PROOFS AND REDUCTIONS OF VARIOUS CONJECTURED PARTITION
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ABSTRACT. We prove seven of the Rogers-Ramanujan type identities modulo 12 that were conjec-
tured by Kanade and Russell. Included among these seven are the two original modulo 12 identities,
in which the products have asymmetric congruence conditions, as well as the three symmetric iden-
tities related to the principally specialized characters of certain level 2 modules of AéQ). We also
give reductions of four other conjectures in terms of single-sum basic hypergeometric series.

1. INTRODUCTION AND STATEMENT OF RESULTS

The study of so-called “sum-product” identities for hypergeometric g-series has a long and rich
history, with deep connections to the theory of integer partitions, modular forms, and affine Lie
algebras. One of the earliest and most notable examples are the Rogers-Ramanujan identities [25],
which are written in an analytic form as

n2 1 qn2+n 1

q
g) (@GDn (2,040 n; @GOn  (Bid) (1.1)
Here we define for n € No U {oo}, m € No, and z,q € C with [¢| <1,
n—1
(T;q)n = H (1 — :nqi) ) (1,22, -, T On = (215 On(T2; On - (T O
=0

The identities in (1.1) may also be interpreted combinatorially as identities between the enumer-
ation functions for integer partitions. For example, the first identity in (1.1) equivalently states
that the number of partitions of n where successive parts differ by at least 2 is the same as the
number of partitions of n where each part is congruent to 1 or 4 modulo 5. As such, identities
of this shape are also called “gap-product” identities, where the sum side enumerates partitions
which satisfy certain restrictions on the differences between parts, and the product side enumerates
partitions whose parts are restricted to lie in certain residue classes.

The Rogers-Ramanujan identities play a major role in the theory of hypergeometric g-series, as
well as the combinatorial and analytic theory of partitions, as a large number of deep techniques
have been developed in order to prove a vast collection of generalized sum-product identities. This
includes the direct generalizations of (1.1) due to Andrews [1], Bressoud [4], and Gordon [10], as
well as Slater’s lengthy lists of similar identities in [28, 29].

Inspired by such results, as well as similar identities mentioned below (notably Capparelli’s work
in [5, 6]), Kanade and Russell conducted an extensive search for new gap-product identities in
[14]. Their method was to explicitly construct partitions satisfying three types of conditions. The
first condition being on the smallest part, both the smallest part allowed and how many times
this allowed part can appear. The second being a difference at a distance condition, meaning a
requirement that the difference between the parts m; and ;1 is at least d, for fixed k and d. The
third being a congruence at a distance condition, meaning that if the difference between parts m;
and 7,1 is at most d, then the sum of successive parts m;+m;41+- - - +m;41 is congruent to r modulo
m, for fixed k, d, r, and m. Kanade and Russell then calculated all such partitions over a wide
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range of possible search parameters, and used Euler’s algorithm to determine when the resulting
series is equivalent to a simple infinite product. In the end, Kanade and Russell found a total of
six conjectural identities in [14]; below we state the two conjectures with restrictions modulo 12
(the remaining four conjectures involved the modulus 9).

An entirely different approach was introduced by Lepowsky and Wilson’s seminal work [18],
where they introduced vertex operators as a method for explicitly constructing affine Lie algebras,
as well as calculating the standard modules of such algebras. This construction was generalized
to Z-algebras [19]. We briefly recall some basic definitions from the theory of affine Lie algebras
(see [11] for more details and standard notation, some of which we use below). If g is an affine
Lie algebra, and A is a dominant integral weight for g, then there exists a unique irreducible,
integral, highest weight module L()). Remarkably, sum-product identities such as (1.1) then arise
by calculating the principally specialized character x(L(\)) in two different ways: the product side
uses the Kac-Weyl character formula and Lepowsky and Milne’s “numerator formula” [17], while
the partition gap conditions for the sum side are calculated using Lepowsky and Wilson’s vertex
operator algebra and Z-algebra programs for the explicit construction of highest weight modules
[18, 20, 21]. Furthermore, the character for L()) is completely determined by the character of its
associated “vacuum space” Q(L(A)) (which consists of all of the highest weight vectors in L(A) for
the Heisenberg subalgebra).

Indeed, Lepowsky and Wilson’s construction of the standard modules of Agl) in [21, 22], along
with the work of Meurman and Primc [24], results in formulas that recover all of the generalized
Rogers-Ramanujan identities in [1, 4, 10]. Lepowsky and Milne [17] also showed that the Rogers-

Ramanujan identities arise in character formulas for the level 2 standard modules for Agz), which
was later proven using Z-algebras by Capparelli [5]. Capparelli additionally used Z-algebras to

construct the level 3 standard modules for A22 , which relied on the discovery of two conjectural
partition identities (which were first proven by Andrews [2], and later by Capparelli [6]; an analytic
sum-side for Capparelli’s identities was recently given by [7]). These identities were a significant
development in the theory of vertex operator algebras, as they were the first notable examples
of sum-product identities that had not previously appeared, but were instead discovered using
vertex-operator-theoretic techniques.

In [15], Kanade and Russell gave more identities of this flavor. However, rather than searching
based on partition gap conditions, they instead began their search from Bos’ formulas for the level

2 principally specialized characters of Aéz), namely

X(Q(L(AO + Al))) = (q,q4,q6, q;’ qll; qlg)oov (1'2)
6. ,12

(UL(Aa))) = (¢ 4%, qgf]q;‘i]qg), 2010; 9%’ (13)

N(QL(AS))) = ! (1.4)

(¢%¢°,4%q" ¢% q"?)
Equation (1.2) is Theorem 7.3 in [3], and (1.3) and (1.4) are stated in Conjecture 7.1 of [3]. These

level 2 characters of A,(f) were a natural starting point to search for new identities, as the level

2 characters of AéQ),AéQ), and Ag) all correspond to known partition identities (this is further
explained in [3] and [15]).

Kanade and Russell found three corresponding partition identities for (1.2), (1.3), and (1.4), and
also discovered several additional asymmetric companions. Furthermore, they provided explicit
formulas for the analytic sum sides of their conjectures, which are the generating functions for the
partitions involved in the identities. They also gave the sum sides corresponding to their original
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modulo 12 conjectures, whereas in [14] they only gave the conditions to describe the relevant
partitions. Kursungoz [16] recently gave sum sides for their modulo 9 conjectures and alternative
sum sides for their original modulo 12 conjectures.

In the present paper we consider the majority of the conjectures from [15]. We state these in an
analytic form, as that is the most convenient formulation for our later calculations. For 1 < /£ <9
the series are given by

(i+27+3k) (i+2j43k—1)+3k2+ A, (i,5,k)

q i+25+3k
Hy(x;q) := —1)k TR 1.5
(:4) MZ,;O( ) (4:9)i (g% 9*); (¢5; %)y, o)

where the Ay(i,j, k) are linear polynomials given as follows,

Ay(i,j, k) == i + 65 + 6k, As(i,j, k) = 2i + 2j + 6k, As(i, j, k) := 4i + 6 + 12k,
Au(i,j, k) =i+ 35 + 3k, As(i,j, k) == 2i — j + 3k, Ag(i, 5, k) =i,
Aq(i, 5, k) = 2i + 45 + 6k, As(i,j, k) == i+ j + 3k, Ag(i, 5, k) == 3i + 55 + 9k.

Furthermore, for ¢ € {10,11} we define

L(i42j+3k) (i+2j+3k—1)+52+Ag(i,5,k)
Hy(z;q) = Z qz — s $z+2]+3k’
e (@@ile%e?); (e,
where
A1o(i, j, k) :=i + 27 + 4k, A11(i, g, k) == 2i + 45 + 5k.

Conjecture (Kanade-Russell [14, 15]). The series are equal to the following products:
1

(1) = (0,44 ¢5,¢%, ¢ q12) (1.6)
) ) ) ) ’ 0o
6. 12
q54q
H2(1) = (q2 q3 q4;g) ) (17)
y 44, 00
1
Hs(1) = (¢, ¢, 4% 47, % q%) (1.8)
s qd7,4 47, 00
1
HiD) = (40" o (a*, a"5¢12) (1.9)
9 [e’s) Y ’ o0
1
Hs5(1) = : (1.10)
(0% (47, 6% ')
3. 12
(¢%¢"?)
Heg(1) = W7 (1.11)
) ) o0
9. 12
(¢ ¢")
H?(l) = (q2 q3.q4()>o ) (112)
9y Y o0
1
Hy(1) = | (113)
(@34 (0. 6% ¢'?) o
1
H(1) = (%0 (%5412 (1.14)
) 00 ) y 00
1
Hio(1) = (@ ) (0, gL q12) (1.15)
Y o0 9y Y ’ o0
1
Hy (1) = (1.16)

(0% ¢%) o (6,45, 475 ¢'%) o
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We note that in some cases we slightly rewrite the product side of these conjectures. The conjec-
tures for Hyp(1) and Hy1(1) are the original modulo 12 conjectures from [14], and the conjectures
for Hy(1), Hao(1), H3(1), Ha(1), H5(1), He(1), H7(1), Hg(1), and Hgy(1) are respectively identities
1, 2, 3, 4, 4a, 5, ba, 6, and 6a of [15]. As alluded to above, the conjectures for H;(1), Ha(1),
and H3(1) arose from the principally specialized characters for Ag2) listed in (1.2), (1.3), and (1.4).
The conjectures for Hy(1) through Hy(1) are asymmetric companions to the conjectures for Hi(1),
Hg(l), and Hg(l).

Remark. It is not surprising that the infinite products in (1.6), (1.7), and (1.8) are symmetric (in
the sense that they consist of factors of the form (1 — ¢”)*! for all n in certain residue classes
+7r modulo 12. Indeed, this follows from the Lepwosky-Milne numerator formula combined with
the fact that in a finite-dimensional simple lie algebra the roots always occur in symmetric pairs
(o, —ar). Furthermore, Kac and Peterson [12] showed that these products are essentially modular
functions on certain congruence subgroups, which are expressible as the quotient of theta functions.
However, it is striking that all of the remaining conjectures contain asymmetric products, which
have occurred infrequently in the classical theory of partitions (for example, Gollnitz’s so-called
Big Theorem [9]).

Kanade and Russell also gave combinatorial interpretations for the sum-sides of each of these
conjectures. For example, the sum-side for H;(1) generates all partitions such that if m; is a part
then m; 4+ 1 is not a part, odd parts do not repeat, and if m; = m; 41 are even, then m; — ;1 > 4 and
miyo — m; > 4. The product side generates the partitions where each part is congruent to 1, 4, 6,
8, or 11 modulo 12, and the conjectured identity is then equivalent to the statement that for all n
there are an equal number of partitions of both types. The remaining conjectures are similar, and
were discussed in detail in [15]. These interpretations are not immediately apparent from the series
(1.5), but instead require a careful combinatorial analysis in which a partition satisfying difference
conditions is decomposed into a staircase and jagged component.

In this article, we provide proofs of some of these conjectures and reductions of others. In
particular, we prove the following.

Theorem 1.1. Conjectures (1.6), (1.7), (1.8), (1.11), (1.12), (1.15), and (1.16) are true.

This result is the first time that any of Kanade and Russell’s conjectures in [14] and [15] are
proven. Our proofs use a variety of techniques, including summation and transformation formulas
for hypergeometric ¢-series, series solutions to g-difference equations, and linear recurrences. The
cases (1.6), (1.7), and (1.8) are perhaps the most significant, as these partition identities involve
the principally specialized characters for Ag), and are therefore likely to be useful in verifying the
vertex operator construction of the corresponding standard modules (cf. [13]).

Although we have not yet fully proven (1.9), (1.10), (1.13), or (1.14), the following result reduces

the “sum-sides” from (1.5) to expressions involving a single hypergeometric g-series in these cases.

Theorem 1.2. The following identities are true:

(%4%), ¢

Hy(1) = (¢ ¢* , 1.17
1) = (@54 )mg(q,q%q?)n(qg’;q% (L17)
1+q2n—4+q2n—1) (q—3;q6) qn2+4n+3
H-(1) = —1; 4 + 3; 4 ( n ’ 1.18
W)= )+ (0o 2 =y i, g, (s, 1
1 2n 2n+1 3.6 n2+2n+1
Hg(1) = (q:q")  + (¢":4") D (ot g™ +am) (0:4%), 9 (1.19)

(1—¢*"*2)(q,49% 4%, (¢°;¢*),
4

n>0



n2+42n
A
The rest of the article is organized as follows. We begin in Section 2 by recalling useful summation
and transformations for hypergeometric g-series. The section continues with some general results
for finding series solutions to g-difference equations, as well as results on linear recurrences for
g-series. In Section 3 we use similar techniques to prove the conjecture for H;. Next, we apply the
general results to give brief proofs for H; (2 < j < 11) in Section 4. In Section 5 we present a partial

reduction for yet another of Kanade and Russell’s conjectural identities. Finally, we conclude in
Section 6 with some additional discussion.

3.
Ho(1) = (¢°:¢") > ( (q2,q )”((] (1.20)

« (¢,4% %)
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2. PRELIMINARY RESULTS

2.1. g-series transformations and Appell’s Comparison Theorem. We require several stan-
dard g¢-series identities, all of which can be found in the appendix of [8]. We also use the standard
notation for basic hypergeometric series, namely,

1,02y s Qpy], (a17a27-"7ar+IQQ)n n
v Y = T .
T+1¢T|: bl7b27"'7b @ :l Z (b17b27"‘7b7‘7q;q)n

n>0
We begin with Cauchy’s g-Binomial Theorem [8, (11.3)],
(CL; n (CL:C; 7)o
oo la;q,x] = " = , 2.1
1ol a, ) ,LZZ:O (@3 On CHES 21)
which implies Euler’s identities [8, (II.1) and (IL.2)]
1
" 1 . T (_1)nq§n(n71)
0;q,2] = = ,  lim a;q,—| =) 2" = (¥ @)
19010:,4] 7;) (@ a)n  (259) 35170 [ a} 7;] (45 9)n (:9)
(2.2)
We also need Heine’s transformation [8, (II1.1)],
a,b (b, al’;q)oo % X
) 9, — oab 2.3
2¢1 |: ¢ aQ>$:| (Cyl';Q)oo 2¢1 ax 34, ) ( )

which implies (using the second variant of Heine’s identities) the g-analog of Kummer’s Theorem,
which is also known as the Bailey-Daum summation [8, (11.9)],

2

) [ q} (aq,%,qz;tﬁ)w o)

201 , , - = . 2.4
& b (_%’%7(1’(])00

Lastly, we have Hall’s formula [8, (I11.10)],

abc de b’de7de’q g’e’de
302 [ L ] = Ms@ brbrabe.q,b] . (2.5)
" abe (d €, abc;q)oo ab’ be
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We also make use of a result that is sometimes referred to as Appell’s Comparison Theorem,
which is common when dealing with limiting cases of functional equations and recurrences. The
following statement is a slight extension of Theorem 8.2 in [26] to allow for complex coefficients.

Proposition 2.1. Suppose that F(z) =, <o 0nx™ and aso = limy, o0 vy exists (and thus F(x)
has radius of convergence at least one). Then

lim (1 —2)F(z) = 0.

rz—1—

In particular, if G(x) = ), 5o Bnx™ has radius of convergence greater than one, then F(x) := 3=
1s such a series, and

lim (1 —2)F(z) = aeo = ¥ _ Bn = G(1).

-
z— "0

In this article we view power series as analytic functions of complex variables. This is necessary
for our use of Appell’s Comparison Theorem. Any formal rearrangements are considered to be done
within the radius of convergence, and are valid as identities between analytic functions. Using the
fact that each H;(x) is the generating function for some subset of partitions into distinct parts (see
[15]), we see that it is absolutely convergent for all z € C.

2.2. Solving general functional equations. We now give the first of our general formulas for
functions satisfying certain functional equations. This formula is relevant for H; for 2 < j <9

Proposition 2.2. Suppose that A(x) = ), ~oanx™ has radius of convergence greater than one,
A(0) =1, and A(x) satisfies

A(z) = (1 + :L‘qa+2) A (qu) + xq“+b (1 + :L‘qb> A (:Uq4) + x2q2“+2b+2 (1 — :Uq4) A (a:qG) ,  (2.6)

where |q| < 1. Then
. 2
(q3b 6. qG)n q" +(a+1)n

A1) = <q2b+a—2,q4> ; ‘
oo 7;) (@"% 0% %), (@725 qY),

Furthermore, if a = 0, then we have

3b. 12
A = )
(%, % q%)
Proof: Set
A(z)
B(x) := ,
(@) (23¢%) oo

so that dividing (2.6) by (z¢*; ¢?)so vields
(1-2)(1-z¢°) B(x)
—(1- xq2) (1 +xqa+2) B (xqz) + gttt (1 +xqb) B (xq4) 420t (xq6) .
Writing

B(z) =: Z Bra"
n>0
we obtain, after some reordering,

(1 _ q2n) ﬁn — (1 + q2 . q2n + q2n+a 4+ q4n+a+b—4) 577,—1

. (1 i q2n+a—2) <1 _ q4n+a+2b—10) Bo_a. (2.7)
6



Set

B n
o = g o Cfa) =3 mma"
( qa 7q )TL TLZO
Proposition 2.1 applies to B(x) and C(z), giving that
i — — +2. 2 _ +2, 2 :
Jlim (1-2) B(2) = oo = (=4"7507) o 70 = (=470, lim (1-2)C (2). (2.8)

We proceed by dividing (2.7) by (—¢%*2;¢?),_1, which gives
(1 _ an) (1 + q2n+a) Yn = (1 + q2 _ q2n + q2n+a + q4n+a+b—4) Y1 — q2 (1 o q4n+a+2b—10> Yn—2.

In terms of C(x), this may be rewritten as
(1—z)(1- :cq2) C@)=(01-q¢")(1- :L"q2) C (xq2) +q“ (1 + z¢® + o* 2b) C (xq4) . (2.9)

If a = 0, then this gives
(x3q3b g )
(#50%) o0 (205 0%) o

C(z) =

which yields, also using (2.8),
2 3b. 12
)= (g50)o, lim (1 - )B() (q 1q )oo(q ,q4) (3¢50

Set

(24" 0%) o (236°)
D (z) := (23¢30=6; ¢6) C(z).
(26" ¢*) oo (24"; ¢%) oo
(23¢%; ¢%) oo

(1 +2¢"% + 2%¢* 4) D(z) = (1—q") D (2¢°) + ¢“D (zq") .

Z Onx”,

and multiply (2.9) by to obtain

Writing

we may rewrite this as
(1 _ q2n) (1 + q2n+a) Sy = —q" 26,1 — ¢® 16, . (2.10)
Set
Ep 1= (—qa+2;q2)n5n.

We multiply (2.10) by (—¢%*2;¢?),_1 to obtain

(1 _ an) £n = _qb—Zé_n_l _ q2b—4 (1 + q2n+a—2) En_o.
Setting
x) = Z enx”,
n>0

we obtain after rewriting
(1- xqb—2) (1- g2q2bta—2
1 — 23q3b—6
7

E(z) = )E (qu) .



Note that g = 1, and thus

E(aj) _ ((L‘qb_Q;qQ) ( 2q2b+a 2. q4)oo
(z3¢30=6;¢0) '

Using (2.2), we find that

E(z) = Z (—1)™ M+ E=3)m ()" 327 22+ (2bra—d)r 130 3(b=2)¢
£rm20 (4% %), (a*50%), (4505,
As such, with m =n — 2r — 3/,

™.

Z (_1)n+r+e q(n—2r—3é)2+(b—3)(n—2r—3€)+2r2+(2b+a—4)r+3(b—2)£
£ =

- (4% 4%) 230 (% 0*), (a% ¢%),

Returning to D(z), we have

_ 1)L o (n=2r—30)%+(b=3)(n—2r—30)+2r2+(2b+a—4)r+3(b—2)¢
5"22( ) 2q2 4., 4) (6 o6 at2. ;2
Pt (4% %) 230 (4% %), (4%.4%)¢ (=¢" %5 6°),,
Making the change of variables n +— n + 2r + 3¢ yields
D(x) =
KT;ZO (0% a%), (a*50"), (0% 4%) 0 (=a" "2 0%) 030
We apply (2.3) to the sum on n to give

(_ 1)n+r qn2+(b—3)n+2r2+(2b+a—4)r+3(b—2)€

xn+2r+3€' (211)

2, 24 (h
Z (_1)71 q" +(b-3)n o 1 Z (_1)n q" +(-3)n "
o (0%50%)n (47507 030 (=" %) gy S (702,022,
1 w, z zq’~
= at2. 2 lim 2¢1 |: Ar+60+a+23 qzv 1 :|
(—q%256%) g, 45 “;30 —q w
B (:Uq 1 q )oo ) _q47’+6€+a+22—1’0. 9
- (_qa+2;q2)2r+3[(_q4r+6E+a+2.q2)oo hn% 201 [ xqb—2 4,2
B (33 b— 7q OO Z qn 2+ (a+1)n+4rn+60n
- —
(4" %) 25 20447,
We plug this back into (2.11), and evaluate the inner sums on r and ¢ with (2.2), yielding
b—2. 2 2 2 _ _
D (x) _ (acq .q )oo E (_1)7” q" +(a+1)n+2r4(2b+a+4n—4)r+3(b 2+2n)€$2r+36
(=" %) ("2, 4% ¢%), (¢% ¢*), (4% ¢°),
(:cqb_Z, q2) Z (x2q4n+2b+a 27 q ) qn2+(a+1)n
— x
T (_at2. 2 b—2 3,6n+3b—6. 46
(4% %) oo I (2072, 4% 4),, (424579070 ¢%)
(2¢" % ¢%) _ (z2q*+~ 2’ Z x3q3b 6 ¢6) g Hatn
— OO n
(g2 ¢?)_ (43¢%5; ¢F) n>0 =2 2 q%), (a2qPeZ gh)

Thus

( 2q2b+a 2,q )
- (_qa+2;q2>oo (x,q ) Z

o i5p (20" 7%, 0% g

( 3q3b 6,(]) qn2+(a+1)n
)n (1. q2b+a—2; q4)n :

8



Recalling (2.8), we therefore have
A = (3., Jim (1—0) B(@) = (¢, —qa”;q?)oo lim (1) C (2)

x—1—
(q2.q2) (_qa+2.q2) (q2b—|—a 2. 3b 6. q ) n +(a+1)n
_ ) 00 b) 00 ’ OO b
(0% 6%) o (—¢*12;¢%) o ;;0 b 27q q?),, (¢?te=2,¢%),

(q3b 6. 46 ) q" 24 (a+1)n

_ 2b+a—2. 4
= (¢ ,q) > - — :
( 0o 7= ("2, 425 ¢%),, (¢®*Fo=2;:¢4),

n>0

O

Remark. When a = 0, the series in Propos1t1on 2 2 sums to an infinite product. However, this alone
is not a deep result. Indeed, by letting w :=e %" and then using (2.5) and (2.1), we find that

3b—6. n?4n -2 2 b2 2
(q ,q ) q . T, w W q
Z —2 S 4y = M 302 bq—l bql g, ——
(@2 % P n(@ g ) a0 ¢ —q x
_ (w7 —a% ) 1o [qu.qzi wqb_z} _ (@e?)
("1, =" ) Y (@, ¢" a® % q%) o

We require another general formula that is relevant for Hig and Hi;.

Proposition 2.3. Suppose that A(x) = >, o ona™ has positive radius of convergence and A(x)
satisfies a

A(z) = (1 ¥+ 22 _chqc) A(2g®) — ¢° <1 +x2qb+cfa75> (1 + 22¢") A (2°) (2.12)
where a & 3Z if a < —6. Then

Az) = ao (—2°¢%¢%) )

n>0

(qbe)7 qcf5; qﬁ)n (_1)nq5n$2n
(¢5,9°%6;¢),,
b72’q072;q6) (_1)nq5n on

+ a1z (—2%¢°; %) Z la 5 T

= (qg’ qa+9; qﬁ)n

Proof: Setting
A(x)
(—22¢%; %) o
and dividing (2.12) by (—z2¢"!; ¢®)s we obtain
(1+m2q5) B(z) = <1+qa+x2qb+x2qc) B(:cq3) < 1 + a2gb+ea— 5) B(xqfi)‘

B(z) :=

Writing
=3 us”
n>0
yields
B - _q5 (1 _ q3n+b711) (1 _ q3n+cfll) /8
" (L) (1 —gote)
In particular,
(=1)"¢"" (¢"%¢“ % ¢°) (=1)"¢"" ("% ¢ % 4%,

/8271 = nﬁ07 BQn—i—l =

b1

(¢5,9%%6;¢%),, (¢, 4% ¢%),,



However, 8y = o and 81 = aq, so the result follows. O

2.3. Recurrences for H; for 1 < j < 9. Recalling (1.5), it is natural to define generalized sums
for N € Z and ¢,d € R by

hchV::: EE: (

J,kEZL

(_l)kq3k2+(2c71)j+3dk

4 @) N—2j-3k (q*4*); (a5 ¢%),

Note that for a € C, we let (;q)q := (QEZ;‘Z;ZI‘TOO. In particular, (¢;¢),;! = 0 if n € —N, and thus
hean =0 for N < 0.

In order to use Proposition 2.2, we need three-term linear recurrences for the h.q n, where N
varies and ¢ and d are fixed. We find that all such recurrences needed for Kanade and Russell’s
conjectures are contained in three families.

Proposition 2.4. We have the recurrence, writing hy := heq N,
(1= ¢*™) hy = A+ hn_1+(¢* " — q) hy—a— (QQC_I +q* + q2N_3+3d> hn_3+q*hn_4. (2.13)

The right-hand side of (2.13) can be replaced by an equivalent three-term recurrence if (¢, d) are
in the following one-parameter families.

(1) If d =0, then we have

(1 _ qQN) hN — (1 + qZN—l) hN—l + (qQC—l +q2N—2) hN—2 _ qzc—th_?). (214)
(2) If d = —1, then we have
(L=*)hn = (g + ) hyot + (7 + V) hvoo — ¢*h—s. (2.15)
(3) If c=d~+ 3, then we have
(1 ¢) hy (2.16)

= (1 +q—qT+ q2N_1+d) hn-1+ (—q + g ¢ q2N_2+2d) hyn—2 — ¢ ?hy_s.
Proof: A short calculation verifies the three basic linear relations among the h’s, namely
heanN — hean-1=q" he—1.4-1.N, (2.17)

_ 3d+3
heaN — hedayon = —q¢°h

,d+2,N—3)
hean — hesoan = @ hean—o-
We then plug in various values to obtain the system
hean = hean-1+a" he_1.4-1.N,

heaN-—1 = hean—2+a" ‘he—1a-1.N-1,

hedaN—2=hean—3+q" 2he_1.4-1.N-2,

hedN—3 = hean—1+q" Phe_14-1,N-3,

he-1,d-1.N = he—1d-1.8-1+ ¢ he—2.4-2.N,
he1d-1.N-2=he-1d-1.8N-3+ ¢ 2he_24-2.N-2,

he-9.d-aN = hed—a N + ¢ Phe—24-2.N-2,

3d_3h

hea—2,N = hean —q e,d,N—3-

We view this as a system of 8 equations in the 8 variables

heaN,he—1,d-1,N5he—1,d-1,N-1, he—1,a-1,N—2, Pe—1,d-1,N—-3, he—2,d—2. N, he—2.4-2,N—2, Ne.d—2.N,
10



with constants he g n—1, hed N—2, Pe,a, N—3; Pe,d, N—4- It is a brief calculation in linear algebra to solve
for hc g4 n in terms of these constants, and the result is (2.13).

We next consider the special cases listed in parts (1), (2), and (3). In order to do so, we make use
of the additional “shift” structure in the linear system: if the hy satisfy a certain linear equation
L(N), then they must also satisfy L(N = 1). To use this, we assume that hx satisfies an equation
of the form

(1—¢*) hy = Ay(N)hy—1 + Ao (N)hn—2 — ¢“hn_3. (2.18)

In order to use (2.13), we then apply (2.18) iteratively, to obtain

(1 — q2N) hN = (Al(N) + qzcia (1 — q2N72)) hN—l + (AQ(N) — qchaAl(N — 1)) hN_Q
— (q“ + QZCfaAQ(N — 1)) hy_3+ QZChN_4. (2.19)
If we can show that (2.19) is equivalent to (2.13), then we can conclude that it is also equivalent to
(2.18). This is because the shorter recurrence implies the longer recurrence, and the solution of a
linear recurrence is uniquely determined by its initial conditions. In this case the initial conditions
are always given by h.qn = 0 for N <0 and h.q0 = 1.
By plugging in the specific polynomials and constants from (2.14), (2.15), and (2.16), we find in

each case that (2.19) reduces to (2.13). This proves the three-term recurrences.
O

3. PROOF FOR H;

In this section we prove (1.6). We treat this case separately as the functional equation for Hy(z)
turns out to be more complicated than those for H; with 2 <35 <9.
We claim that

Hy(z)= (1+q(1+q—¢°)z) Hi (2¢°) +2¢° (1 —2¢” (1 — g — ¢*)) Hn (zq")
+ 22¢® (1 — xq4) H, (y:qﬁ) . (3.1)
For this we write, with N := ¢ + 25 + 3k throughout,
(i + 2§+ 3k)(i + 2§ + 3k — 1) 4+ 3k* + i + 6§ + 6k = N? + 3k? + 45 + 3k,
to obtain
2
Hy(z) = Z hin-q" zv,
N>0
where hy v := hs | . A direct calculation shows that (3.1) is equivalent to
274

1-*MYmn=0+q-+") v+ (—a+ P +E+ ) hinvoe — Phinos,  (3.2)

which follows from (2.16) with d = 1 (as it turns out, H; is the only identity that uses (2.16)).
The remainder of the proof is quite similar to that of Proposition 2.2. Set

Hl(a:)
B(x) = ———,
) (73 ¢%)oc
so that dividing (3.1) by (z¢%; ¢*)eo yields

(1—2)(1- :Eq2) B(x)

= (1 + 2q + xq* — xq3) (1 — xq2) B (:cqz) + zq® (1 —2¢* + g + xq4) B ($q4) +22¢®B (xqﬁ) .
Writing

B(x) =: Zﬁnx"
n>0
11



gives

(1 _ q2n) Bn — (1 _|_q2 _|_q2n—1 _ q2n+1 + q4n—1) anl _ q2 (1 _ q2n—1) (1 +q2n—2) (1 + q2n_3)(ﬂn)2-
3.3

Set
(¢*:d%),,

Tn = "0, C(x) = nyn:v".

(¢ Q)2n+1

Proposition 2.1 applies to B(x) and C(z), giving that
lm (1-2)B(2) =B = (:¢%) Voo = (¢:¢°)  lim (1—2)C ().

z—1- z—1—

2. 9
(fQ'7$2)n_11 yields

— (1 4+ q2 + q2n—1 _ q2n+1 + q4n—1) Y1 — q2 (1 + q2n—2) (1 + q2n—3) Yr—2.
In terms of C(x), this is
(1—2x) (1 — qu) C(x)=(14+q)(1+xq) (1 — :UqQ) C (qu) —q (1 —zq® + :U2q4) C (wq4) . (34
Set

Multiplying (3.3) by

—: 2 T 2

(—2%:¢%)

We multiply (3.4) by (_zq;i‘i?q"g‘(qul;q2)°° to obtain

1+ 23

T 2@ =+ +2)D (vq°) =D (2q") .
That is,

(1-2+2%) D(z) = (1 +q+zq+2¢*) D (2¢*) — ¢D (2q¢*) .
Writing
D(z) =: Z dnz™
n>0
yields
(1 _ q2n) (1 _ q2n+1) (5n — (1 _|_q2n—1 + an) 5n71 _ 5n72- (3'5)
Note that §y = v9 = l%q.
Lastly, set

Ep 1= (q; q2)n+1 O
Multiplying (3.5) by (¢; ¢*)n gives
(1= en=(1+a" " +¢") e = (1=¢") nms.
Setting

E(x) =: Zfsnm",
n>0
we obtain

(1+2)(1+zq) (1+ zq¢?) 5

E(x) = 1723 (xq2) )

12



Noting that E(0) = g9 = 1, we have that

—;)oo (—2¢% ¢°
b - = o

Using (2.2), we find that

_1)€q%m(m—l)+r(r+l)

. 2. 2 6. 6
oo o (6D (6%5.6%), (6°:4°),

(]

xm+r+3€ )
Thus

o Z (_1)€q%m(m—1)+r(r+1)
n = . 2. 42 6. ,6) ’
virTaren (G Dm (¢%6%), (4% ¢%),

We then have that

Lm(m—1)+r(r+1)
o= Y L' .
i (@ Dm (6%:6%), (4% 4%)0 (4 6%) i

D( ) Z (_1)€q%m(mfl)+r(r+1) .
xT) = X
=5 (6 Dm (6%62), (6%4%)0 (454
m-+r+30=n
Z (_1)€q%n(n—1)+r(r+l)

n+r+3¢
)

x (3.6)
ol D (6%6%), (0% 00 (@5 0 g3

changing n — n + r + 3¢ in the second line. We apply (2.3) to the inner sum on r, finding it is
equal to

1 a,b 5 —q?
(q7 q )n+3é+1 b__)>0 2n+6€+3 a
1 (_xq2;q2)oo - ¢ 2n-262+3’0'q2 b ( gjq q o Z 'r 'r 24 2r+2nr4-64r
= 291 Y ? =
(43 6% 3o (@27T5073562) o b0 —xq° oo & (Cud %),
Inserting this into (3.6), and evaluating the inner sums on n and ¢ with (2.2), we have
( xq q r+£ n(n—1)+r2+2r+2nr+6€r iy
N I n
D) = Z —2q*, 4% ¢*), (4% ¢°)
OO n,r£>0 4 ’ ¢
( xq q - Z 7" q 242r Z q2n(n 1) +2nrmn (_1)Zq6ér$3£
6. /6
Joo gm0 %), 0 (@) = (%4,
( xq q - r q 24or o 1
RS P —
7;) —2¢%,q% ¢?), (Foa750) (=365 %) o
2
(=25 ¢)oo :vq q - ,q) q
_ > (37)
(= z?’,q Joo 5 ( 2%, 4% ¢*),

We claim that
(1" (=L¢%), ¢ (@:6%) ("% a' %), 58)
= (Sl (=¢%, 6% ¢%), (% 6%) oo (0:4'30"%) o

13




This follows, letting ¢ — —¢ in the following identity of McLaughlin and Sills [23, (1.12)]

3 (-1:¢%)  (—q; )" "% _ (68?) (090 67) (qlo,q“;q“)w.
= (L) (@) (0% ¢%) o
This yields that
(190 (0% 6%, (¢% 4", "% 4"%)

(=155 o (6% 0% o (4,415 4*2)
We now evaluate H;(1). By Proposition 2.1, and recalling (3.7) and (3.8), we have

(49 (—1;¢°)

D(1) =

Hi(1) = (¢% %) . Jim (1= 2)B(@) = (g:0),, Jim (1= 2)C() = Zpo o p()
1

(¢:4% 4% ¢%,4'5 ¢12)
This completes the proof of (1.6).
4. PROOFS FOR H; wiTH 2 < j <11

In the following subsections, we give short explanations of the results for these functions. The
functions H; for 2 < j <9 use Proposition 2.2, while H1g and Hiy; require Proposition 2.3.

4.1. Hy. Asnoted in [15, Theorems 3.3.1 and 3.3.2], the identity for Ha(1) follows from the identities
for Hi(1) and H3(1). As such, we skip Ha(1).
4.2. H3. We claim that
Hs(z) = (1 + xq4) Hjs (xq2) + zq° (1 + xq3) Hjs (fz:q4) + 22¢'? (1 — xq4) Hs (qu) . (4.1)
For this we write
(i + 2§ + 3k)(i + 25 + 3k — 1) + 3k® + 4i + 65 + 12k = N? + 3N + 3k* — 2j,
to obtain that

2
H3($) _ Z hS,N . C_[N +3N$N,
N>0

where h3 n = h—%,o,N' We find that (4.1) is equivalent to
(L=*) hgn =1+ ) hanot+ (¢ 2+ ¢V 2) hgy—o — ¢ hs N3
This is (2.14) with ¢ = —1.
We next apply Proposition 2.2 with a = 2 and b = 3, and find that

3. .6
Hy(1) = (¢%¢") > ( (4% 4°),q

= (0,636, (% a4,

n2+3n

We rewrite the sum as
3 (—a%d?), (¢*¢%), g™ %" =Y (—a%d?), (¢*:¢%), g™ ™"
= (667, (a4, (d% "), = (66, (636901
1
(q4’ q57 q6, qﬁ7 q7, qS’ qu, q14; q12)oo )
using identity (1.30) of [23]. This proves (1.8).

14



4.3. Hy. We claim that
Hy(x) = (1+xq)H,4 (:Eq2) + zq? (1+ :L‘qg) H, (xq4) + 225 (1- :L‘q4) H, (xq6) . (4.2)
For this we write
(i42j +3k)(i+25 +3k — 1) +3k*> +i+3j +3k = N? +3k> +j
to obtain that
Hy(z)=> han- gV al,
N>0
where hy n := hi19,n. We find that (4.2) is equivalent to
(L= han = 1+ ) hano1 + (¢ + ¢V ?) han—2 — qghan—s3.
This is (2.14) with ¢ = 1. Proposition 2.2 with a = —1 and b = 3 then implies (1.17).

4.4. Hs. We claim that

Hs(x) = (1 + :Uq3) Hy (:L‘qz) + xq(q+ z)Hs (acq4) + 2248 (1 — qu) Hy (xqﬁ) ) (4.3)
For this we write

(i+2j+3k)(i+2j +3k—1)+ 3k +2i —j + 3k = N>+ N + 3k - 5 — 3k
to obtain that

Hs(x) =Y hsy gV N2V,
N>0

where hs n := h_o 1 n. We find that (4.3) is equivalent to

(L= hsn = (g + 2 hsyo1+ (@ + V) hsn—o — ¢ *hs N3

This is (2.15) with ¢ = —2.

Proposition 2.2 does not directly apply to Hs(z), and unlike with H;(x), we cannot adapt the
proof. In particular, the first reasonable step would be to divide the functional equation for Hs(z) by
(G725 ¢%) 0, but then it is not valid to apply Appell’s Comparison Theorem, because the resulting
series has radius of convergence |q|? < 1. As such, we introduce another function that is related to
Hs(x) and to which Proposition 2.2 does apply. We set

Js (z) = Hs (z) — 2¢°Hs (24?) .

The idea is to apply Proposition 2.2 to Hs(xq?) and J5(z) separately and obtain from this a formula
for Hs(1).
From (4.3), we obtain that

Hs (2¢?) = (1 + 2¢°) H5 (2¢*) + 2¢*(1 + 2q) Hs (2¢°) + 2%¢"° (1 — 2¢*) H; (2¢°),
and so applying Proposition 2.2 with a = 3 and b = 1 to A(z) = Hs(wq¢?) gives that

s (&%) = (qg;q4)mz( (a7%4%,q

-1 42.,42 3. 44) 7
=@t e a?), (0% d%),

n2+4n

We claim that
Js (2) = (L +2q°) J5 (2¢°) + 2q (q + 2) J5 (2¢") + 2%¢° (1 — z¢") J5 (24°) .

This follows from the functional equation for Hs by shifting  +— zq¢? in (4.3), multiplying by z¢°,
and then subtracting the resulting equation from (4.3).
15



We apply Proposition 2.2 with a = 3 and b = —1 to find that

-9. 6 n2+4n
Js(1) = (¢ Vg (a%d%,4 _
5(1) (q q)“g(q_3,q2;q2)n(q_l;q4)n
Thus
-9. 6 n2+4n ( —3. 6) nZ2+4n+3
H(1) = (g~ g (a%4d%),q (g 7%, 4 |
s(1) = a5 )wg(q‘?’,fﬂq?)n (a5 4%, (g )mé(Q‘l,qQ;qQ)n (@%:q%),

By isolating the n = 0 term and then shifting n — n + 1, we find that

— 2 _ 2
Z (q 9; q6)n qn +4n . 1+ q_3 + q_6 (q 3; qﬁ)n qn +6n+5
= (a3q% P (0715 0Y), 1—¢7

Thus

n>0

B 1+ q2n—4 + q2n—1 q—3; q6 qn2+4n+3
Hs(1) = (q 1;q4)oo + (93;q4)ooz ( LN —1> (2. 2 )n3. )
= =) (e 6%6%), (¢ a),

This proves (1.18).

4.5. Hg. We claim that
Hg(z) = (1 + 2¢*) H (26°) + 2q (1 + xq) H (2¢*) + 2%¢* (1 — 2¢*) He (24°) .
For this we write
(i+2j+3k)(i+2j + 3k —1) +3k* +i = N? + 3k* — 3k — 25
to obtain that

2
He(x) =Y hon - ¢ 2V,
N>0

where hg v :=h_1 _; . We find that (4.4) is equivalent to
27 b
(1= hen = (g + ) heno1+ (02 + ¢ ) ho n—2 — ¢ "he,n—3.

This is (2.15) with ¢ = —%. Proposition 2.2 with a = 0 and b = 1 then implies (1.11).
4.6. H;. We claim that

Hr(z) = (14 2¢%) Hr (2¢°) + 2¢* (1 + 2¢*) Hy (v¢*) + 2°¢® (1 — 2¢*) Hy (v¢%) .
For this we write

(i 4+ 2 + 3k) (i + 2§ + 3k — 1) + 3k + 2i + 45 + 6k = N? + N + 3k>

to obtain that

2
Hr(z)=> hrn-¢" Va,
N>0

where h7 n = h%,O,N' We find that (4.5) is equivalent to
(1= hrn = 1+ ) by + L+ 2) hry_o — hrn_s.

This is (2.14) with ¢ = 1. Proposition 2.2 with a = 0 and b = 3 then implies (1.12).
16
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4.7. Hyg. We next consider Hg, as we subsequently need these calculations for Hg. We claim that
Hy(z) = (1 + xq?’) Hy ($q2) + z¢* (1 + xq3) Hy (mq ) + 22¢%° (1 — xq4) Hy (xqﬁ) . (4.6)
For this, we write
(i+2j +3k)(i +2j +3k — 1) + 3k% + 3i + 55 + 9%k = N> + 2N + 3k* — j
to obtain that

2
Hy(z) = > hon-¢" Va,
N>0

where hg n := ho o n. We find that (4.6) is equivalent to
(1= hon =1+ ) hon1+ (¢ + ¢ 2) hon—2 —q "ho n_3.
This is (2.14) with ¢ = 0. Proposition 2.2 with a = 1 and b = 3 then implies (1.20).
4.8. Hg. We claim that
Hg(z) = (1 + 2q)Hs (v¢*) + 2¢*(1 + vq)Hs (vq*) + 2°¢° (1 — 2¢*) Hs (v¢°) . (4.7)
For this we write

(i42j+3k)(i+2j+3k—1)+3k*+i+j+3k=N>+3k*—

= Z hg N - VN

N>0
where hg n := hg v We find that (4.7) is equivalent to

(1= hgn = L+ hsno1+ (a7 + ¢V ) hg o — ¢ ths n—3.

Note that hg v = hg n and so the functional equation is the same.
As with Hs, we cannot apply Proposition 2.2 directly. We set

Jg (x) := Hg () — zqHs (2¢°) ,

and note that Hg(xq?) = Hg(z). Equation (1.20) then gives a ¢-hypergeometric series representation
for Hg(g?). To find a g-hypergeometric series representation for .Jg(1), we use the recurrence

Js () = (L+2¢°) Js (2¢°) + 2¢® (1 + 2q) Js (xq") + 2°¢° (1 — 2q") Js (2¢°) .

This follows by setting x — x¢? in (4.7), multiplying by z¢3, and then subtracting the resulting
equation from (4.7).
We apply Proposition 2.2 with a = b =1 to find that

to obtain that

—3. 6 n242n
(a%4%, q
Jg(l):(q;q4) E a3y (oA
© 0t e?d?), (6 dh),
Thus
~3. 6 n2+2n 3. 6 n?+2n+1
(a%4°%) q 5 4 (¢%:d°),q
Hg(1) = J3(1) + qHo(1) = (¢; ¢* s + (¢*¢q 3 :
(1) = Js(1) + qHy(1) = ( )mé(q_quzgq%(q;qm ( )mnzo (4.4%¢%),, (@ 0V,

To finish the prove we rewrite the first sum, splitting off the n = 0 term, as

3 n2+4n+3

(6:¢%) . + (¢ ¢") 1_qlz qq)q

S ( (4% ¢*)n+1 (@%50Y),,

Combining proves (1.19).
17



4.9. Hjp. To begin we rewrite, using (2.2),

Hyp(1 Z qgl

1,5,k>0
(7q1+2j+3k.q) q%(2j+3k)(2j+3k71)+j2+2j+4k §2J+3k)(2]+3k 1)+524-25+4k
(e8]

:Z : 2.2 (a3 a3 Z

Jk>0 (4% 4%);(¢% ¢°) S0 (S 4 D)24ak(a% 6%)5 (0% )k
We set

i—1)+i+2ij+3ik+ 3 (2+3k) (2j+3k—1)+52+25+4k

(a5 0)i(a% @) (a3 3

1 . . .2 .
=(2543k)(2j+3k—1)+5°+25+4k
g5 2+3R)( ) o

i

JIO(-T) = Z

S0 (Ca@)ajran(a? 6%)(a% 4%k
and claim that
Jio(z) = ¢72 (1 + q2) (1 + :U2q6) J1o (mq3) —q? (1 + 2 ) (1 + 22 11) J1o (qu) . (4.8)
To prove (4.8) we write, with M := j + k throughout,

1 . o ) 3k2 3k
This yields that
Jio(x) = jroas - MMM,
M>0
where )
Sk(k+1)
. q2
Jio,M ‘= ;
kzzo (=@ Danr+k (62562 pr—i (0% 6y,
which also gives that jign = 0 for M < 0, and jipo = 1. We find that (4.8) is equivalent to
(1—=¢*) (1= ¢"™2) jromr = (L4 ¢* — ¢ — "M jio a1 — Piio,m—2. (4.9)

We prove (4.9) wusing the g¢-Zeilberger algorithm, as implemented in MAPLE’s
QDifferenceEquations package Set

q2 k(k+1)
Jrok,m = ;
(=@ Donsr (0%50%) 01—k (6% 0
(g2 MRy gy MRy MRS (] 4 ) g SMA2k6(] _ 2))
G10,k,M = (1 + @2MFk+3) (1 1 @2M+k+2) (1 4 @2MAk+1) (g2k — @2M+2) (2M+4 _ 2k)

X (1 - qgk) J10,k,01-
Elementary rearrangements then reveal that
(1 — M0 (1= ¢®MH2) fro ko mrge — (L4 ¢ — M7 — ¢MH) f10 0 v + @ frogm
= 910,k+1,M — 910,k, M- (4.10)

We note that gi903 = 0 and limg_o0 10k, = 0, so that summing (4.10) over k implies (4.9).
The ¢-Zeilberger algorithm is an effective tool for verifying the recurrence satisfied by Jig (and
Ji1, as seen in the next subsection) as jio,»s has just one summation variable and one additional
parameter M.

Proposition 2.3 applied to Jig with a = -2, b =4, ¢ =6, ag = 1, and a1 = 0 implies that

-1
Hio(1) = (=¢; 9)so10(1) = (= @)oo (—°; ¢°) _ 261 [q /A 7, q6,—q5] :

18



The 2¢; can then be evaluated using (2.4) (with a = ¢~1,b = ¢, and q — ¢°), and we obtain

Hio(1) = (=6 D)oo (-0°10°) o (¢, 0% 0% 07) o _ 1
(=4, q*, ¢% ¢%) » (@3 0%) 00 (@3, 45, 4" ¢12) o

This proves (1.15).

4.10. HH. As with H107 by (22), we have that
q%(2j+3k)(2j+3k—1)+j2+4j+5k
=425 q) 25436 (4% ¢ (@3 )

Hu(1) = (=¢%19) 2 |
J,k>0
We set
L(2j+3k)(2j+3k—1)+j2+4j+5k

2 .
Jll(f[f) — Z (q $2]+2k

=0 —4%;q) 243k (0% @) (63 )k

and claim that
Jii(z) = (1 + q2) (1 + x2q6) Ji1 (mqg) — ¢ (1 + x2q7) (1 + $2q11) Ji1 (:xqﬁ) . (4.11)
To show (4.11), we write

1 3k k
5(2j+31<:)(2j+:’>1c—1)+j2+4j+5k:3M2+3M+7+§.
Thus
2
Jui(z) = Z Jriag - @M M,
M>0
where )
LE(3k+1)
. qz
Ni,M = .
,;0 (=% Da2nr+k (62507 pr—y, (658,
We find that (4.11) is equivalent to
(1—=¢) (1= ¢"M2) i = (L4 % — ¢V — "M Gy 1 — i v (4.12)
As with j10,a7, we prove this recurrence using the g¢-Zeilberger algorithm. Set
; q%k(SkJrl)
11,k,M = )
(=@ Danrrrs1 (@ @)y, (@ 6%y,
q7 (q4M+1 _ M3k (1 + q2) SR | BMARA(] 4 gy 4 BM+2k+8 (1 _ q2))

911,k,M = (1 + q2M+k+4) (1 + q2M+k+3) (1 + q2M+k:+2) (q2k _ q2M+2) (q2M+4 _ qzk)

X (1 - q3k) fii -

Elementary rearrangements reveal that

(1 o q6M+12) (1 _ q6M+14) fll,k,M+2 .

= 911,k+1,M — 911,k M- (4.13)

(1+¢* — "M — ¢SMH3) 14 v + e

We note that gi1.0.n = 0, limg 00 G114, = 0, and ji1ar = (1+q) Y ps0 f11,6,0, 50 that summing
(4.13) over k implies (4.12).
Proposition 2.3 with a =2, b =6, c =8, ag = 1, and a1 = 0 implies that
3
Hi (1) = (=¢% @)oo J11(1) = (0% 0) (4% ¢°) 201 [qqéq; qG,—q5] :
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The 2¢1 again evaluates to a product by (2.4), and in particular,

(1) (—=¢%9) (—¢%4d%) . (¢”,4"% ¢'%4"%) 1
11 - = .
(—4°,4%,4%¢%) (0% 6%) s (63,45, 47 ¢1%) o

This proves (1.16).

5. A PARTIAL REDUCTION OF ANOTHER CONJECTURE
In [15, Section 5.2.1], Kanade and Russell also conjectured that
(1 + 2HAT+OR+2 _ (Bi+6j+0k+5) 3 (H23K) (i 243k — 1)+ 42+ 2k 1

”zk;o (@:9)i (¢*;0%); (¢* ¢%);, (0% 6% (4,65, 6% 412)

This combinatorial form of this conjecture was originally stated as Identity I5, in [27]. In this
section we separate the sum into three series, and reduce two of them to single series. We set
L(2j43k)(2j+3k—1)+52+(2a+2)j+(3a+2)k

Z q? 2j+2k
J127 x) = x
o = (G0 6)(0% ) ’

and rewrite the conjecture, using (2.2) for each summand of the left-hand side of the conjecture, as
1

(0% ¢%) o (0,45, 0% ¢"?) o

(=4 @)oo T12,0(1) + ¢* (=% @)oo T122(1) — ¢°(—q*; @)oo T12,3(1) =
We claim that
J1270(ZE) = (1 + q_2 + £U2q4 + 1'2(]8) J1270 ({qu) — q_2 (1 + 1'2(]9) (1 + 1'2(]11) J12’0 (xq6) s (5.1)
Jiop(x) = (1+¢* + 22¢® + 2%¢"%) J122 (2¢*) — ¢* (1 + 2%¢°) (1 + 2%¢"") Jra2 (24°) . (5.2)
Writing

1 1
5(20 +3k)(2) +3k = 1) + 5% + (20 + 2)j + (3a+ 2)k = 3M* + (2 + )M + _k(3k +2a — 1),

we obtain that

. 3M2+(2a+1)M . 2M
Ti2.a(r) = frzan - @M TEEDM 2

M>0

where
k(3k+2a—1)

1

. qz

J12,a,M = )
‘ ,;0 (=" @) onr s, (0% ) pi—y (6% 6%y,

which gives that jio 4 a = 0 for M < 0 and ji12,40 = 1. We find that (5.1) and (5.2) are equivalent
to, respectively,

(1—¢"M2) (1= ¢*™) jioomr = (L4 ¢* — ¢® 73 — "M 1) jio o m—1 — ¢ ji20,0-1, (5.3)

(1 o q6M) (1 _ q6M+4) j12,2,M — (1 4 q2 _ qGMfl o q6M+1)

Again, these recurrences may be proved with the g-Zeilberger algorithm. Set
q%k(3k+2a—1)

J122,M—1 — q2j12,2,M—1. (5.4)

f12,a.6,0m =
¢ (=@ Dot srra (@) i (@)

g e q10 (q2M+2k76(1 _ q2) 4 q4M _ q4M+3k72(1 4 q) + q6M+k+2(1 4 q) _ q6M+4k)
12,0,k,M =
(1 + q2M+k+3) (1 + q2M+k+2) (1 + q2M+k+1) (q2k _ q2M+2) (q2M+4 _ q%)

X (1 - qgk) f12,0,k,M
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q6 (q4M+2 _ q4M+3k+3(1 € q) + q6M+k+6(1 + q) _ q6M+4k+8) (1 _ q3k

9122k,M = (1 + @2MARED) (1 4 2MAk+4) (1 4 @2MAR43) (2M+2 _ 2k) (g2k — 2M+4) fr2.2e,0,

so that
(1= g®MH19) (1 — M) f10 0k nrg2 — (L+ g% — M9 — ¢SV f1o 0 ka1 + @ fr2,0m
= 912,0,k+1,M — 912,0,k,M (5.5)
(1 — M2 (1 — ¢®MH10) oo nrge — (L4 g2 — "M — ¢OMH3) 10 o ki1 + @ Froo e m
= 012,2,k+1,M — 912,2.k,M- (5.6)

We note that gi200m = g1220m = 0 and limy_oo g12,04,0 = limg_o0 G122k = 0, so that
summing (5.5) over k implies (5.3) and summing (5.6) over k implies (5.4).

We apply Proposition 2.3 with a = =2, b=4, ¢ =8, ag =1, and oy = 0 to Ji20(x) and with
a=4,b=38, c=10, o9 =1, and a; =0 to Jyi22(x), to obtain,

5. 6 a4 6 5 5. 6 ?.¢° 6 5
J12,o(1)=(—q;q)ooz¢1[ qi ;q,—q}, J12,2(1)=(—q;q)002¢1[q’10;q,—q]-

However, we do not have a reduction for Jj23(1) as a basic hypergeometric series.

6. CONCLUDING REMARKS

Noting that Proposition 2.2 easily gives an infinite product whenever a = 0, one might ask
whether this leads to more identities of the form (1.6) — (1.14). In particular, consider the g-
difference equation from Proposition 2.2 with a = 0, namely

H(z) = (1 + xq2) H (xq2) + ¢ (1 + xqb) H (xq4) + 22g?+2 (1 — xq4) H (xqﬁ) . (6.1)
Proposition 2.2 implies that
3b. 12
)= e
(4%, 4% q%) oo

In order to determine when this corresponds to a triple sum of the shape found in H; with 1 < j <9,
we compare to Proposition 2.3.
Suppose that

H(.TJ) — Z hN . qN2+meN.
N>0

Then (6.1) is equivalent to
(1 _ qu) hy = <q17m I q2N+b73fm> hy_1+ (q2b7472m 4 q2N+2b7672m> hy g — 2373y .

This matches (2.14) only when m = 1 and b = 3, which is Hg, and matches (2.15) when m = 0
and b = 1, which is H7. Furthermore, a short calculation shows that there are no other cases of
this shape. In particular, in the proof of Proposition 2.4, one can solve for a, A;(N), and Aa(N)
by comparing (2.19) and (2.13), but this turns out to only be possible for the three cases stated in
the proposition.

We have also found another conjectural sum-product identity for a series of the form (1.5). After
searching for related identities, we observed computationally that

(_1)kq(z‘+2j+3k)(i+2j+3k—1)+3k2+i—3j—3k B q—l (1 +q+ qz)

”%O (a5 0)i(q*; a*) (g% ¢®) C(6%59Y)oo(0h 4754100
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In fact, it is not difficult to make the connection with Hg explicit. In particular, we find that

(_l)kq(z’+2j+3k)(i+2j+3k71)+3k2+i73j73k

L2043k _ Ay —g—o-qV V.
(¢;9)i (g% ¢%); (4% ¢%)x N§>:O o

2.

17.77]{20

Using (2.17) and (4.6), it is then not hard to deduce that the series above is indeed ¢~!(1 + ¢ +
q?)Hy(1). As such, this sum-product identity is equivalent to (1.14).
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