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Abstract. We study the coefficients of Kac and Wakimoto’s character formulas for the affine
Lie superalgebras s�(n + 1|1)∧. The coefficients of these characters are the weight multiplicities
of irreducible modules of the Lie superalgebras, and their asymptotic study begins with Kac and
Peterson’s earlier use of modular forms to understand the coefficients of characters for affine Lie
algebras. In the affine Lie superalgebra setting, the characters are products of weakly holomorphic
modular forms and Appell-type sums, which have recently been studied using developments in
the theory of mock modular forms and harmonic Maass forms. Using our previously developed
extension of the Circle Method for products of mock modular forms along with the Saddle Point
Method, we find asymptotic series expansions for the coefficients of the characters with polynomial
error.

1. Introduction and statement of results

In a series of papers [20, 21], Kac and Wakimoto studied integrable irreducible highest weight
modules over affine Lie superalgebras, which were previously introduced by Kac in [17]. Kac
and Moody’s original construction of infinite-dimensional (affine) Lie algebras is described in the
book [18]. In this paper we prove asymptotic results for the coefficients of the traces of modules for
certain affine Lie superalgebras; these coefficients are (essentially) the multiplicities of irreducible
module weight space decompositions. Our approach is similar in spirit to Kac and Peterson’s earlier
work on the characters for affine Lie algebras [19], where they used the modularity properties of
q-series and Tauberian theorems in order to prove asymptotic results for the coefficients of string
functions.

In the setting of affine Lie superalgebras, the “modularity” properties do not come from the
classical theory of theta functions and elliptic modular forms, but instead rely on more recent
developments in the theory of mock modular forms, and the asymptotic formulas follow in part
from our previous work extending the classical Hardy-Ramanujan Circle Method to this setting [5].
Our present approach also offers a significantly more precise expansion of the main asymptotic term
as compared to [5], as we now incorporate an improved analysis using the Saddle Point Method
(which further requires a modified approach to certain modular transformations). As such, the
technical heart of this paper lies in the theory of modular and automorphic properties of q-series,
and our main goal is to determine asymptotic expansions for the coefficients of the following series
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derived by Kac and Wakimoto in [21]:

trL(Λ(s))q
L0 := 2q−

s
2
φ(q2)2

φ(q)n+3

∑
k=(k1,...,kn)∈Zn

q
1
2

∑n
i=1 ki(ki+1)

1 + q
∑n

i=1 ki−s
.(1.1)

Here the parameters satisfy the restrictions −n
2 ≤ s ≤ n

2 , s ∈ Z (the restriction on the range of s
is simply a convenience following from the Jacobi transformation laws stated in Proposition 2.4),
n ∈ N, and φ(q) :=

∏∞
m=1(1 − qm). This formula gives a closed form for the trace of L(Λ(s)),

which is the irreducible s�(n+1, 1)∧-module with highest weight Λ(s). The term qL0 is the “energy
operator”, and for purposes of our discussion serves as a normalizing factor.

To motivate our study, we further recall some of the basic properties of Kac and Wakimoto’s
study of affine Lie superalgebras. If g is a simple (or abelian) complex, finite-dimensional Lie algebra
with a bilinear form, then the associated (infinite-dimensional) affine Lie algebra g̃ is constructed
by adding to the algebra an auxiliary Laurent variable, a central element, and a derivation, with
the bilinear form also extended in a natural way. The structure of such an algebra can then be
understood through the study of g̃-modules; in particular, L(Λ) is defined to be the g̃-module with
highest weight Λ.

An important feature of such a g̃-module is that it has a weight space decomposition

(1.2) L(Λ) =
⊕
λ

L(Λ)λ,

where the multiplicity of each weight space L(Λ)λ for λ ∈ h̃� is denoted by multΛ(λ). The character
of the module is then defined as

(1.3) chL(Λ) :=
∑
λ

multΛ(λ)q
λ,

where the sum runs over the dual root lattice.
In Section 4.7 of [19], Kac and Peterson addressed the asymptotic behavior of weight multiplicities

for affine Lie algebras.

Theorem (Kac-Peterson [19]). If g̃ is an affine Lie algebra with �+1 simple roots, then as m → ∞
(1.4) multΛ(λ−mδ) ∼ 2−

1
2a

�+1
4 bm− �+3

4 e4π
√
am,

where a and b are certain constants that are determined by g̃.

Remark. The constants a and b and the weight expression λ − mδ all depend on the Cartan
subalgebra.

Remark. Their proof relied heavily on the modularity of the so-called “string functions” of the
character, which arise by dissecting (1.3) using theta functions (see (2.18) in [19]). They first
applied modular inversion formulas in order to determine the asymptotic behavior as q → 1−
(resulting in expressions analogous to (1.6)), and then applied Tauberian theorems in order to prove
the corresponding asymptotics for the coefficients. It is important to note that the application of
Tauberian theorems requires that the multiplicities be monotonically increasing.

For example, Kac and Peterson showed that in the case that g̃ has type A
(1)
1 , this theorem implies

Hardy and Ramanujan’s famous asymptotic result for Euler’s partition function [14]

p(m) ∼ 1

4m
√
3
· eπ

√
2m
3 (m → ∞).
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Here p(m) is the number of integer partitions of m, which have the generating function∑
m≥0

p(m)qm =
∏
m≥1

1

1− qm
=

q1/24

η(τ)
.

Dedekind’s eta-function is defined by η(τ) := q1/24
∏∞

m=1(1− qm), which is a weight 1/2 (cuspidal)
modular form whose Fourier expansion is written using the uniformizer q := e2πiτ .

Hardy and Ramanujan actually proved a much stronger result that gave an asymptotic series for
p(m) with polynomial error instead of just the main term. Rademacher [23] then further refined
their development of the Circle Method and obtained an exact formula for p(m). In order to state
their results, several definitions are necessary; first, if k ≥ 1 and m are integers, then define the
Kloosterman sum

Ak(m) :=
∑

0≤h<k
(h,k)=1

ωh,ke
− 2πihm

k ,

where ωh,k is the multiplier of the partition generating function and is given explicitly by

ωh,k := exp (πis(h, k)) ,

where s(h, k) is the usual Dedekind sum [13]. Finally, Is(x) denotes the usual modified Bessel
function of order s.

Rademacher’s main result was the series expansion

(1.5) p(m) = 2π(24m− 1)−
3
4

∞∑
k=1

Ak(m)

k
· I 3

2

(
π
√
24m− 1

6k

)
.

Rademacher and Zuckerman later established similar formulas for the coefficients of any weakly
holomorphic modular form of negative weight [24, 27].

However, in our present study of characters for affine Lie superalgebras, the general theory of
Rademacher does not apply. In [7], the first author and Ono answered a question of Kac regarding
the “modularity” of the traces in (1.1), and proved that they may be written as a modular form
multiplied with an analog of one of Ramanujan’s mock theta functions (this will be described more
precisely in Section 2).

Ramanujan’s mock theta functions have served as motivating examples for recent developments in
the study of modularity properties of hypergeometric q-series. In Ramanujan’s last letter to Hardy,
he introduced 17 examples of hypergeometric q-series whose striking asymptotic and modular trans-
formation properties resembled weakly holomorphic modular forms. Building on Ramanujan and
Watson’s studies of modular transformations for the mock theta function f(q), Dragonette [11],
and later Andrews [1], used the Circle Method in order to prove asymptotic series expansions for
its coefficients α(n).

In [28], Zwegers finally explained the proper automorphic framework for f(q) and the rest of
Ramanujan’s mock theta functions by showing that they are the holomorphic parts of harmonic
weak Maass forms, which are certain automorphic forms introduced in [9]. The first author and
Ono used this framework to prove a conjecture of Andrews and Dragonette that gave an exact series
expansion for α(n) of a similar shape to that seen in (1.5). In order to prove this result, they used
Maass-Poincaré series decompositions for harmonic weak Maass forms, and subsequently derived
exact formulas for the holomorphic coefficients of all harmonic weak Maass forms of non-positive
weight [8].

However, the present situation is rather more complicated, as there is no longer a Poincaré series
decomposition for the product of mock modular forms. Nevertheless, the modular transformations
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of trL(Λ(s))q
L0 can be explicitly understood, and thus it is still possible to address asymptotic

questions. One application of these modularity properties is found in work of the first author and
Folsom [4], where they considered the behavior of these characters as q → 1−. Replacing τ by
it, t ∈ R+, Kac and Wakimoto previously [21] established the following asymptotic behavior for
trL(Λ(s))q

L0 as t → 0+:

trL(Λ(s))q
L0 ∼

√
t

2
e

π(n+2)
12t .(1.6)

Kac and Wakimoto proved this result through series manipulations and the asymptotic behavior
of the modular transformations of theta functions. This result was improved in [4] by employing
the relation to harmonic weak Maass forms, which led to a full asymptotic expansion of the main
exponential term, written as Taylor polynomials involving Euler numbers.

In contrast to Kac and Peterson’s asymptotic results (cf. (1.4)), Tauberian theorems do not
directly apply to (1.6) due to the potential sign changes in the trace formulas. Furthermore, the
transformation theory of Appell sums had not yet been fully developed when Kac and Wakimoto’s
initial work was completed, and furthermore, the previously mentioned results regarding exact
formulas for the coefficients of modular forms or mock modular forms do not apply to products of
mock modular forms. The first results for such a situation are found in a previous paper of the
authors [5], in which an asymptotic series expansion was given for partitions without sequences.
In this work we developed a generalization of the Circle Method that addressed the “continuous”
principal parts that arise in these sorts of examples.

For notational simplicity, in this paper we only consider the case that n is odd; the case of even
n can be treated similarly. The coefficients of interest are defined by the normalized series

(1.7) gs(q) = trL(Λ(s))q
L0q−

s
2 =

∞∑
m=0

cs(m)qm.

To state our main theorem, we require some notation. We let 0 ≤ h < k with (h, k) = 1, γ := (n, k)
and write k = k′γ and n = n′γ. We define for r, j ∈ Z the sets

Sn :=

{
0 ≤ j ≤ n− 1;

∣∣∣∣j − n− 1

2

∣∣∣∣ >
√

n(n+ 2)

6
; 2j ≡ −1− 2sh (mod γ)

}
,

Tn :=

{
−n

2
< j <

n

2
; |j| < n

2
− 1

2

√
n(2n+ 1)

2
; j ≡ −sh (mod γ)

}
,

and the constants

εs(n) :=
n− 1

24
+

s2

2n
− s

2
,

δj(n) :=
n

24
− 5

12
+

1

2n

(
j2 + (1− n)j

)
+

1

8n
,

δ̃j(n) :=
j2

2n
− |j|

2
+

n

24
− 1

24
,

nr :=
n+ 2

12
− r.

Moreover Aj(r), Bj(r), and C�(r) are the principal part coefficients of certain Fourier series that

are given in (3.1), (3.2), and (4.4), respectively, and for real arguments satisfying 0 < a < b
2 and
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|c| < 1
2 , we define the principal value integral

(1.8) P (a, b, c;M) :=

∫ 1

−1

(
1− y2

)− 3
4

cosh
(
π(bMy + ci)

)I 3
2

(
aM
√
1− y2

)
dy.

Finally Kk(m,n), K̃k(m,n), and K∗
k,�(m,n) are certain sums of Kloosterman-type defined in (4.1),

(4.3), and (4.7), respectively. Following our non-holomorphic generalization of the Circle Method
found in [5] and strengthening the asymptotic analysis using the Saddle Point Method (note that
the integrals in (1.8) are of a different shape than those in [5]), we find the following asymptotic
series for the coefficients cs(m).

Theorem 1.1. Assuming the notation above, we have as m → ∞

cs(m) =
2π√(

m− εs(n)
) ∑

1≤k≤√
m

2�k

1

k

1√
n′
∑
j∈Sn

∑
0≤r<2δj(n)

Aj(r)

√
δj(n)− r

2

×Kk(−m, r)I1

(
4π

k

√(
δj(n)− r

2

) (
m− εs(n)

))
+

2n+2π√(
m− εs(n)

) ∑
1≤k≤√

m
2|k

1

k

1√
n′
∑
j∈Tn

∑
0≤r<δ̃j(n)

Bj(r)

√
δ̃j(n)− r

× K̃k(−m, r)I1

(
4π

k

√(
δ̃j(n)− r

)(
m− εs(n)

))

+
2−

1
4π(

m− εs(n)
) 1

4
√
n

∑
2�k

∑
nr>0

C(r)n
3
4
r

∑
− k−1

2
≤�≤ k−1

2

K∗
k,�(−m, r)

P

(
2π

k

√
2nr,

√
2

k
√
n
,−1

k

(
�− s

n

)
;
√

m− εs(n)

)
+O

(
m

1
4

)
.

Remark. Although the Kac-Wakimoto characters are more exotic than classical modular functions,
our asymptotic results for the coefficients are still “optimal” in the sense that one would not expect
a more precise error even in the modular setting. Indeed, the characters essentially transform
like (weight zero) modular functions, ignoring the non-holomorphic correction factors that are
described more thoroughly in Section 2. Furthermore, just as one can explicitly calculate asymptotic
expansions for the Bessel functions that arise in the classical Circle Method, we can in principle
also use Taylor series and the method of steepest descent to calculate asymptotic expansions for
the principal value integrals that arise in our formula.

We note that unlike in previous situations (including [5]), where the asymptotic main term arose
from the q-series contribution, here the main term comes from the (non-holomorphic) obstruction
to modularity. In particular, the dominant asymptotic term is the k = 1 term of the third sum,
which has the equivalent asymptotic form given in the following result.

Corollary 1.2. Assuming the notation above, as m → ∞

cs(m) ∼
√
n+ 2

8m
√
3
e2π

√
(n+2)m

6 .
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Remark. This leading asymptotic would also follow from the application of Ingham’s Tauberian
theorem [15], although various technical requirements regarding the monotonicity of the coefficients
must also be verified. Theorem 1.1 provides much more than the main asymptotic term, and we
present it here solely in order to illustrate that it can be easily read off from the overall asymptotic
series expansion.

The remainder of the paper is organized as follows. In Section 2 we review the transformation
theory of Jacobi and mock Jacobi forms, and derive new explicit formulas for certain multipliers.
In Section 3 we determine the principal parts of the characters at all cusps. Finally, in Section
4 we apply the Circle Method to determine asymptotic series expansions for the coefficients, thus
proving our main results.

2. Transformation laws

Throughout we let 0 ≤ h < k with (h, k) = 1 be given, and we let [a]b denotes the inverse of
a (mod b), where this notation extends to higher moduli in a consistent manner; we also assume
(legal) divisibility properties as needed. In particular, we always choose [−h]2k instead of [−h]k
if k is even, and assume that 8|[−h]k if k is odd. Moreover, we restrict z ∈ C to the half-plane
Re(z) > 0. We further denote the local cuspidal parameters from the Circle Method as

τh,k :=
1

k
(h+ iz), τ̃h,k :=

1

k

(
[−h]k +

i

z

)
, qh,k := e2πiτh,k , q̃h,k := e2πiτ̃h,k .

We also adopt the standard notation e(x) := e2πix.

2.1. Theta functions. In this section we show transformation laws for certain theta functions.
Let χ be the multiplier of η, which is defined by

η
(
τh,k

)
=

√
i

z
χ
(
h, [−h]k, k

)
η
(
τ̃h,k

)
.

In the notation of the introduction we have

χ
(
h, [−h]k, k

)
= i−

1
2ω−1

h,ke
− πi

12k

(
[−h]k−h

)
.

Note that we must be careful when picking the representative of the inverse of −h modulo k, as
χ(h, [−h]k, k) depends on the choice of [−h]k modulo lcm(24, k). Recalling that q = e2πiτ , we define
shifted theta functions for � ∈ Z by

Θn,�(u; τ) := (−1)�q
�2

2n e2πi�uϑ

(
nu+ �τ − n+ 1

2
;nτ

)
,

where

ϑ(u) = ϑ(u; τ) :=
∑

ν∈ 1
2
+Z

q
ν2

2 e2πiν(u+
1
2).

The following elementary identity which relates ϑ at τ
n and nτ is well known (see [26] or [28]).

Lemma 2.1. For n ∈ N, we have

ϑ
(
u;

τ

n

)
=

∑
� (mod n)

q
1
2n(�−n−1

2 )
2

e2πi(�−
n−1
2 )(u+ 1

2)ϑ

(
nu+

(
�− n− 1

2

)
τ +

n− 1

2
;nτ

)
.

The following transformation laws for ϑ and Θ follow from the classical theory of theta functions
[22, 28].
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Lemma 2.2. Assume the notation above.

(i) The following transformations hold:

ϑ
(
− iuz; τh,k

)
= χ3

(
h, [−h]k, k

)√ i

z
eπku

2zϑ
(
u; τ̃h,k

)
,

ϑ(u+ 1) = −ϑ(u),

ϑ(u; τ + 1) = e
πi
4 ϑ(u; τ).

(ii) The following (vector) transformations hold:

Θn,�(u; τ + 1) = e
πi
n (�−n

2 )
2

Θn,�(u; τ),

Θn,�

(
u

τ
;−1

τ

)
= i−n

√
− iτ

n
e

πinu2

τ

∑
j (mod n)

e−
2πij�

n Θn,j(u; τ).

In order to apply the Circle Method, we require the explicit modular behavior of Θ on all of
SL2(Z). The following result is largely contained in the literature, but for the readers convenience
we give a proof.

Proposition 2.3. Assume the notation above. We have

Θn,0

(
− iuz; τh,k

)
=

√
i

n′z
eπnku

2z(−1)
n′−1

2 χ3
(
hn′, [−h]k[n

′]8k′ , k′
)

×
∑

� (mod n′)

e
πi�2

n′k′
(
[n′]8k′n′−1

)
[−h]kΘn,�γ

(
u; τ̃h,k

)
.

Proof. Using Lemma 2.2 (ii), we easily see that

Θn,0 (−iuz; τh,k) =

√
i

z
eπnku

2z
∑

� (mod n)

χ�

(
h, [−h]k, k

)
Θn,�

(
u; τ̃h,k

)
for certain multipliers χ�. We note that χ� is independent of u, so we may determine χ� by picking
u = 1

2 . Using Lemma 2.2 (i), we conclude that

Θn,0

(
− iz

2
; τh,k

)
= (−1)

n+1
2 χ3

(
hn′,

[−hn′]
k′ , k

′
)√ i

zn′ e
πknz

4 ϑ

(
γ

2
;
1

k′

([−hn′]
k′ +

i

n′z

))
.

Using Lemma 2.1 and changing � 
→ �+ n′−1
2 , we dissect the theta function as

ϑ

(
γ

2
;
1

k′

([− hn′]
k′ +

i

n′z

))
=

∑
� (mod n′)

e
πi�2

n′k′
(
[−hn′]k′n′+ i

z

)
e2πi�

(
γ+1
2

)

× ϑ

(
n

2
+

�

k′

([− hn′]
k′n

′ +
i

z

)
+

n′ − 1

2
;
n′

k′

(
[−h]k′

[
n′]

k′n
′ +

i

z

))
.

Using Lemma 2.2 and the definition of Θn,�, we obtain

ϑ

(
n

2
+

�

k′

(
[−h]k′ [n

′]k′n′ +
i

z

)
+

n′ − 1

2
;
n′

k′

(
[−h]k′ [n

′]k′n′ +
i

z

))
= (−1)

n′+n
2 q̃

− �2γ2

2n
h,k Θn,�γ

(
1

2
; τ̃h,k

)
.
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Here we have chosen the inverse of n′ modulo 8k′ instead of k′, and the inverse of −h modulo k
instead of k′. Simplifying we then easily conclude that

Θn,0

(
− iz

2
; τh,k

)
= (−1)

n′−1
2 χ3

(
hn′, [−h]k[n

′]8k′ , k′
)√ i

n′z
e

πknz
4

×
∑

� (mod n′)

e
πi�2

n′k′
(
[n′]8k′n′−1

)
[−h]kΘn,�γ

(
1

2
; τ̃h,k

)
.

This then gives Proposition 2.3. �

2.2. Transformation laws for for Lerch-type sums μn. We next recall certain Appell sums
introduced by Zwegers [28]. We denote for n ∈ N

μn(u, v) = μn(u, v; τ) :=
eπiu∏n

j=1 ϑ(vj ; τ)

∑
k∈Zn

(−1)|k|q
1
2
||k||2+ 1

2
|k|e2πik·v

1− e2πiuq|k|
,

where |k| := ∑n
i=1 ki, ||k||2 :=

∑n
i=1 k

2
i , and u ∈ C, v ∈ Cn, τ ∈ H. If a ∈ C, we will throughout

write a to denote the scalar vector (a, . . . , a). To state the transformation laws of μn, we require
shifted Appell sums, which are given by

μn,�(u, v) = μn,�(u, v; τ) := (−1)�q−
�2

2n e−
2πi�
n

(u−|v|)μn(u+ �τ, v; τ).

Finally, we require the ”completed function”

(2.1) μ̂n(u, v) = μ̂n(u, v; τ) := μn(u, v; τ)− i

2
R

(
u− |v| − n+ 1

2
;nτ

)
.

Here the real-analytic function R is defined by

R(u) = R(u; τ) :=
∑

ν∈ 1
2
+Z

{
sgn(ν)− E

(
(ν + a)

√
2y
)}

(−1)ν−
1
2 e−πiν2τ−2πiνu,

where y := Im(τ), a := Im(u)/Im(τ), and the function E is defined by

E(u) := 2

∫ u

0
e−πu2

du = sgn(u)
(
1− β(u2)

)
,

where for positive real x we let β(x) :=
∫∞
x u−

1
2 e−πudu. The shifted completions μ̂n,� are then also

defined analogously. In [28] the following transformation laws are shown.

Proposition 2.4. Let u ∈ C, v ∈ Cn, τ ∈ H, λ1, ν1 ∈ Z and λ2, ν2 ∈ Zn such that λ1 − |λ2| ∈ nZ.
Then the following are true:

(i) μ̂n(u, v) = (−1)λ1+|λ2|+ν1+|ν2|e−
2πi
n

(
λ1−|λ2|

)(
u−|v|

)
q−

1
2n

(λ1−|λ2|)2

×μ̂n (u+ λ1τ + ν1, v + λ2τ + ν2) ,

(ii) μ̂n,�(u, v; τ + 1) = e−
πi
n (�−n

2 )
2

μ̂n,�(u, v; τ),

(iii) μ̂n,�

(
u

τ
,
v

τ
;−1

τ

)
= in

√
iτ

n
e−

πi
nτ

(
u−|v|

)2 ∑
j (mod n)

e
2πi�j

n μ̂n,�(u, v; τ),

(iv) R(u+ 1) = −R(u),
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(v) R(u; τ + 1) = e−
πi
4 R(u; τ),

(vi) R(u; τ) = H(u; τ)− 1√−iτ
e

πiu2

τ R

(
u

τ
;−1

τ

)
,

where the Mordell integral is defined by

H(u) = H(u; τ) :=

∫
R

eπiτx
2−2πux

cosh (πx)
dx.

Moreover, similarly as for ϑ, we require an identity which dissects R (see Proposition 2.3 of [4]).

Proposition 2.5. For n ∈ N, u ∈ C and τ ∈ H, we have

R
(
u;

τ

n

)
=

n−1∑
�=0

q−
1
2n(�−n−1

2 )
2

e−2πi(�−n−1
2 )(u+ 1

2)R

(
nu+

(
�− n− 1

2

)
τ +

n− 1

2
;nτ

)
.

We next turn to the transformation law for μ̂n under all of SL2(Z). From Lemma 2.2, the proof
of Proposition 2.3, and Proposition 2.7 we may conclude the following.

Corollary 2.6. Assuming the notation above, we have

μ̂n

(
− iuz,−ivz; τh,k

)
=

√
i

n′z
e−

πkz
n

(
u−|v|

)2
(−1)

n′−1
2 χ−3

(
hn′, [−h]k[n

′]8k′ , k′
)

×
∑

� (mod n′)

e−
πi�2

n′k′
(
[n′]8k′n′−1

)
[−h]k μ̂n,�γ

(
u, v; τ̃h,k

)
.

(2.2)

From this we now derive the transformation law for the “mock part”of the character (cf. (2.10)),
μn

(
1
2 − sτ, 1

2
; τ
)
. Before stating the transformations, we define several multipliers. If k is odd, then

set

ψ′
j

(
h,[−h]k, k

)
:= χ−3

(
hn′, [−h]k[n

′]8k′ , k′
)
(−1)

n′−1
2

+sh

× e

[
− [n′]8k′ [−h]kh

2s2

2kγ
− s

2n
− s

2nk
(k − 1)(n− 1)

(
1 + [n′]8k′n′[−h]kh

)
+

[−h]k
2kn

(
n− 1

2

)2 (
1− [n′]8k′n′)+ [n′]8k′ [−h]k

4γ
+

[−h]k
2nk

(
1− [n′]8k′n′

)
j2

+ j

(
− s

nk

(
1 + [n′]8k′n′[−h]kh

)
− (n− 1)[−h]k

2nk

(
1− [n′]8k′n′

)
+

[n′]8k′ [−h]k
2γ

)]
,

χ′
�

(
h, k
)
:= −i(−1)she

πi(k−1)
2

−πihnk
4 (−1)�(h+1)e−

πinh�2

k
+ 2πi�sh

k .



10 KATHRIN BRINGMANN AND KARL MAHLBURG

Similarly, if k is even, then set

ψ̃′
j

(
h, [−h]k, k

)
:= χ−3

(
hn′, [−h]2k[n

′]8k′ , k′
)
(−1)

n′−1
2

× e

(
− [n′]8k′ [−h]2kh

2s2

2kγ
− [n′]8k′s

2γ
+

j2[−h]2k
2nk

(
1− [n′]8k′n′

)
+ j

(
− s

nk

(
1 + h[−h]2k[n

′]8k′n′
)
+

1

2γ
[n′]8k′ [−h]2k +

1

2n

))
,

χ̃′
�

(
h, k
)
:= −i(−1)se

πihn
2 ( k

2
−1)e−

πihn�2

k
+ 2πi�sh

k .

Proposition 2.7. Assuming the notation above, we have the following transformation laws:

(i) If k is odd, then we have

μn

(
1

2
− sτh,k,

1

2
; τh,k

)
=

√
i

n′z
e−

πs2z
nk

∑
0≤j≤n−1

2j≡−1−2sh (mod γ)

ψ′
j

(
h, [−h]k, k

)
q̃
− (n−1)2

8n
h,k

× μn,j

(
τ̃h,k
2

,
τ̃h,k

2
; τ̃h,k

)
+

1

2
e−

πs2z
nk

∑
− k−1

2
≤�≤ k−1

2

χ′
�

(
h, k
)
H
(
iz(n�− s); inkz

)
e

πz(n�−s)2

nk .

(ii) If k is even, then we have

μn

(
1

2
− sτh,k,

1

2
; τh,k

)
=

√
i

n′z
e−

πs2z
nk

∑
−n

2 <j<n
2

j≡−sh (mod γ)

ψ̃′
j

(
h, [−h]k, k

)
μn,j

(
1

2
,
1

2
; τ̃h,k

)

+
1

2
e−

πs2z
nk

∑
− k−1

2 ≤�≤ k−1
2

�∈ 1
2+Z

χ̃′
�

(
h, k
)
H
(
iz(n�− s); inkz

)
e

πz(n�−s)2

nk .

Proof. For the proof we use the definition of μ̂n (2.1) to write μn in tems of μ̂n and R and prove
transformations for these components individually,

μn

(
1

2
− sτh,k,

1

2
; τh,k

)
= μ̂n

(
1

2
− sτh,k,

1

2
; τh,k

)
− i

2
R
(
− sτh,k;nτh,k

)
.(2.3)

We first dissect the R-function. Using Proposition 2.5 gives that

R
(
− sτh,k;nτh,k

)
=

k−1∑
�=0

q
−n

2 (�− k−1
2 )

2

h,k e−2πi(�− k−1
2 )(− s

k
(h+iz)+ 1

2)

×R

(
−s(h+ iz) +

(
�− k − 1

2

)
n(h+ iz) +

k − 1

2
;nk(h+ iz)

)
.

(2.4)

We use Proposition 2.4 (iv) and (v) to pull out of the R-function a factor of

(−1)sh+�nh− (k−1)(nh−1)
2 e−

πihnk
4 .

We then change � 
→ �+ k−1
2 . By Proposition 2.4 (vi) we find that

R
(
iz(n�− s); inkz

)
= − 1√

nkz
e−

πz
nk

(n�−s)2R

(
s− �n

nk
;

i

nkz

)
+H

(
iz(n�− s); inkz

)
.
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Thus we have shown that (2.4) equals

−(−1)she
πi(k−1)

2
−πinhk

4 e−
πs2z
nk

∑
− k−1

2 ≤�≤ k−1
2

�∈ k−1
2 +Z

e−
πinh�2

k
+2πi�( sh

k
+nh−1

2 )

×
(

1√
nkz

R

(
1

k

( s
n
− �
)
;

i

nkz

)
− e

πz(n�−s)2

nk H
(
iz(n�− s); inkz

))
.

(2.5)

We next turn to the function μ̂n in (2.3). By (2.2) we obtain that

μ̂n

(
1

2
− sτh,k,

1

2
; τh,k

)
=

√
i

n′z
e−

πkz
n

(
i
z

(
1−n
2

− sh
k

)
+ s

k

)2
(−1)

n′−1
2 χ−3

(
hn′, [−h]k[n

′]8k′ , k′
)

×
∑

� (mod n′)

e
−πi�2

n′k′

(
[n′]8k′n′−1

)
[−h]k

μ̂n,�γ

(
i

z

(
1

2
− sh

k

)
+

s

k
,
i

2z
; τ̃h,k

)
.

(2.6)

We now fix representatives � satisfying

−n′

2
+

(n− 1)k′

2
+

sh

γ
< � <

n′

2
+

(n− 1)k′

2
+

sh

γ

and denote the associated sum on � by
∑′

�. We use the definition of μn,�γ and then decompose μ̂n

into μn and R and simplify the exponential terms. This gives that (2.6) may be written as√
i

n′z
e−

2πis
n

(
1−n
2

− sh
k

)
(−1)

n′−1
2 χ−3

(
hn′, [−h]k[n

′]8k′ , k′
)
e−

πs2z
nk

′∑
�

e−
πi�2[n′]8k′ [−h]k

k′ (−1)�

× e−
2πi�s
n′k +πk

nz

(
1−n
2

− sh
k
+ �

k′
)2(

μn

(
i

z

(
1

2
− sh

k

)
+

s

k
+ �γτ̃h,k,

i

2z
; τ̃h,k

)

− i

2
R

(
i

z

(
1− n

2
− sh

k
+

γ�

k

)
+

s

k
+

�[−h]k
k′

− n+ 1

2
;nτ̃h,k

))
.

(2.7)

We next show that the R-functions in (2.7) and (2.5) cancel. For this we multiply all terms by

e
πs2z
nk . Set τ = i

kz , y = Im(τ). It is not hard to see that we are finished if we can show that each of

the occuring R-terms has a Fourier expansion of the form (q = e2πiτ )∑
n∈Q\{0}

a(n)Γ

(
1

2
; 4π|n|y

)
q−n,

where Γ(a;x) :=
∫∞
x e−tta−1dt is the incomplete gamma function. This may easily be concluded

from the identity,

E

((
ν +

Im(u)

y

)√
2y

)
= sgn

(
ν +

Im(u)

y

)(
1 +

1√
π
Γ

(
1

2
; 2π

(
ν +

Im(u)

y

)2

y

))
and the specific restrictions on �.
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Thus we have shown that

μn

(
1

2
− sτh,k,

1

2
; τh,k

)
= − i

2
(−1)she

πi(k−1)
2

−πihnk
4 e−

πs2z
nk

×
∑

− k−1
2 ≤�≤ k−1

2

�∈ k−1
2 +Z

e−
πinh�2

k
+2πi�( sh

k
+nh−1

2 )e
πz(n�−s)2

nk H
(
iz(n�− s); inkz

)

+

√
i

n′z
e−

2πis
n

(
1−n
2

− sh
k

)
(−1)

n′−1
2 χ−3

(
hn′, [−h]k[n

′]8k′ , k′
)
e−

πs2z
nk

′∑
�

e−
πi�2[n′]8k′ [−h]k

k′ (−1)�e−
2πi�s
n′k +πk

nz

(
1−n
2

− sh
k
+ �

k′
)2
μn

(
i

z

(
1

2
− sh

k

)
+

s

k
+ �γτ̃h,k,

i

2z
; τ̃h,k

)
.

(2.8)

We now further simplify the μn-terms. For this we require the easily verified identity (r ∈ Z)

(2.9) μn

(
u+ nrτ, v + rτ ; τ

)
= μn(u, v; τ).

Distinguishing the cases k even and k odd and simplifying easily yields the terms involving H in
Proposition 2.7. To consider the μn-terms first consider the case k is odd. Using that 4|[−h]k and
s
k (1 + [−h]kh) ≡ s (mod 2) and (2.9) then yields

μn

(
i

z

(
1

2
− sh

k

)
+

s

k
+ �γτ̃h,k,

i

2z
; τ̃h,k

)
= (−1)sμn

((
k

(
1

2
− sh

k

)
+ �γ

)
τ̃h,k,

kτ̃h,k

2
; τ̃h,k

)
= (−1)sμn

((
k

(
1

2
− sh

k

)
+ �γ − n(k − 1)

2

)
τ̃h,k,

τ̃h,k

2
; τ̃h,k

)
.

Set j := (k−1)(1−n)
2 − sh + �γ. Then 0 ≤ j ≤ n − 1 and 2j ≡ −1 − 2sh (mod γ). After a lengthy

but straightforward calculation, using the definition of μn,j , Proposition 2.4 and simplifying the
exponential terms, the proof of part (i) of the Proposition is complete.

Next we consider the case k even. Proposition 2.7, equation (2.9) and additional simplifications
imply

μn

(
i

z

(
1

2
− sh

k

)
+

s

k
+ �γτ̃h,k,

i

2z
; τ̃h,k

)
= μn

((
k

(
1

2
− sh

k

)
+ �γ − nk

2

)
τ̃h,k +

1

2
;
1

2
; τ̃h,k

)
Set j := k(1−n)

2 − sh+ �γ. Then −n
2 < j < n

2 and j ≡ −sh (mod γ). Another lengthy calculation
now gives part (ii) of the Proposition. �

2.3. The final transformation law. From (1.1) it is not hard to see that

(2.10) trL(Λ(s))q
L0 = i · 2n+1q

n−1
24

η2n+2(2τ)

η2n+3(τ)
μn

(
1

2
− sτ,

1

2
; τ

)
.

To state the transformation law we require some multipliers. We define for odd k

ψ∗
j

(
h, [−h]k, k

)
:= ie

πi(n−1)h
12k

χ
(
2h, [−h]k[2]3k, k

)2n+2

χ
(
h, [−h]k, k

)2n+3 ψ′
j

(
h, [−h]k, k

)
,

χ∗
�

(
h, [−h]k, k

)
:= i

1
2 e

πi(n−1)h
12k

χ
(
2h, [−h]k[2]3k, k

)2n+2

χ
(
h, [−h]k, k

)2n+3 χ′
�

(
h, k
)
.
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Moreover, for k even we let

ψ̃∗
j

(
h, [−h]k, k

)
:= ie

πi(n−1)h
12k

χ
(
h, [−h]2k, k

)2n+2

χ
(
h, [−h]k, k

)2n+3 ψ̃′
j

(
h, [−h]k, k

)
,

χ̃∗
�

(
h, [−h]k, k

)
:= i

1
2 e

πi(n−1)h
12k

χ
(
h, [−h]2k, k

)2n+2

χ
(
h, [−h]k, k

)2n+3 χ̃′
�

(
h, k
)
.

Combined with Proposition 2.7, this now gives transformation formulas for the characters.

Theorem 2.8. (i) If 2 � k, the trace is

trL(Λ(s))q
L0
h,k

= e
−πz

k

(
n−1
12

+ s2

n

)
q̃
− (n−1)2

8n
h,k

η2n+2
(
τ̃h,k
2

)
η2n+3(τ̃h,k)

1√
n′

∑
0≤j≤n−1

2j≡−2sh−1 (mod γ)

ψ∗
j

(
h, [−h]k, k

)
μn,j

(
τ̃h,k
2

,
τ̃h,k

2
; τ̃h,k

)

+ e
−πz

k

(
n−1
12

+ s2

n

)√
z

2

η2n+2
(
τ̃h,k
2

)
η2n+3(τ̃h,k)

∑
− k−1

2
≤�≤ k−1

2

χ∗
�

(
h, [−h]k, k

)
e

πz(n�−s)2

nk H
(
iz(n�− s); inkz

)
.

(ii) If 2|k, the trace is

trL(Λ(s))q
L0
h,k

= e
−πz

k

(
n−1
12

+ s2

n

)
η2n+2(2τ̃h,k)

η2n+3(τ̃h,k)

2n+1

√
n′

∑
−n

2 <j<n
2

j≡−sh (mod γ)

ψ̃j
∗(

h, [−h]k, k
)
μn,j

(
1

2
,
1

2
; τ̃h,k

)

+ 2n
√
ze

−πz
k

(
n−1
12

+ s2

n

)
η2n+2(2τ̃h,k)

η2n+3(τ̃h,k)

∑
− k−1

2 ≤�≤ k−1
2

�∈ 1
2+Z

χ̃�
∗
(
h, [−h]k, k

)
e

πz(n�−s)2

nk H
(
iz(n�− s); inkz

)
.

3. Principal Parts

In this section we determine the principal parts of the holomorphic q-series that arise in the
transformation formulas from Theorem 2.8, and in particular, we determine the values of j for
which these principal parts exist. We postpone the non-holomorphic terms from the character
transformation formulas until the next section, since their “continuous” principal parts exist in all
cases. All of the asymptotic estimates in the section are relative to the limit z → 0 in the complex
right half-plane.

3.1. The holomorphic parts for k odd. We aim to determine the principal parts of the functions
(0 ≤ j ≤ n− 1 with 2j ≡ −1− 2sh (mod γ))

fn,j(τ) := q−
(n−1)2

8n
η2n+2

(
τ
2

)
η2n+3(τ)

μn,j

(
τ

2
,
τ

2
; τ

)
.

It is easy to see that

η2n+2
(
τ
2

)
η2n+3(τ)

= q−
1
24

(n+2)
(
1 +O

(
q

1
2

))
.
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Moreover, we have (see the proof of Proposition 3.1 of [4])

μn,j

(
τ

2
,
τ

2
; τ

)
= q−

1
2n

(
j2+(1−n)j

)
+ 1

4
+n

8

(
c+O

(
q

1
2

))
for some constant c �= 0. Using the notation from the introduction, we may therefore write

fn,j(τ) = q−δj(n)f̃n,j(τ)

with

(3.1) f̃n,j(τ) :=
∑
r≥0

Aj(r)q
r
2 ,

and Aj(0) �= 0. We easily see that only the j ∈ Sn lead to a nonzero principal part.

3.2. The holomorphic part for k even. We now determine the principal part of the functions

gn,j(τ) :=
η2n+2(2τ)

η2n+3(τ)
μn,j

(
1

2
,
1

2
; τ

)
,

where −n
2 < j < n

2 and j ≡ −sh (mod γ). Since

gn,−j(τ) = e
2πij
n gn,j(τ),

we may restrict ourselves to the case 0 ≤ j < n
2 . We note that

η2n+2(2τ)

η2n+3(τ)
= q

n
12

+ 1
24

(
1 +O(q)

)
.

We also recall that by definition,

μn,j

(
1

2
,
1

2
; τ

)
=

(−1)jq−
j2

2n e
πij(1−n)

n eπi(
1
2
+jτ)

ϑn
(
1
2 ; τ
) ∑

r∈Zn

q
1
2
||r||2+ 1

2
|r|

1 + q|r|+j
.

To determine the main term of this series, first observe that

ϑ

(
1

2
; τ

)
= q

1
8

(
− 2 +O(q)

)
.

To analyze the sum, we split it into 3 pieces and use geometric summation

1

2

∑
r∈Zn

|r|=−j

q
1
2
||r||2− j

2 +
∑
r∈Zn

|r|>−j
m≥0

(−1)mq
1
2
||r||2+ 1

2
|r|+m(|r|+j) +

∑
r∈Zn

|r|<−j
m≥1

(−1)m+1q
1
2
||r||2+ 1

2
|r|−m(|r|+j),

and determine the main term of each of the sums separately. The first sum has the smallest
exponent if j of the n components are (−1) and the remaining ones are 0, giving a total exponent
of 0. The exponent of the second sum is growing in m. For m = 0, we complete the square to write

the exponent as 1
2

∣∣∣∣∣∣r+ 1
2

∣∣∣∣∣∣2− n
8 ≥ 0. Note that there cannot be cancellation with the first summand

since we are considering summands with all positive coefficients. The exponent of the third sum is

again growing in m. For m = 1, completing the square gives the exponent 1
2

∣∣∣∣∣∣r− 1
2

∣∣∣∣∣∣2− j− n
8 . Since

the summation condition requires that |r| < −j this is minimized if (j + 1) of the components of r
are −1 and the rest are 0. This gives us the total exponent 1. Combining the above considerations
we see that we may write

gn,j(τ) = q−δ̃j(n)g̃n,j(τ),
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where δ̃j(n) was defined in the introduction and

(3.2) g̃n,j(τ) :=
∑
r≥0

Bj(r)q
r,

with Bj(0) �= 0. We easily see that only j ∈ Tn contribute to the main asymptotic term.

4. Proofs of main results

In this section we apply the Circle Method to obtain the coefficient asymptotics of Theorem 1.1. We
then use asymptotics for principal value integrals to identify the leading term and prove Corollary
1.2.

Proof of Theorem 1.1. By Cauchy’s Theorem, the coefficients of gs(q) may be recovered from a
residue calculation, as for m > 0 we obtain

cs(m) =

∫ 1

0
gs

(
e−

2π
m

+2πit
)
e2π−2πimtdt.

Define ϑ′
h,k := 1

k(k1+k) and ϑ′′
h,k := 1

k(k2+k) , where
h1
k1

< h
k < h2

k2
are adjacent fractions in the Farey

sequence of order N := �√m. We now decompose the path of integration into the Farey arcs
−ϑh,k ≤ φ ≤ ϑ′′

h,k, with 0 ≤ h < k ≤ N and (h, k) = 1, and where φ := t − h
k . Adopting the

additional notation z = k
m − ikφ and applying Theorem 2.8 along each arc then gives

cs(m) =
∑
h,k

∫ ϑ′′
h,k

−ϑ′
h,k

gs

(
e

2πi
k

(h+iz)
)
q−m
h,k dφ =

∑
h,k

∫ ϑ′′
h,k

−ϑ′
h,k

trL(Λ(s))q
L0
h,kq

− s
2
−m

h,k dφ =
∑
1

+
∑
2

+
∑
3

+
∑
4

.
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Here we have separated the q-series and Mordell integrals, and also split the Farey fractions based
on the parity of k, as∑

1

:=
∑
h,k
2�k

1√
n′

∑
0≤j≤n−1

2j≡−1−2sh (mod γ)

ψ∗
j

(
h, [−h]k, k

)

×
∫ ϑ′′

h,k

−ϑ′
h,k

η2n+2
(
τ̃h,k
2

)
η2n+3 (τ̃h,k)

μn,j

(
τ̃h,k
2

,
τ̃h,k

2
; τ̃h,k

)
q
−m− s

2
h,k q̃

− (n−1)2

8n
h,k e

−πz
k

(
n−1
12

+ s2

n

)
dφ,

∑
2

:=2n+1
∑
h,k
2|k

1√
n′

∑
−n

2 <j<n
2

j≡−sh (mod γ)

ψ̃∗
j

(
h, [−h]k, k

)

×
∫ ϑ′′

h,k

−ϑ′
h,k

η2n+2 (2τ̃h,k)

η2n+3 (τ̃h,k)
μn,j

(
1

2
,
1

2
; τ̃h,k

)
q
−m− s

2
h,k e

−πz
k

(
n−1
12

+ s2

n

)
dφ, ,

∑
3

:=
1

2

∑
h,k
2�k

∑
− k−1

2
≤�≤ k−1

2

χ∗
�

(
h, [−h]k, k

)∫ ϑ′′
h,k

−ϑ′
h,k

η2n+2
(
τ̃h,k
2

)
η2n+3(τ̃h,k)

√
z

×H
(
iz(n�− s); iknz

)
q
−m− s

2
h,k e−

πz
k (

n−1
12

−n�2+2�s)dφ,∑
4

:=2n
∑
h,k
2|k

∑
− k−1

2
≤�≤ k−1

2

�∈ 1
2
+Z

χ̃∗
�

(
h, [−h]k, k

)∫ ϑ′′
h,k

−ϑ′
h,k

η2n+2 (2τ̃h,k)

η2n+3 (τ̃h,k)

√
z

×H
(
iz(n�− s); iknz

)
q
−m− s

2
h,k e−

πz
k (

n−1
12

−n�2+2�s)dφ.

We first consider
∑

1 and
∑

2. Following Hardy, Ramanujan, and Rademacher’s original devel-
opment of the Circle Method [24], we may show that∑

1

=
∑
h,k
2�k

e−
2πihm

k
1√
n′
∑
j∈Sn

ψj

(
h, [−h]k, k

)

×
∑

0≤r<2δj(n)

Aj(r)e
πi[−h]kr

k

∫ 1
kN

− 1
kN

e
2π
k

((
m−εs(n)

)
z+

(
δj(n)− r

2

)
1
z

)
dφ+O(1),

where

ψj

(
h, [−h]k, k

)
:= e−

2πiδj(n)[−h]k
k

−πish
k ψ∗

j

(
h, [−h]k, k

)
.

We define the Kloosterman sum

(4.1) Kk(α, β) :=
∑

0≤h<k
(h,k)=1

ψj

(
h, [−h]k, k

)
e

πi
k

(
2αh+β[−h]k

)
,

and use the following well-known integral evaluation (see [24]) for b > 0:

(4.2)

∫ 1
kN

− 1
kN

e
2π
k (az+

b
z )dφ =

2π

k

√
b

a
I1

(
4π

k

√
ab

)
+O

(
1

Nk

)
.
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Then we obtain∑
1

=
2π√(

m− εs(n)
) ∑

1≤k≤N
2�k

1

k

1√
n′
∑
j∈Sn

∑
0≤r<2δj(n)

Aj(r)

√
δj(n)− r

2

×Kk(−m, r)I1

(
4π

k

√(
δj(n)− r

2

) (
m− εs(n)

))
+O(1).

We next treat
∑

2 in a similar manner. Define

(4.3) K̃k(α, β) :=
∑

0≤h<k
(h,k)=1

ψ̃j

(
h, [−h]k, k

)
, e

2πi
k

(
αh+β[−h]2k

)

with

ψ̃j

(
h, [−h]k, k

)
:= e−

2πiδj(n)[−h]2k
k

−πish
k ψ̃∗

j

(
h, [−h]k, k

)
.

Then we have, using again (4.2)∑
2

=
2n+2π√(
m− εs(n)

) ∑
1≤k≤N

2|k

1

k

1√
n′
∑
j∈Tn

∑
0≤r<δ̃j(n)

Bj(r)

√
δ̃j(n)− r

× K̃k(−m, r)I1

(
4π

k

√(
δ̃j(n)− r

)(
m− εs(n)

))
+O(1).

We now turn to the non-holomorphic terms, beginning with
∑

3. Define the coefficients of the
principal part expansion by

(4.4)
η2n+2

(
τ
2

)
η2n+3(τ)

=:
∑
nr>0

C(r)q−
nr
2 +O

(
q

1
24

)
;

this holds because n is odd and nr is thus never an integer. We will also use a change of variables
to rewrite the Mordell integrals as

(4.5) H
(
iz(n�− s); iknz

)
= e−

π(n�−s)2z
kn

∫
R

e−πknzx2

cosh
(
π
(
x− i

k

(
�− s

n

)))dx.
Therefore the overall sum is∑

3

=
1

2

∑
h,k
2�k

∑
nr>0

C(r)e
πi[−h]kr

k
−πi[−h]k(n+2)

12k

∑
− k−1

2
≤�≤ k−1

2

χ∗
�

(
h, [−h]k, k

)
e−

2πih
k (m+ s

2)(4.6)

∫
R

1

cosh
(
π
(
x− i

k

(
�− s

n

))) ∫ ϑ′′
h,k

−ϑ′
h,k

√
ze

2π
k

(
z
(
m−εs(n)−x2k2n

2

)
+nr

2z

)
dφdx+O

(
m

1
4

)
.

Similarly, since the holomorphic terms in the final sums have no principal part, we find the bound∑
4

= O
(
m

1
4

)
.
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Returning to
∑

3, we can change the integral in φ to the range − 1
kN to 1

kN without affecting the
overall error bound. We then write the sum on h in terms of the Kloosterman sums

(4.7) K∗
k,�(α, β) :=

∑
0≤h<k
(h,k)=1

χ�

(
h, [−h]k, k

)
e

2πi
k (αh+β

2
[−h]k),

where

χ�

(
h, [−h]k, k

)
:= e−

πish
k e−πi[−h]k(n+2)12kχ∗

�

(
h, [−h]k, k

)
.

The next task is then to understand the integrals∫ 1
kN

− 1
kN

√
ze

2π
k (uz+

nr
2z )dφ =

(πnr

k

) 3
2 2π

k

1

2πi

∫ γ+i∞

γ−i∞
t−

5
2 et+

α
t dt+O

(
m− 1

4

)
,

with α := 2πunr
k2

. A modification of the Bessel function representation (4.2) now implies that the

integral (including the factor 1
2πi) equals

|α|− 3
4

⎧⎨⎩I 3
2

(
2
√
α
)

if α > 0,

J 3
2

(
2
√−α

)
if α < 0.

Here Jn(x) denotes the (index n) Bessel function of the first kind.

It is a standard fact that as x → ∞, the J-Bessel functions decay proportionally to x−1/2; this
implies the asymptotic simplification for (4.6)

∑
3

= π2−
3
4

∑
2�k

1

k

∑
r

C(r)n
3
4
r

∑
�

K∗
k,�(−m, r)

∫
x2k2n

2
<m−εs(n)

(
m− εs(n)− x2k2n

2

)− 3
4

cosh
(
π
(
x− i

k

(
�− s

n

)))(4.8)

I 3
2

(
2π

k

√
2nr

(
m− εs(n)− x2k2n

2

))
dx+O

(
m− 1

4

)
.

Making the change of variables y = kx
√

n
2(m−εs(n))

, we rewrite the integrals in (4.8) as

k
(
m− εs(n)

)− 1
4
√
2

n
1
2

∫
|y|≤1

(
1− y2

)− 3
4

cosh

(
π

(
y
√

2(m−εs(n))

k
√
n

− i
k

(
�− s

n

)))
I 3

2

(
2π

k

√
2nr

(
m− εs(n)

)(
1− y2

))
dy.

Recalling the definition of the principal value integrals in (1.8), we find that the
∑

3 contributes
the following non-error terms:

2−
1
4π(

m− εs(n)
) 1

4
√
n

∑
2�k

∑
nr>0

C(r)n
3
4
r

∑
�

K∗
k,�(−m, r)P

(
2π

k

√
2nr,

√
2

k
√
n
,−1

k

(
�− s

n

)
;
√
m− εs(n)

)
.

This completes the proof of Theorem 1.1. �

The remainder of the paper is devoted to isolating the main term from the series expansion
for the coefficients cs(m). Note that our principal value integrals P (a, b, c;M) in this paper are
different from those in our earlier paper [5] (the current integrals correspond to “non-inverted”
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mock theta function transformations). The present form allows us to use the method of stationary
phase in order to obtain better error bounds.

Lemma 4.1. Recall the definition of the principal value integrals from (1.8). If a, b, and c are fixed
reals with 0 < a < b

2 and |c| < 1
2 , then as M → ∞,

P (a, b, c;M) ∼ eaM√
2πaM · bM .

Remark. It will be clear from the proof of Lemma 4.1 that the asymptotic expansion of P (a, b, c;M)
can also be determined to an arbitrary degree of precision (i.e., a partial expansion with relative
error O(M−α) can be written for any positive half-integer α). Indeed, the asymptotic expansion of
the modified Bessel function (cf. (4.11)) has been extensively studied, and the other terms in the
integrand have convergent Taylor expansions around zero. Note that the main asymptotic term
depends only on a and b; however, the subsequent terms in the asymptotic expansion will also
depend on c.

Proof. The integral in question is

(4.9) P (a, b, c;M) =

1∫
−1

(
1− y2

)− 3
4

cosh
(
π(bMy + ci)

)I 3
2

(
aM
√
1− y2

)
dy.

In order to identify the dominant asymptotic behavior, we split the integral into two ranges. First,
consider the range around y = 0,

(4.10)

∫
|y|≤ 1

2

(
1− y2

)− 3
4

cosh
(
π(bMy + ci)

)I 3
2

(
aM
√
1− y2

)
dy.

It is a standard fact that the general asymptotic behavior for modified Bessel functions is given
by

(4.11) I�(x) =
ex√
2πx

+O

(
ex

x
√
x

)
as x → ∞ (regardless of �). This means that when |y| < 1

2 we may apply the asymptotic estimate

I 3
2

(
aM
√

1− y2
)
∼ eaM

√
1−y2

√
2πaM(1− y2)

1
4

(
1 +O

(
1

M

))
,

and the integral (4.10) is therefore asymptotically equivalent to

(4.12)

(
1 +O

(
1

M

)) ∫
|y|≤ 1

2

eaM
√

1−y2

√
2πaM

(
1− y2

)
cosh (πbMy + cπi)

dy.

In order to determine the behavior of (4.12) as M → ∞, we use the Saddle Point Method. In
particular, we take the convergent Taylor expansion (around y = 0) of the integrand from (4.12),

excluding the hyperbolic cosine, and also apply the change of variables x =
√
My, writing

(4.13)
eaM

√
1−y2

1− y2
= eaM · e−ax2

2

(
1 + c1

x2

M
+ c2

x4

M2
+ . . .

)
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for certain constants ci. The hyperbolic cosine factor was not included because as M → ∞, it
does not have a convergent Taylor series in any neighborhood of y = 0. This factor will instead
be simplified through the use of a complex contour shift after the other terms have been further
approximated.

The Taylor expansion (4.13) implies that the main asymptotic term from (4.12) is

(4.14)
eaM√
2πa ·M

∫
R

e−
ax2

2

cosh
(
πb

√
Mx+ cπi

)dx.
Note that after the change of variables, the integration range became |x| ≤

√
M
2 . We extend this

range to all of R in (4.14) since the “tail” (the neighborhoods with |x| ≥
√
M
2 ) is of exponentially

lower magnitude; indeed, the magnitude of this part of the integral can be trivially bounded by
C · exp (−aM

8 − bM
2

)
.

The integral (4.14) may be further transformed to

eaM√
2πaM · bM

∫
R

e−
ax2

2b2M

cosh (πx+ cπi)
dx =

eaM√
2πaM · bM

∫
R+ic

e−
a

2b2M
(x−ci)2

cosh(πx)
dx(4.15)

=
eaM√

2πaM · bM

∫
R

e−
a

2b2M
(x−ci)2

cosh(πx)
dx,

where the final equality follows from a contour shift and the fact that the poles of the integrand
occur at Im(x) ∈ 1

2 + Z. It is straightforward to check that as M → ∞, the above integral goes to
1. This gives the main asymptotic term for P (a, b, c;M) as claimed.

Recalling (4.13), the subsequent terms in the asymptotic expansion of (4.12) all have the form

(4.16) C · 1

M j+1
·
∫
R

x2ke−
ax2

2

cosh
(
πb

√
Mx+ cπi

)dx,
where j ≥ k ≥ 1. Following the transformation and contour shift from (4.15), and using the fact

that
∫
R

x2j

cosh(x)dx is bounded (as a function of j), we find that (4.16) is O
(

1
Mj+3/2

)
. We therefore

conclude that (4.12) has the asymptotic form(
1 +O

(
1

M

))
eaM√

2πaM · bM .

In order to complete the proof, we must show that the remaining integration range in (4.9) is of
asymptotically lower order; this portion is

(4.17)

∫
1
2
≤|y|≤1

(
1− y2

)− 3
4

cosh
(
π(bMy + ci)

)I 3
2

(
aM
√
1− y2

)
dy.

Here we use the additional standard fact that the modified Bessel functions are monotonically
increasing on [0,∞), which implies the uniform bound

I 3
2

(
aM
√
1− y2

)
≤ I 3

2

(√
3aM

2

)
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on 1
2 ≤ |y| ≤ 1. The Bessel function asymptotic (4.11) now implies that (4.17) is of exponentially

lower order than (4.10) in the limit as M → ∞. �

Proof of Corollary 1.2. We claim that the main contribution is found in the third sum, specifically,
the term corresponding to k = 1, r = 0, and � = 0. We begin by calculating the asymptotic behavior
of this term. It can be immediately checked that that K∗

1,0(−m, 0) = 1 and C(0) = 1, so Lemma
4.1 implies that as m → ∞, this term is asymptotically

πn
3
4
0

2
1
4 (m− εs(n))

1
4
√
n
P

(
2π

√
2n0,

√
2

n
,−
(
�− 2

n

)
;
√
m− εs(n)

)
∼

√
n+ 2

8
√
3m

e2π
√

(n+2)m
6 .(4.18)

Finally, we show that (4.18), which has exponential argument 2π

√
(n+2)m

6 , is in fact the dominant

term in Theorem 1.1. In the first summand of the theorem the dominant term clearly occurs when
k = 1 and r = 0, which has an exponential argument

4π
√
δj(n)m = 4π

√
n

24
− 5

12
+

1

2n

(
j2 + (1− n)j

)
+

1

8n

√
m

≤ 4π

√
n

24
− 5

12
+

1

8n

√
m < 2π

√
n+ 2

6

√
m.

The main term in the second summand occurs when k = 2 and r = 0, which has an exponential
argument

2π

√
δ̃j(n)m = 2π

√
n

24
− 1

24
+

j2

2n
− j

2

√
m ≤ 2π

√
n

24
− 1

24

√
m < 2π

√
n+ 2

6

√
m.

Thus the dominant term is indeed (4.18). �
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