 2.2 is treated in exactly the same way.
The fourth term in Lemma 2.2 is, pairing as before,

Comih o By, Lty + a1)) Bry1 (62 + o)
ZE(O‘) Z e PO Z +275f+11)! ) +t7’52k+21)! )

aEeS 0<e<k—1 n1,n2>0
ni=nz (mod2)

x (G2 (0,0) + (—1)m G2 (0,0)) (kE)

ni+ng

It can now be shown that
GMm2) (0,0) 4 (—1)mTLGMm2)(0,0) = imtnzgnnz) o, 0).
Comparing terms gives the claim. O
Write A := K8, and define

B:={0< B < 01K :B) =01A1 4+ 0245+ 002K, Bs = Ay + oK, for some A€ A, p (modoy)},
C:={0<C < 03K :Cy=02A1+ 0342 + 002K, Cy = As + oK, for some A€ A, p (modos)}.

The following lemma rewrites E as a two-dimensional theta integral, which is essential in order
to calculate modular transformations.

Lemma 3.3. We have

Bi1—02By Bj T
201K Z ( o1K 7K) Tl’Tz 20’3K

Es,qe(7)

Cy Co—02C
( 7> 203[3' 1) IU1,U2(T>7
cec

where

T (w) := %1 (01K, B1,01K; 2w), Tr(w) := %1 (01K, By, 01 K;2Dw),
Ur(w) := 91 (03K, Cy,03K;2w), Us(w) := 91 (03K, Cy,03K;2Dw).
Proof. Using (2.2) we obtain

My (n; (a1n1 + agne, an)\/m) g KQm)

) ) 2mi ( + ) +27riDng
2\/5( N ) /zoo /zoo e oy \T1MToaN2)TW w2 dnd
= - aginy g212)N2 - - wWwaawW1
71 —K7 Juw, \/—Z(w1 + KT)\/—z(wg + K7)
i 27 (gomy+ogng) 2w+ MDn% w2
2v' D N EE

dwodws .

(oan1 + o3ng nl/

03 K7 Jw \/ ’LU1+KT \/—i(w2+K7)

This yields

__K\/E 100 100 91(’11)) oodu
Esqelr) ==, / /w e )y i

-7
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K /D 100  L100 Qg(w)
— - dwgdwl,
o3 J 7 Ju /—ilwr +71)/—i(ws +7)
where
2mi K 2 2niDK , 2
bi(w) =Y ela) Y (o1 +ozma)nze (g1m1toana) wn+ 55 ngws
acS neZ?+a

Lk 2miDK
bo(w) = S c(a) S (owni +ogng)mge o5 PO IEEL Endee,
aes nezZ’+a

We now rewrite the 6; in terms of the Shimura theta functions. Letting n — %, we obtain

2mi 2miD 2
91(11)) = % Z c (%) Z (Ulnl + 0-2n2)n2€[,1ﬁ;< (o1m1+0o2n2) w1+ dTrzK n3wz

AcA n=A (modK)

Set v := o1n1 +02ng and vy = ng, so that ny = #7222

. Plugging in the restrictions on n yields
v9 = As + oK (modoi1K) for0<p<o;—1,
v = o1ny + oong = 0141 + 02As + 002 K (mod o1 K).
This shows that v € B. Furthermore, if o € A, there exists a corresponding B € B such that
o= (%, %) = (LC:I”[%BQ, %) (mod1).

Overall, we therefore have

27r7lu%w1 271'75D1/§'u12

01(w) K2 Z <B101012(327]l3<2> Z vie 71K Z e 1K

BeB 11=B1 (modoiK) v2=Bs (modoiK)

K2 D (Blglangz, K) 01 (01K, By, 01K; 2wy ) 01 (01K, By, 01 K; 2Dws) .
BeB

In the same way, by setting 11 := o9n1 + o3no and v, := nq, we can show that

O2(w) K2 Z (%, 020‘7[%01> V1(03K, C1,03K;2w1)01 (03K, Ca, 03K ;2Dws). O
cec

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Suppose that f is one of the theta functions from Lemma 3.3 and v €

I'(8 - lem(o1,03)K D). Then the transformation (2.4) implies (after a short calculation) that

flsy =f. The theorem statement now follows from Lemmas 3.2 and 3.3, and Theorem 2.6. [
2



HIGHER DEPTH QUANTUM MODULAR FORMS AND PLUMBED 3-MANIFOLDS 13

4. A FAMILY WITH QUANTUM SET Q AND UNIMODULAR MATRICES

In this section we construct a family of depth two quantum modular forms with quantum set Q.
Let Ny, No E 2N and write L := gcd(Nl, N3), N1 := LRy, Ny := LRy, so that gcd(Ry, R2) = 1. Set
Q(n) = o1n? + 209n1n2 + o3n3. We assume the factorizations o1 = Rypu1, with ged(Ry, p1) = 1,
and 03 = Rous, with ged(us, R2) = 1. Moreover we assume that 209 = LR Ry = lem(Ny, Na) and
that ged(p1, p3) consists of at most one odd prime factor, and always satisfies ged(L, ged (1, u3)) =
1. If 4 1 L, then we also require that exactly one of Ry, Rg, us is even. Set, with ri,79,51,52 € N

satisfying gcd(r], ;) = ged(sj, Nj) =1, 7"2- = s? (mod 2Nj),

(-&1-2), (4.1)

We define
Zgral@) = Y (-1 L

where S 1= 81 US; and e(a) := (—1)7T! if & € ;. We see in the proof of Theorem 4.1 that the
assumptions imply that the asymptotic expansion of Zg , s(q) consists of several leading terms
with identical Gauss sums that always cancel, and thus the series converges for all Q.

Theorem 4.1. Under the assumption above, the function Zqrs(q) is a quantum modular form
of depth two, weight one, group T' (8 -lem(o1, 02) LR1 R2), and quantum set Q.

Proof. Note that the conditions of Theorem 3.1 are satisfied. We are left to show that we have
quantum set Q, which follows if we show that

Z ]+1 Z Z 2mhLQ (e+a) _ . (4.2)
je{1,2} a€S; £ (mod k)

Write L = 2MLy,k = gki, where Ly, k; are odd and where g := ged(k,L). We claim that the
sum on £ vanishes unless gcd(LR1R2,k1) = 1 and g € {1,2}. For this we first consider the
(one-dimensional) Gauss sum in ¢1, which is (a; := N;a;)

Z 27T’L (LR1M1K2 (2u1a1+L2R1R2£2+LR1a2)€1). (43)
41 (mod k)

The linear term reduces to 2uja; (mod R;p), and pia; is coprime to R; by assumption. Thus
by Proposition 2.3 the expression in (4.3) is zero if gcd(Rq, k1) > 1. Similarly, the linear term
reduces to 2pja; (mod L). The Gauss sum (4.3) vanishes if ¢ > 1 and ¢ { 2u1. Now write an
alternative Gauss sum by grouping the ¢ terms in (4.2), obtaining an analogous version of (4.3).
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As before, this immediately shows that (4.2) is zero if ged(Rg, k1) > 1, and also vanishes if g > 1
and g t 2us3. If g > 1, then the only way the sum fails to vanish is if g | ged(2p1,2u3), which
implies that g = 2 by assumption. This shows that (4.2) vanishes if 4 | L.

Next, assuming g = 2, 41 L, and 4 | k, we also show that (4.2) vanishes in this case. Recalling
the corresponding assumptions on the R; and p;, one possibility is that 2| Ry and 2 { Rafpipo (or
the analogous condition with ¢; and ¢s swapped if necessary). Then 4 divides the factor in front
of £2 in (4.3), and the linear term is congruent to 2 modulo 4 since a; is odd. The sum therefore
vanishes by Proposition 2.3. Otherwise the condition on R; and p; is that 2 { R1Rap1,2 | 3, and
we again consider the analog of (4.3) for the sum in 3. Now 4 divides the coefficient in front of
¢2, and the linear term is congruent to 2 (mod4) so Proposition 2.3 again applies.

We next assume that gcd(LR1R2, k1) =1, and g € {1,2} and prove that the sum on £ in (4.2)
is the same for all choices of cr. We note that the multiplicative inverses N; (mod k) exist. Using
(3.2), we write

%L (Q+a) = Q£+ (Mar, Naas)))
b
Tk

Since B(£, ) — B(£, (N1a1, Naaz)) =0 (mod k1) by construction, (4.4) implies that

(Q(a) -Q (ﬁlal,ﬁgag) + B (E, a) — B (E, (Eal,ﬁg@))) . (44)

}IZJQ £+ o) = ]Z (Q (€ + (N1a1, Naaz)) + Q(e) — Q (Nia1, Naag) > (mod 1) .

We now calculate

hL — h
?1 (Q(a) -Q (NlCLl,NQaQ)) = m){7

where X := Rgula% + LRiRsaia9 + Rlugag — NﬂVQQ(Vlal,Eag).
If p is an odd prime such that p* exactly divides LR; Ry, then the assumptions on the parameters
easily imply that
X = Ropya? + Rypsa’ (modp)‘)

is independent from .
Finally, suppose that 2} exactly divides LRy Ry. Then the final congruence is

X = Rgula% + R1Ry + Rlugag (mod 2)\9) ,

which is independent from « due to the assumption that 7"]2 =52 (mod 2)‘“) .

J
Therefore the sum on £ in (4.2) equals

. hX . -~ ~ - hX .
@27”7’“11311{2 Z e2m%LQ(£+(N1a1,N2a2)):eZMLRlRQ Z e2m%LQ(£)

£ (modk) £ (modk)

by shifting £; this overall expression is now clearly independent from choice of a. ([l
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5. CLASSIFICATION OF POSITIVE UNIMODULAR H-MATRICES AND THE PROOFS OF THEOREM
1.2 AND THEOREM 1.3

5.1. Proof of Theorem 1.2. Let

by 0 -1 0 0 O
0 bo =1 0 0 O

M = M(blab27b37b47b57b6) = 01 _01 331 241 _0]_ _0]_ . (51)

0 0 0 —-1b O
0 0 0 —1 0 bs

In this section, we classify all positive, unimodular (PU) matrices M with the additional property
that b; > 2 (5 € {1,2,5,6}). The determinant of M can be written as follows:

D= D(bla b2a b37 b47 b57 bﬁ) = det(M)
= b1bab3babsbg — b1babsbs — b1babsbs — b1babsbg — b1babsbg — bababsbg + (b1 + b2)(bs + be)

— by bobsbe ((bg _ é) (b4 . é) _ 1) .

The goal of this section is to show the following.

Proposition 5.1. If M (b1, b, b3, b, bs,bg) is a PU matriz with b; > 2 (j € {1,2,5,6}), then (up
to equivalence)
b1 <23, by <133, 2 < b3 <7, by =1, bs < 13, bg < 97.

In particular, there are finitely many PU matrices M .
This then enables us to prove Theorem 1.2.

Proof of Theorem 1.2. Proposition 5.1 together with a computer search quickly shows there are
312 PU matrices. Since the group of automorphisms of an H-graph is Zs X Zo X Zo, we have 39
equivalence classes of such matrices; these are listed in the appendix. This gives the claim. (I

We now prove the main statement of this section, namely Proposition 5.1.

Proof of Proposition 5.1. 1t is clear that ged(by,b2) | D, thus by and by must be coprime and with-
out loss of generality we may assume b1 < by and b5 < bg. This further implies that b1b2, bsbg > 6,
and % + é < %. If b3, b4 > 2 we therefore have

D > 51525566 (% . % — 1) = %blb2b5b6 > 1,

and thus M is not unimodular. Furthermore, the fact that 1 — i — é < 1 immediately shows
that if b3 = by = 1, then det(M) < 0. Thus without loss of generality we assume that by = 1 and
bs # 1. If by > 8, then

1
D > bybabsbg ((bs — 1)% — 1) > brbabsbe i > 1.

Thus we must have by < 7.
Now suppose that bs > 14. Then, since bg > bs,

D > bibobsbs (§ (1= 1; — 15) = 1) =23 14+ 1575 > 1.
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Thus we must have b5 < 13.
The remaining bounds require a case by case analysis based on the values of bs. If b5 = 2, then
for by = 2, D <0, thus we must have b3 > 3. If bg > 28, then

D>6-2.27((3-1 -1 (1=} - &) —1) =2
We therefore conclude that bg < 27. However, in order to have D positive we also need
3(5-4)>1,
which implies that bg > 7.

We next determine the possible values of b;. In order to have D = 1, it must be true that
D > 0, thus

-1
b3—ﬁ—i>(%—é) : (5.2)
Now suppose that 3 < b3 < 7 and 14 < bg < 27 are fixed. Now suppose that by > 11. Then

D>11-12-2-7(B3-% - 5) (3 —3) - 1) =17,

so we must have by < 10.

In this case a Maple calculation shows that the right-side is at most 5 (which occurs for b = 3
and bg = 7), and thus all b3 > 10 are not possible; in other words, we must have by < 10. To
complete this case, we now consider fixed 2 < b1 < 10,3 < b3 < 7, and 3 < bg < 27. If there is a
solution, then following (5.2), it must be for the minimal value of by such that

1 -1
b2>_<(;_;6) —b3+,}1) . (5.3)

A Maple search shows that the maximum value of the right-side is 30 (which occurs with b =
6,b3 =3 and b6 = 7), bQ < 31.
Next, let b5 = 3. If b3 > 4, then

D>6-3-4((4-5-3)(1-3-% —-1)=23

Thus b3 < 3, and we begin with b3 = 3. Very similar calculations show, in turn, that bg < 5, and
b1 < 3. Asin (5.3), checking

in these ranges now gives a maximum right-side value of 10 (with by = 2,b3 = 3, and bg = 4),
then by < 11.
For the case bs = 3 and b3 = 2, if bg < 6, then

D =bibabsbs (2= £ = &) (1= 5= &) = 1) < bababsbs (2- 3 = 1) =0,

and thus we must have bg > 7. However, in order for D > 0, it also must be true that

-1
1 1 2 1 3
2 b1 ba > (é bﬁ) > 2 (54)
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The largest values of bg occurs when the left side is as close to % as possible (while being larger,

so by > 3), which occurs for by = 3 and by = 7 (and then 2 — % — % = %) Plugging in to (5.4),

this implies that the first inequality holds for bg > 96, and again by monotonicity, this gives the
bound bg < 97.
Furthermore, if b1 > 24, then

D221253.7((2- - %) (-5 -4 -1 —6L

thus we must have b; < 23. Finally, checking

-1
b ((3-4) " 24 4)
2 37 bg b1

over the ranges 3 < b < 23, and 7 < bg < 97 shows that the right-side is at most 132 (which
occurs at by = 12 and bg = 7), so by < 133.
For the remaining values 4 < b5 < 13, we proceed similarly. First, if b3 > 3, then

D>2-3-4-5(8(1-3-1)-1) =23,
thus we must have b3 = 2. Furthermore, if b; > 11, then
D>11-12-4-5((2- & — 15) - 5 — 1) =11,

thus b; < 10.
Now we bound bg as in the previous case. For example, if b5 = 4, then D > 0 requires that

-1
1 1 3_ 1 4

This is only possible if % + é < %, and the largest value of bg occurs when the sum is as close

as possible to % This occurs with by = 2,bo = 7, which implies that bg < 77. Repeating the
argument for bs > 5 never gives a larger range for bg (and bs > 8 can be treated as a single case,
since then the maximal case is always % + % < b= ). Finally, plugging in b; < 10,4 < b5 < 13,

bs—1
and bg < 77 to

_1 -1
b2>—<<1—b15—b16) —2+131>

gives the bound by < 71. O

5.2. Calculation of Z(q) and the proof of Theorem 1.3. Let M be as in (5.1), with inverse
matrix M~ = (Ujk)1<jk<6- We need the central 2 x 2 sub-matrix of M~ which we write as

e <eg3 £34> B ( biba(babsbs — bs —bg) bbb )

= bsbe (b1 babsbs+ 1
lyz Llaa b1b2bsbs %

In order to write Z(q) as a double series of the type found in Section 4, we use a linear algebra
identity, which can be verified by a Maple computation.



18 KATHRIN BRINGMANN, KARL MAHLBURG, ANTUN MILAS
Lemma 5.2. If r = (e1,62,2n1 + 1,2n9 + 1,e5,66)7 with ny,ns € Z and gj € {£1}, then

1 N 71 2n1 + 20
51‘ M T_2(2n1+2041,2n2+2a2)‘4<2n2+20¢2 e

_ _ (o) _ 1 1+}€T1+1€T2 _1(1 1 1 1
a—a(s)—<a2>.—2(1+2§+2§ , C‘_5(5+5+E+%)‘

Remark. Importantly, note that c is independent of the €;’s.

where

We can now evaluate Z(q) for any positive unimodular M.

Proposition 5.3. With S := {a(e)}, we have

q79+W+c ,
Z(q) = ———— > (=1 > sgn*(n1)sgn”(n2)g? "+, (5.5)

4 acsS nez?
where Q1(n) 1= %mTM_lm, with m := (0,0,2n1, 2n9,0,0)7.

Proof. An application of formula (2.9) for the H-graph gives

tr(M)

e (o= i) (s = ") s =) (wn =) g
0=V (w1 = 03") (w4 =0 Oulren 115

where by (2.10) (because M is unimodular) we have

@M(q; ,w) _ Z q%mTMflme%rimTz.
meZs
Applying (2.5) and (2.6) we find that
q,9+w 1Ty —1
Z(q) = 1 Z (e1628586)sgn" (n1)sgn* (n2)g2"™ M.
r=(e1.22,2n1,2ng,¢5,56) T
Sje{il},(nl,nz)GZQ

Applying Lemma 5.2 completes the proof. (I

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. By splitting the summation over Z?2 in (5.5) into summations over Ng x N,
(—N) x (=N), Ny x (—N), and (—N) x Ny, a case-by-case computation for each unimodular matrix
(5.1) gives

STEDTH YT sgnt(ma)sgn® (ma)g@m ) = Z4(q) — Za(q)

aEeS meZ?

Z1(q) = Zgrslg) = D (F1PT Y N ghente)

jef1,2} aES; neNz

where
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25(q) = Zgrrslg) = D (1LY DT gh@(nte)

jef1,2} aES; neNg

and Q*(n) i= Q(—n1, ny).

The quadratic form @ and constants Ny, Na, 1,792,571, s2 (recall, L = ged(Ny, Na)) are given
in the appendix. In Section 4, Theorem 4.1 establishes that Z;(¢q) is a quantum modular form
of weight one and depth two on Q. The same result also applies to Z2(¢q). Finally, we let
ey =9 — %tr(M) — ¢, where c is also listed in the appendix. O

APPENDIX: DATA FOR POSITIVE UNIMODULAR MATRICES

Here we list all positive unimodular matrices of the form (5.1), and the corresponding parame-
ters that appear in Z(q) (see (4.1) and Proposition 5.3). In each case one can directly check that
the assumptions in Section 4 are satisfied.

The value of ¢ and the quadratic form () are given below, and the data for S; are presented in

condensed form.
1. M(2,3,7,1,2,3)

Q(n) =n? +12n1ny + 37n3, c = %, Ni=No=12, 71 =713 =1, 81 = 89 = 5.

2. M(2,7,4,1,5,2)

Q(n) = 21n? + 140n1ny + 23503, c = 21, Ny =28, Ny =20, 71 =5, 51 =9, 70 =3, 55 = T.

3. M(6,31,3,1,2,7)

Q(n) = 465n + 2604n1ns + 3647n3, ¢ = 244, Ny = 372, No = 28, 11 = 149, 51 = 161, ro =5, 55 = 23.

4. M(7,18,3,1,2,7)

Q(n) = 4513 + 252n1ny + 353n3, c = %, Ny =252, No =28, 7y =101, sy = 115, 70 = 5, 59 = 9.

5. M(3,11,3,1,2,9)

Q(n) = 7Tn? + 396n1ny + 51013, ¢ = %, Ny =66, No =36, =19, 51 =25, 175 =7, s = 11.

6. M(2,19,3,1,2,11)

Q(n) = 171n} 4 836n1ny + 1023n3, c = 239 Ny =76, Ny =44, ry =17, s = 21, 13 = 9, 53 = 13.

7. M(2,3,3,1,2,27)

Q(n) = 2507 + 108n1ny + 11703, c = 27717 Ny =12, Ny =108, r1 =1, s1 =5, ry = 25, 59 = 29.

8. M(2,3,3,1,3,5)

Q(n) = 14n} + 60n1ns + 65n3, c = 55, Ny =12, Ny =30, 1y =1, 51 =5, 12 = 7, 52 = 13.

9. M(2,11,3,1,3,4)

Q(n) =55n3 +264n1ny + 318n3, c = 322, Ny =44, Ny =24, r1 =9, 51 = 13, 73 = 5, so = 11.

10. M(3,4,3,1,3,4)

Q(n) =5nf +24ning +29n3, c = 135 Ny = Ny =24, 11 =5, 51 =11, 1o =5, so = 11.
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11. M(3,7,2,1,3,97)

Q(n) = 1337n% + 4074nyny + 3104n3, ¢ = 255 Ny =42, Ny = 582, ry = 11, s1 = 17, r = 191, sp = 197.

12. M(3,8,2,1,3,56)

Q(n) = 10902 + 336n119 + 25902, ¢ = LI Ny = 48, N, = 336, r = 13, 51 = 19, ro = 109, s5 = 115.
1 2 42

13. M(3,47,2,1,3,17)

n) = 1457n2 + 4794n1ny + 394402, ¢ = 25 Ny =282, Ny = 102, 1 = 91, 51 = 97, ro = 31, so = 37.
1 2 2397

14. M(3,88,2,1,3, 16)

Q(n) = 319n} + 1056n1n + 874n3, ¢ = 22, Ny =528, Ny = 96, r1 = 173, s1 = 179, 5 = 29, s5 = 35.

15.M(4,5,2,1,3,47)

n) = 1820n3 + 5640n1no + 437103, ¢ = 2263 N =40, Ny =282, 71 = 11, 51 = 19, 7o = 91, s = 97.
1 2 5640

16. M(4,77,2,1,3,11)

Q(n) = 532n? 4+ 1848n1n9 + 160512, ¢ = 835 Ny = 616, Ny = 66, 1, = 227, 51 = 235, 1o = 19, 59 = 25.
1 2 1848

17. M(5,16,2,1,3,11)

n) = 1520n2 + 5280n1n9 + 4587n2, c = 813 N, =160, Ny = 66, 11 = 59, s1 = 69, 1o = 19, s9 = 25.
1 2 5280

18. M(7,92,2,1,3,8)

Q(n) = 2093n? + 7728n1ny + 7134n3, c = 2382 Ny = 1288, Ny = 48, r; = 545, s1 = 559, 1 = 13, s5 = 19.

19. M(8,35,2,1,3,8)

Q(n) = 455n? 4 1680n1ns + 1551n3),c = 27, Ny = 560, No = 48, r1 = 237, 51 = 253, ro = 13, 55 = 19.

20. M(11,16,2,1,3,8)

Q(n) = 286n? + 1056n1ns + 97513, ¢ = 322 Ny = 352, Np =48, ry = 149, 51 = 171, ro = 13, 55 = 19.

21. M(12,133,2,1,3,7)

Q(n) = 836n?+3192n1ns 4+ 304702, c = 205 N; = 3192, Ny = 42, 1y = 1451, 51 = 1475, 19 = 11, so = 17.
1 2 3192

22. M(13,72,2,1,3,7)

Q(n) = 3432n3 +13104n1n2+12509n3, ¢ = 305 Ny = 1872, Ny = 42,71 = 851,51 = 877,13 = 11,55 = 17.

23. M(3,4,2,1,4,23)

Q(n) = 19502 + 552n1ny + 39132, ¢ = é—%, Ny =24, No =184, r; =5, s1 =11, ro = 65, 5o = 73.

24. M(3,10,2,1,4,9)

Q(n) = 11502 + 360n1ny + 282n2,c = ﬁ, Ny =60, Ny =72, ry =17, s1 = 23, ro = 23, s9 = 31.
1 2 360

25. M(3,52,2,1,4,7)

Q(n) = 663n2 + 2184n1ns + 179902, ¢ = 29T Ny = 312, Ny = 56, 11 = 101, s = 107, 7o = 17, s9 = 25.
1 2 1092

26. M(6,67,2,1,4,5)
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Q1(n) = 2211n? + 8040n1ny + 731013, ¢ = 2239 Ny = 804, Ny =40, ry = 329, s1 = 341, ry = 11, sp = 19.

27. M(2,7,2,1,4,77)

Q(n) = 227n? + 616n1ny + 418n3),c = %, Ny =28, No =616, 71 =5, 51 = 9, ro = 227, 55 = 235.

28. M(7,26,2,1,4,5)

Q(n) = 1001n? + 3640n1ny + 331003, c = 3292, Ny = 364, Ny = 40, r1 = 149, s1 = 163, r = 11, so = 19.

29. M(2,11,2,1,4,25)

Q(n) = 781n} 4 2200n1ns + 155003, ¢ = 255 Ny =44, Np =200, r1 =9, s1 = 13, 13 = 71, s = 79.

30. M(2,19,2,1,4,17)

Q(n) = 893n? + 2584n1ny + 187003, ¢ = 113 Ny = 76, Ny = 136, r1 = 17, 51 = 21, ry = 47, 55 = 55.

31. M(2,71,2,1,4,13)

Q(n) = 2485n7 + 7384n1ny 4 5486n3,c = 210° Ny = 284, Ny = 104, r1 = 69, 51 = 73, ro = 35, 53 = 43.

32. M(3,7,2,1,5,7)

Q(n) = 69n3 + 210n1ny + 16003, c = =, N1 =42, N =70, 71 = 11, s1 = 17, 1y = 23, 55 = 33,

33. M(2,5,2,1,5,33)

Q(n) = 254n? + 660n1ns + 42913, c = %, N1 =20, Np =330, =3, 81 =7, 10 =127, 5o = 137.

34. M(2,7,2,1,5,16)

Q(n) = 413n? + 1120n1ny + 76013, ¢ = %, Ny =28, N, =160, 7y =5, 51 =9, ry =59, 55 = 69.

35.M(2,21,2,1,5,9)

Q(n) = 434n? + 1260n1ns + 91513, ¢ = 1524—6107 Ny =84, No =90, r1 = 19, 57 = 23, 79 = 31, 59 = 41.

36. M (2,55,2,1,5,8)

Q(n) = 297n} + 880n1ny + 652n3,c = 31, Ny = 220, No = 80, r1 = 53, 51 = 57, rp = 27, 55 = 37.

37. M(2,3,2,1,8,57)

Q(n) = 391nf + 912n1ny + 532n3,c = §13, N1 =12, Ny =912, r1 = 1, 51 = 5, 5 = 391, so = 407.

38. M(2,3,2,1,9,32)

Q(n) = 24703 + 576n112 + 33613, ¢ = 2L Ny =12, Ny = 576, 11 = 1, 51 = b, 12 = 247, 55 = 265.

39. M(2,3,2,1,12,17)

Q(n) = 17503 + 408n1ny + 238n3, c = %, Ny =12, No =408, 71 =1, 5y =5, 7o = 175, s = 199.
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