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Abstract. In this paper, we consider the Fourier coefficients of meromorphic Ja-
cobi forms of negative index. This extends recent work of Creutzig and the first two
authors for the special case of Kac–Wakimoto characters which occur naturally in
Lie theory, and yields, as easy corollaries, many important PDEs arising in combi-
natorics such as the famous rank–crank PDE of Atkin and Garvan. Moreover, we
discuss the relation of our results to partial theta functions and quantum modu-
lar forms as introducted by Zagier, which together with previous work on positive
index meromorphic Jacobi forms illuminates the general structure of the Fourier
coefficients of meromorphic Jacobi forms.

1. Introduction and statement of results

The general framework of Jacobi forms was laid down by Eichler and Zagier in
[14]. This theory has played an important role in many areas of number theory,
including the theory of Siegel modular forms [24], the study of central L–values and
derivatives of twisted elliptic curves [16], and in the theory of umbral moonshine [10],
just to name a few. Roughly speaking, a Jacobi form is a function φ : C × H → C,
where H := {τ ∈ C : Im(τ) > 0}, which satisfies two transformations similar to the
transformations of elliptic functions and of modular forms (see Section 2.1). We refer
to the variable in C (denoted by z) as the elliptic variable, and to the variable in H
(denoted by τ) as the modular variable. As any Jacobi form φ is one-periodic as a
function of z, it is natural to consider its Fourier expansion in terms of ζ := e(z),
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where e(x) := e2πix. In the classical case of holomorphic Jacobi forms, the Fourier
coefficients give rise to a vector-valued modular form via the theta decomposition of
the Jacobi form (see Section 2.1).

If φ has poles in the elliptic variable, the story becomes much more interesting
and difficult. In this case, the Fourier coefficients depend on the choice of range
of z and are not modular. Such coefficients played a key role in the study of the
mock theta functions of Ramanujan in [28], where they were studied in relation to
mock modular forms and certain Appell–Lerch sums. Subsequent extensions and
applications to quantum black holes were given in [12] (see also [19] for the appearance
of mock modular forms in the context of quantum gravity partition functions and
AdS3/CFT2, as well as [18] for a relation between multi-centered black holes and
mock Siegel–Narain theta functions). Meromorphic Jacobi forms also played a key
role in the study of Kac and Wakimoto characters (see [17]), as studied in [5, 15, 23].
Collectively, these works completed the picture in the case when the meromorphic
Jacobi form has positive index.

In [4], Creutzig and the first two authors considered the first cases of negative
index Jacobi forms, finishing the question of Kac and Wakimoto for their characters.
In particular, using the classical Jacobi theta function ϑ(z; τ) as defined in (2.2), the
(M,N)–th Kac–Wakimoto character is, for M,N ∈ N0 and after a change of variables,
the function

φM,N(z) = φM,N(z; τ) :=
ϑ
(
z + 1

2
; τ
)M

ϑ(z; τ)N
.

As an example of their importance, these functions contain information about certain
affine vertex algebras and their associated affine Lie algebras as studied by Kac and
Wakimoto [17], who asked for the general modularity properties of such functions.

Furthermore, for various choices of M,N , the functions φM,N are of combinatorial
interest. In particular, the function φ0,1 is essentially the famous Andrews–Dyson–
Garvan crank generating function, which was used by Andrews and Garvan [1] to
provide a combinatorial explanation for the Ramanujan congruences for the partition
function, as postulated by Dyson [13]. Hence, an explicit understanding of the Fourier
coefficients of φ0,N gives relations between powers of the crank generating function
and certain Appell–Lerch series, giving a family of PDEs generalizing the “rank-crank
PDE” of Atkin and Garvan [2] (see Corollary 1.3), and generalizing families of PDEs
studied by Chan, Dixit, and Garvan in [9] and by the third author in [29]. The
beautiful identity of Atkin and Garvan gives a surprising connection between the
rank and crank generating functions which can be used to show various congruences
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relating ranks and cranks, as well as useful relations between the rank and crank
moments [2].

Further examples of negative index Jacobi forms may also been found in the theory
of vertex operator algebras. For example, they arise in the context of certain chiral
2-point functions associated to lattice theories whose trace is restricted to a simple
module of a Heisenberg vertex operator algebra. The interested reader is referred to
[21] Corollary 3.15 for details, and more details can also be found in [20] and [22].

In this paper, we generalize the work of [4], offering a completely general picture
for negative index Jacobi forms. To describe our results, we let m ∈ −1

2
N, τ ∈ H,

and ε ∈ {0, 1}, and consider meromorphic functions φ : C → C that satisfy the
elliptic transformation law (2.1). For example, if φM,N is a Kac–Wakimoto character,
then it transforms according to (2.1) with ε = ε(N) and m = M−N

2
, where ε(N) ∈

{0, 1} is such that ε(N) ≡ N (mod 2). Note that a Jacobi form also satisfies a
modular transformation law (in the suppressed variable τ), but for our main result,
only assuming (2.1) suffices.

We now define Dx := 1
2πi

∂
∂x

for a general variable x, and consider the level 2M

Appell–Lerch sum given for M ∈ 1
2
N by

FM,ε(z, u) = FM,ε(z, u; τ) :=
(
ζw−1

)M∑
n∈Z

(−1)nεw−2MnqMn(n+1)

1− qnζw−1
, (1.1)

where q := e(τ), w := e(u). The following is then our main result, where, as is further
explained in Section 2.1, Dj,v = Dj,v(τ) is the −j–th Laurent coefficient of φ around
z = v, sz0,τ gives the locations of a set of representatives of the poles of φ, and Pz0 is a
fundamental parallelogram for the lattice Zτ + Z. Further note that in the following
theorem, although the dependence on τ is suppressed, both sides of (1.2) depend on
τ .

Theorem 1.1. Let m ∈ −1
2
N and ε ∈ {0, 1}, and suppose that z0 is chosen so that

φ has no poles on ∂Pz0. If φ is a meromorphic function satisfying (2.1) with this
particular choice of ε, then

φ(z) = −
∑

u∈sz0,τ

∑
n∈N

Dn,u

(n− 1)!
Dn−1v (F−m,ε(z, v))

∣∣
v=u

. (1.2)

Remark. As φ is a meromorphic function, there are only finitely many non-zero
terms in the sum over n in the right hand side of (1.2).
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Remark. This theorem complements work in [6]. Namely, the authors of [6] show
that general H-harmonic Maass–Jacobi forms of index m < 0 may be decomposed as∑

` (mod 2m)

h`(τ)µ̂m,`(z; τ) + ψ(z; τ),

where the h` are the components of a vector-valued modular form, the µ̂m,` are distin-
guished functions depending only on m and `, and ψ is a meromorphic Jacobi form of
index m (the interested reader is also referred to [25] for important extensions of this
work). Hence, Theorem 1.1 allows one to further decompose the pieces ψ in these
decompositions, which yields explicit decompositions of H-harmonic Maass–Jacobi
forms.

As a corollary, applying this result to the Kac–Wakimoto characters φM,N yields
the following, which extends Theorem 1.3 in [4] to the case of general Kac–Wakimoto
characters. Note that the only pole of these functions occurs at z = 0 (independent
of τ), and is of order precisely N .

Corollary 1.2. For M ∈ N0 and N ∈ N with M < N , we have the decomposition

φM,N(z) = −
N∑
n=1

Dn,0

(n− 1)!
Dn−1v

(
FN−M

2
, ε(N)(z, v)

) ∣∣∣∣
v=0

.

As discussed in [4], Corollary 1.2 has applications to interesting differential equa-
tions of combinatorial generating functions, and in particular recovers important iden-
tities which were previously observed. In particular, Theorem 1.1 immediately implies
the rank crank PDE of Atkin and Garvan. To state it, we first recall the rank and
crank generating functions (whose combinatorial definitions are not needed in this
paper), which arise in many contexts and in particular give combinatorial expla-
nations of Ramanujan’s congruences (for example see [1, 3, 13]). Specifically, the
generating functions R and C for the rank and crank, respectively, may be shown
to possess the following representations [1, 3], where for n ∈ N0 ∪ {∞}, we set
(a; q)n = (a)n :=

∏n−1
j=0 (1− aqj):

R(ζ; q) :=
∑
n≥0

qn
2

(ζq)n (ζ−1q)n
, and C(ζ; q) :=

(q)∞
(ζq)∞(ζ−1q)∞

.

Atkin and Garvan [2] proved the following PDE, where R∗ and C∗ are normalized
versions of R and C (this PDE also follows as special cases of the main results in
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[9, 29]). As explained in [4], the following follows directly from Theorem 1.1 when
applied to the Jacobi form φ0,3.

Corollary 1.3. The rank-crank PDE of Atkin and Garvan holds true. That is, we
have

2η(τ)2C∗(ζ; q)3 =
(
6Dτ +D2

z

)
R∗(ζ; q). (1.3)

Remark. Theorem 1.1 immediately implies other PDEs for combinatorial generating
functions. For example, the results in Section 3.2 of [8] in relation to the overpartition
generating function immediately follow from Theorem 1.1 as applied to φ1,3.

As stated above, our main goal is to describe the Fourier coefficients of φ. We first
require partial theta functions defined for z ∈ C, τ ∈ H, M ∈ 1

2
N, and ` ∈M + Z by

ϑ+
`,ε,M(z) = ϑ+

`,ε,M(z; τ) :=
∑
n≥0

(−1)nεq
(2Mn−`)2

4M ζ2Mn−`. (1.4)

Our second result is then the following, where h`,z0(τ) is the `-th Fourier coefficient
of φ with respect to z0 as defined in (2.4).

Theorem 1.4. Let m ∈ −1
2
N, τ ∈ H, and φ be a meromorphic function satisfying

(2.1) with ε ∈ {0, 1}. If z0 ∈ C is chosen so that φ has no poles on ∂Pz0, then we
have for any ` ∈ m+ Z that

h`,z0(τ) =
∑

u∈sz0,τ

∑
n∈N

Dn,u(τ)

(n− 1)!
Dn−1z

(
ϑ+
`,ε,−m (z; τ)

) ∣∣
z=u

. (1.5)

In particular, Theorem 1.4 directly implies the following result, which is analogous
to Theorem 1.4 of [4] (where a different range for the Fourier coefficients is used).

Corollary 1.5. Let φ = φM,N with M ∈ N0, N ∈ N, and M < N . Then, for any
` ∈ M−N

2
+ Z, we have

h`,− 1
2
− τ

2
(τ) =

N∑
n=1

Dn,0(τ)

(n− 1)!
Dn−1z

(
ϑ+

`,ε(N),N−M
2

(z; τ)
) ∣∣∣

z=0
.

Remark. Following the proof of Theorem 1.5 of [4], one finds that the partial theta
functions ϑ+

`,ε−m are all quantum modular forms, so that Theorem 1.4 implies that
the Fourier coefficients of a general negative index Jacobi form are expressible as
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derivatives of quantum modular forms times quasimodular forms. This is further
explained in Section 2.2 (see Theorem 2.2).

The paper is organized as follows. In Section 2.1, we review the basic theory of
Jacobi forms, theta decompositions, and the definition of Fourier coefficients of Jacobi
forms. In Section 2.2, we discuss the theory of quantum modular forms in the context
of partial theta functions. We complete the proofs of the main results in Section 3.

Acknowledgement

The authors thank the referee for many comments which improved the exposition
of this paper.

2. Preliminaries

2.1. Jacobi forms and Fourier coefficients. We begin by recalling the notion of a
holomorphic Jacobi form, referring the interested reader to [14] for the general theory.
Roughly speaking, a holomorphic Jacobi form is a holomorphic function φ on C×H
which satisfies a modular transformation, together with an elliptic transformation.
We are mainly interested in the explicit elliptic transformation property, and consider
functions which transform in the complex z-variable as

φ(z + λτ + µ) = (−1)2mµ+λεe−2πim(λ2τ+2λz)φ(z) (2.1)

for all λ, µ ∈ Z, where m ∈ 1
2
Z and ε ∈ {0, 1}. We refer to m as the index of the

Jacobi form. For example, in the motivating case of the Kac–Wakimoto characters,
we require the Jacobi ϑ function given by

ϑ(z) = ϑ(z; τ) := −iζ−
1
2 q

1
8 (q)∞(ζ)∞

(
ζ−1q

)
∞ . (2.2)

It is well-known that ϑ(z; τ) is a holomorphic Jacobi form with multiplier of weight
1
2

and index 1
2
. In particular, it satisfies (2.1) with ε = 1 and m = 1

2
, namely,

ϑ(z + λτ + µ) = (−1)λ+µe−πi(λ
2τ+2λz)ϑ(z) (2.3)

for all λ, µ ∈ Z.
One of the most useful properties of holomorphic Jacobi forms, which in particular

makes the study of their Fourier coefficients in ζ easy, is their theta decomposition.
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Namely, directly from the holomorphicity of φ and the elliptic transformation prop-
erty, one finds that any holomorphic Jacobi form φ of index m ∈ N with ε = 0
decomposes as

φ(z; τ) =
∑

` (mod 2m)

h`(τ)ϑm,`(z; τ),

where

ϑm,`(z; τ) :=
∑
n∈Z

n≡` (mod 2m)

q
n2

4m ζn,

and

h`(τ) := q−
`2

4m

∫ 1

0

φ(z; τ)e−2πi`zdz.

Moreover, the modularity of φ implies that the coefficients h` (0 ≤ ` ≤ 2m − 1)
comprise a vector-valued modular form of weight k − 1/2, where k is the weight of
the Jacobi form (see Chapter 2, Section 5 of [14]).

When φ has poles, the situation is more complicated. Firstly, the Fourier coeffi-
cients depend on the imaginary part of z and on the choice of path of integration.
To this end, following [12], we define for z0 ∈ C and φ a function satisfying the
transformation in (2.1) with m ∈ 1

2
Z and ε ∈ {0, 1}, the (slightly modified) Fourier

coefficients by

h`(τ) = h`,z0(τ) := q−
`2

4m

∫ z0+1

z0

φ(z; τ)e−2πi`zdz, (2.4)

where ` ∈ m+ Z. Here, the path of integration is the straight line connecting z0 and
z0 + 1 if there are no poles on this line. If there is a pole on the line which is not an
endpoint, then we define the path to be the average of the paths deformed to pass
above and below the pole. Finally, if there is a pole at an endpoint, note that the
integral (2.4) only depends on the imaginary part of z0. Then we replace the path
[z0, z0+1] with [z0−δ, z0+1−δ] for small δ so that there is not a pole at an endpoint,
and then define the integral as above when there is a pole in the interior of the line.

To facilitate our study of meromorphic Jacobi forms, we require some notation.
Firstly, for z0 ∈ C, we let Pz0 := z0 + [0, 1)τ + [0, 1) and we denote by sz0,τ the
complete set of poles of φ in Pz0 . Finally, we denote the Laurent coefficients of φ
around u by

φ(z) =:
Dn,u

(2πi(z − u))n
+ . . .+

D1,u

2πi(z − u)
+O(1). (2.5)



8 KATHRIN BRINGMANN, LARRY ROLEN, AND SANDER ZWEGERS

We note in passing that the Laurent coefficients are well–known to be quasimodular
in the suppressed variable τ if φ is a Jacobi form. Roughly speaking, a quasimodular
form is simply the constant term in 1/v of an almost holomorphic modular form,
where an almost holomorphic modular form is a function of τ ∈ H which transforms
as a modular form and which is a polynomial in 1/v with holomorphic coefficients,
where τ = u+ iv with u, v ∈ R.

2.2. Partial theta functions and quantum modular forms. In this section,
we recall some basic facts concerning quantum modular forms. We begin with the
following definition, where |k is the usual Petersson slash operator (see [26] for more
background on quantum modular forms).

Definition 2.1. For any cofinite set Q ⊆ Q, we say a function f : Q → C is a
quantum modular form of weight k ∈ 1

2
Z on a congruence subgroup Γ if for all γ ∈ Γ,

the cocycle
rγ(τ) := f |k(1− γ)(τ)

extends to an open subset of R and is analytically “nice”. Here “nice” could mean
continuous, smooth, real-analytic etc.

One of the most striking examples of a quantum modular form is Kontsevich’s
function F (q), as studied by Zagier in [27], which is given by

F (q) :=
∑
n≥0

(q)n. (2.6)

This function does not converge on any open subset of C, but is a finite sum for q
any root of unity. Zagier’s study of F depends on the “sum of tails” identity∑

n≥0

(
η(τ)− q

1
24 (q)n

)
= η(τ)D (τ)− 1

2

∑
n≥1

nχ12(n)q
n2−1
24 , (2.7)

where η(τ) := q1/24(q)∞, D(τ) := −1
2

+
∑

n≥1
qn

1−qn , and χ12(·) :=
(
12
·

)
. The key

observation of Zagier is that in (2.7), the values η(τ) and η(τ)D(τ) vanish to infinite
order as τ → h/k, so at a root of unity ξ, F (ξ) is essentially the limiting value of the

partial theta function
∑

n≥1 nχ12(n)q
n2−1
24 , which he showed has quantum modular

properties [27].
In the decomposition of Jacobi forms of negative index, we encounter the more

general partial theta functions ϑ+
`,M,ε(z; τ) defined in (1.4). These functions turn out

to yield quantum modular forms.
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Theorem 2.2. For any m ∈ −1
2
N, ` ∈ m + Z, ε ∈ {0, 1}, and z ∈ Qτ + Q, the

partial theta function ϑ+
`,ε,−m(z; τ) is (up to multiplication by a rational power of q)

a quantum modular form of weight 1/2 whose cocycles are real-analytic except at one
point.

Proof. Note that if z = λτ+µ with λ, µ ∈ Q, then, up to multiplication by a constant
and a multiple of q, and after rescaling τ 7→ τ/m, we are led to study a partial theta
series of the form ∑

n≥0

(−1)nεq(n+
a
b )

2

(2.8)

for some a/b ∈ Q. As explained in [7], (2.8) is a “holomorphic Eichler integral” of
the theta series ∑

n∈Z

(−1)nε
(
n+

a

b

)
q(n+

a
b )

2

. (2.9)

As (2.9) is a cusp form of weight 3/2, Theorem 2.2 follows directly from Theorem
1.1 of [7] (for a different perspective on these quantum modular forms, the reader is
referred also to [11]). �

3. Proofs of the main results

We begin by giving the key properties of FM,ε needed for the proof of Theorem 1.1,
both of which follow from direct calculations.

Lemma 3.1. Let M ∈ 1
2
N and τ ∈ H. As a function of u, we have the elliptic

transformation property

FM,ε(z, u+ λτ + µ) = (−1)2Mµ+λεe−2πiM(λ2τ+2λu)FM,ε(z, u),

for all λ, µ ∈ Z. Furthermore, as a function of u, FM,ε(z, u) is a meromorphic function
having only simple poles in z + Zτ + Z and residue 1

2πi
in u = z.

We are now in a position to prove our main result, Theorem 1.1.

Proof of Theorem 1.1. Let z ∈ C be such that φ is holomorphic in z. Further let
z0 ∈ C be such that z ∈ Pz0 and that φ has no poles on the boundary of Pz0 . We
consider the integral ∫

∂Pz0

φ(v)F−m,ε(z, v)dv,

which we now compute in two different ways: on the one hand, we find from equation
(2.1) and Lemma 3.1 that the integrand is both one– and τ–periodic. Hence we
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immediately see that the integral vanishes. On the other hand, we can use the Residue
Theorem to give another evaluation of the integral. For this, we note that the poles
of v 7→ φ(v)F−m,ε(z, v) in Pz0 are the poles of φ in Pz0 together with z. In v = z the
function has residue 1

2πi
φ(z), so we have∫

∂Pz0

φ(v)F−m,ε(z, v)dv = φ(z) + 2πi
∑

u∈sz0,τ

Res
v=u

[
φ(v)F−m,ε(z, v)

]
and thus we get

φ(z) = −2πi
∑

u∈sz0,τ

Res
v=u

[
φ(v)F−m,ε(z, v)

]
.

Since the function v 7→ φ(v)F−m,ε(z, v) is invariant under translation by a lattice
point, so is u 7→ Resv=u

[
φ(v)F−m,ε(z, v)

]
. Hence we can drop the condition that z0 is

such that z ∈ Pz0 and take z0 to be arbitrary (as long as there are no poles of φ on the
boundary of Pz0). The theorem now follows immediately by inserting the definition
of the Laurent coefficients Dn,u. �

Before giving the proof of Theorem 1.4, we require the following properties of the
partial theta functions under consideration, which follow from a direct calculation.

Lemma 3.2. For all λ, µ ∈ Z, ` ∈ 1
2
Z, and M ∈ 1

2
N, we have

(−1)2`µqMλ2ζ2Mλϑ+
`,ε,M (z + λτ + µ) = ϑ+

`−2Mλ,ε,M(z). (3.1)

Furthermore,

ϑ+
`,ε,M(z)− (−1)εqMζ2M ϑ+

`,ε,M(z + τ) = q
`2

4M ζ−`. (3.2)

Proof of Theorem 1.4. By the Residue Theorem we have∫
∂Pz0

φ(v)ϑ+
`,ε,−m(v)dv = 2πi

∑
u∈sz0,τ

Res
v=u

[
φ(v)ϑ+

`,ε,−m(v)
]
.



NEGATIVE INDEX MEROMORPHIC JACOBI FORMS 11

On the other hand, we can compute the integral directly. Since φϑ+
`,ε,−m is one–

periodic (using the fact that ` ∈ m+ Z), we find, using (2.1) and (3.2) that∫
∂Pz0

φ(v)ϑ+
`,ε,−m(v)dv =

∫ z0+1

z0

φ(v)ϑ+
`,ε,−m(v)dv −

∫ z0+τ+1

z0+τ

φ(v)ϑ+
`,ε,−m(v)dv

=

∫ z0+1

z0

(
φ(v)ϑ+

`,ε,−m(v)− φ(v + τ)ϑ+
`,ε,−m(v + τ)

)
dv

=

∫ z0+1

z0

φ(v)
(
ϑ+
`,ε,−m(v)− (−1)εe−2πim(τ+2v)ϑ+

`,ε,−m(v + τ)
)
dv

= e−
πi`2τ
2m

∫ z0+1

z0

φ(v)e−2πi`vdv = h`,z0(τ).

Comparing the two evaluations of the integral implies that

h`,z0(τ) = 2πi
∑

u∈sz0,τ

Res
v=u

[
φ(v)ϑ+

`,ε,−m(v)
]
.

The result then follows directly by inserting the definition of the Laurent coefficients
into the last formula. �

Proof of Corollaries 1.2 and 1.5. By (2.3), we find that φM,N transforms according
to (2.1) with ε = ε(N) and m = M−N

2
. Further note that φM,N is a function whose

only poles are poles of order N in Z + Zτ . Corollary 1.2 then follows directly by
applying (1.2) with z0 = −1

2
− τ

2
. Similarly, Corollary 1.5 follows directly by plugging

into Theorem 1.4. �
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