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Abstract. Lusztig, Macdonald, and Wall studied certain polynomials that arose in the study of

the representations of finite classical groups. We revisit subsequent work of Andrews in which he
proved conjectural formulas for the infinite limits of these polynomials. Our main result provides

a new proof of these conjectures by considering the generating function of the polynomials, and

then calculating a hypergeometric q-series solution to the associated q-difference equation. We

also connect these polynomials with the basic representations of the affine Lie algebra ŝl2.

1. Introduction and statement of results

In [1, 2], Andrews proved identities for certain polynomials arising from the representation
theory of finite classical groups. In particular, Wall gave generating functions for the numbers of
conjugacy classes in [10], and subsequently Lusztig [9], and independently Macdonald (see p.2 in
[1]), conjectured closed forms for these polynomials in certain limiting cases.

The polynomials are denoted by χn = χn(a, b, q) (see (1.1) and (1.2) in [2]), and are defined by
χ−1 = a, χ0 = b, and for n ∈ N0 through the recurrences

χ2n+1 = χ2n + q2n+1χ2n−1(1.1)

χ2n+2 = χ2n+1 + qn+1
(
1 + qn+1

) (
χ2n+1 +

(
1− q2n+1

)
χ2n−1

)
.(1.2)
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Andrews’ main results, which proved the conjectures of Macdonald and Lusztig, concerned the
limiting series given by these polynomials. Let

χ(a, b, q) := lim
n→∞

χn(a, b, q),

and refer to Section 2.1 for notation.

Theorem ([1], Theorems 1 and 2). The limiting polynomials evaluate to

χ(1, 1, q) =
1

(q; q)∞

∑
j∈Z

qj
2

,(1.3)

χ(0, 1, q) =
1

(q; q)∞

∑
j≥0

qj(j+1).(1.4)

Andrews derived these formulas by evaluating a certain double-series that is intimately related to
the matrix system associated to (1.1) and (1.2).

In this note we use the theory of q-difference equations to prove finite formulas for the Lusztig-
Macdonald-Wall polynomials.

Theorem 1.1. If N ∈ N0, then we have

χ2N−1(a, b, q)

(q; q2)N
=
aq

N(N+1)
2

(q; q)N

+

N−1∑
m=0

q
m(m+1)

2 (−q; q)N−1−m
(q; q)m (q; q2)N−m

N−1−m∑
j=0

(−1)j+1qj
(
q; q2

)
j

(q; q)j+1(−q; q)j
(
Aq −B

(
1− qj+1

))
+ 2a

 ,

where A := a(1− q−1) and B := −3a+ b.

Remark. The two specializations (1.3) and (1.4) are sufficient to solve for the polynomials with
any initial conditions, as the linearity of the recurrence implies that

χn (a, b) = aχn (1, 1) + (b− a)χn (0, 1) .

Theorem 1.1 is of greatest interest because it leads to a new proof of the limiting formulas, as
stated in the following result.

Corollary 1.2. The limits (1.3) and (1.4) are true.

Remark. Note that (1.1) and (1.2) imply that the limit of χn as n→∞ may be evaluated by
considering only the subsequence of odd indices.

In fact, Andrews also subsequently proved finite evaluations for the Lusztig-Macdonald-Wall
polynomials in a particularly compact form, namely (Theorem 1 in [2])

χ2N−1(1, 1, q) =
∑
j∈Z

[
2N

N + 2j

]
q

qj
2

,(1.5)

χ2N−1(0, 1, q) =
∑
j∈Z

[
2N

N − 1− 2j

]
q

qj(j+1).
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There are corresponding formulas for even indices, and they were proven in [2] by an inductive
argument showing that they also satisfy the recurrences (1.1) and (1.2). In contrast, our proof
proceeds by directly solving a q-difference equation using the theory of hypergeometric q-series, and
thus does not require any additional calculations or prior guesses. The technical details of our work
follow in Section 2, where we review classical results from the theory of hypergeometric q-series,
and then apply these techniques to evaluate the generating function for the Lusztig-Macdonald-Wall
polynomials, thereby proving Theorem 1.1 and Corollary 1.2.

It is interesting to note that the right hand-sides of the limiting formulas of the Lusztig-

Macdonald-Wall polynomials are (essentially) characters of certain ŝl2-modules. This connection
with representation theory is explored in the last section of the paper. In particular, we construct
monomial bases of certain subspaces of the basic module whose characters agree with χ2N−1(1, 1, q)
(see Theorem 3.1). We also speculate that this connection may lead to representation theoretical
interpretation of the recurrences (1.1-1.2) (see Remark 3).

2. Hypergeometric q-series and proofs of results

2.1. Hypergeometric q-series. We use the theory of hypergeometric q-series in order to
solve the q-difference equation associated to the Lusztig-Macdonald-Wall polynomials. We review
the standard notation and definitions, and then state several identities and evaluations that we use
in the sequel.

If a ∈ C and |q| < 1, then the (rising) q-factorial is defined by (a; q)∞ :=
∏
n≥1

(
1− aqn−1

)
.

Furthermore, if k is an integer, the finite q-factorials are given by

(a; q)k :=
(a; q)∞

(aqk; q)∞
.

If m,n ∈ Z with n ≥ 0, then the q-binomial coefficient is defined by[
n

m

]
q

:=
(q; q)n

(q; q)m(q; q)n−m
.

The first classical identity that we use is the Jacobi Triple Product ((2.2.10) in [3]), which holds
for any z ∈ C and |q| < 1:

(2.1)
∑
n∈Z

znqn
2

=
(
−zq; q2

)
∞

(
−z−1q; q2

)
∞

(
q2; q2

)
∞ .

We also use two identities due to Euler ((2.2.5) and (2.2.6) in [3]):

1

(z; q)∞
=
∑
n≥0

zn

(q; q)n
,(2.2)

(−z; q)∞ =
∑
n≥0

znq
n(n−1)

2

(q; q)n
.(2.3)
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We also recall Ramanujan’s 1ψ1-summation formula (equation (5.2.1) in [6]), which is valid for
| ba | < |z| < 1:

(2.4)
∑
m∈Z

(a; q)m
(b; q)m

zm =
(q; q)∞

(
b
a ; q
)
∞ (az; q)∞

(
q
az ; q

)
∞

(b; q)∞
(
q
a ; q
)
∞ (z; q)∞

(
b
az ; q

)
∞
.

2.2. Proof of Theorem 1.1. In this section we construct a generating function for the polyno-
mials. We work with generating series for the recurrences (1.1) and (1.2), reducing them to a single
q-difference equation. We then find a hypergeometric q-series solution to the q-difference equation
in order to recover our formulas.

Inserting (1.2) into (1.1) gives a recurrence for the odd-indexed polynomials, namely

χ2n+1 = χ2n−1 + qn (1 + qn)
(
χ2n−1 +

(
1− q2n−1

)
χ2n−3

)
+ q2n+1χ2n−1

=
(
1 + qn + q2n + q2n+1

)
χ2n−1 + qn (1 + qn)

(
1− q2n−1

)
χ2n−3.

For convenience we adopt the shorter notation Yn := χ2n−1, so that

Yn+1 =
(
1 + qn + q2n + q2n+1

)
Yn + qn (1 + qn)

(
1− q2n−1

)
Yn−1.

The generating function is easier to work with if we re-normalize the recurrence by setting γn :=
Yn

(q;q2)n
. The initial values are γ0 = a and γ1 = b+aq

1−q , and the recurrence then becomes

γn+1 =
(
1 + qn + q2n + q2n+1

) γn
1− q2n+1

+ qn (1 + qn)
γn−1

1− q2n+1
,

which, after rewriting and re-indexing, is equivalent to

(2.5)
(
1− q2n−1

)
γn =

(
1 + qn−1 + q2n−2 + q2n−1

)
γn−1 + qn−1

(
1 + qn−1

)
γn−2.

For ` ≥ 0, define the shifted generating function F (`)(z) :=
∑
n≥` γnz

n, and let F (z) := F (0)(z).

Multiplying (2.5) by zn and summing over n ≥ 2 gives

F (2)(z)− q−1F (2)
(
zq2
)

=z
(
F (1) (z) + F (1) (zq) + F (1)

(
zq2
)

(1 + q)
)

+ z2
(
qF (zq) + q2F

(
zq2
))
.

After adding the missing initial terms, we obtain the nonhomogeneous q-difference equation

(2.6) (1− z)F (z) = z(1 + zq)F (zq) + q−1 (1 + zq)
(
1 + zq2

)
F
(
zq2
)

+A+Bz,

where A and B are defined in Theorem 1.1
The q-difference equation is further simplified by setting H(z) := F (z)

(−zq;q)∞
, so that (2.6) becomes

(2.7) (1− z)H(z) = zH(zq) + q−1H
(
zq2
)

+
A+Bz

(−zq; q)∞
.

Note that the coefficients of the terms involving H are linear expressions in z (this is the “homoge-
neous part” of the q-difference equation), which means that the hypergeometric q-series solution can
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be found directly through an inductive argument. In particular, if we denote the series coefficients
by H(z) =:

∑
n≥0 δnz

n, then (2.7) implies

(2.8)
∑
n≥0

(1− z)δnzn =
∑
n≥0

δnq
nzn+1 +

∑
n≥0

q2n−1δnz
n + (A+Bz)

∑
n≥0

(−z)nqn

(q; q)n
,

where the final series expansion follows from (2.2).
Isolating the coefficient of zn in (2.8) then implies that for n ≥ 1

δn =
1 + qn−1

1− q2n−1
δn−1 +

(−1)nqn−1

(1− q2n−1) (q; q)n
(Aq −B (1− qn)) ,

with initial term δ0 = γ0 = a. An inductive argument then gives the following formula for all n ∈ N0:

δn =

n−1∑
j=0

(−1)j+1qj(−q; q)n−1
(
q; q2

)
j

(
Aq −B

(
1− qj+1

))
(q; q)j+1(−q; q)j (q; q2)n

+
(−1; q)n
(q; q2)n

a.

Thus we finally have the hypergeometric solution

F (z) = (−zq; q)∞H(z) =
∑
m≥0

zmq
m(m+1)

2

(q; q)m

×

∑
n≥1

zn(−q; q)n−1
(q; q2)n

n−1∑
j=0

(−1)j+1qj
(
q; q2

)
j

(
Aq −B

(
1− qj+1

))
(q; q)j+1(−q; q)j

+ 2a

+ a

 ,
where the summation on m follows from (2.3). This is equivalent to the statement of Theorem 1.1
under the change of summation variables N = m+ n.

2.3. Proof of Corollary 1.2. In this section, we evaluate the infinite limit of the χn in order
to obtain the product formulas (1.3) and (1.4).

Using the finite formula from Theorem 1.1 and continuing with the same notation as in the
previous section, we calculate

lim
N→∞

YN = lim
N→∞

γN
(
q; q2

)
N

= (−q; q)∞
∑
m≥0

q
m(m+1)

2

(q; q)m

∑
j≥0

(−1)j+1qj
(
q; q2

)
j

(
Aq −B

(
1− qj+1

))
(q; q)j+1(−q; q)j

+ 2a

 .

The sum on m evaluates to (−q; q)∞ by (2.3) (with z = q), giving

(2.9) lim
N→∞

YN = (−q; q)2∞

A∑
j≥0

(−1)j+1qj+1
(
q; q2

)
j

(q; q)j+1(−q; q)j
+B

∑
j≥0

(−1)jqj
(
q; q2

)
j

(q2; q2)j
+ 2a

 .

In order to prove the corollary statement, we now consider the two specializations. If a = 0 and
b = 1, then A = 0 and B = 1. By (2.4) (with q 7→ q2, a = q, b = q2, and z = −q), the sum evaluates
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to

(2.10)
∑
j≥0

(−1)jqj
(
q; q2

)
j

(q2; q2)j
=
∑
j∈Z

(−1)jqj
(
q; q2

)
j

(q2; q2)j
=

(
−q2; q2

)
∞

(−q; q2)∞
.

∑
j∈Z

(−1)jqj
(
q; q2

)
j

(q2; q2)j
=

(
q2; q2

)
∞

(
q; q2

)
∞

(
−q2; q2

)
∞

(
−1; q2

)
∞

(q2; q2)∞ (q; q2)∞ (−q; q2)∞ (−1; q2)∞
.

Plugging in to (2.9), we therefore have

χ(0, 1, q) = (−q; q)∞
(
−q2; q2

)2
∞ ,

which is equivalent to (1.4) by (2.1).
If a = b = 1, then A = 1− q−1 and B = −2. We must therefore also evaluate the first sum from

(2.9). First, observe that

∑
j≥0

(−1)j+1qj+1
(
q; q2

)
j

(q; q)j+1(−q; q)j
=
∑
j≥0

(−1)j+1qj+1
(
q; q2

)
j

(
1 + qj+1

)
(q2; q2)j+1

=
∑
j∈Z

(−1)j+1qj+1
(
q; q2

)
j

(
1 + qj+1

)
(q2; q2)j+1

− 2

1− q−1
,

where the extra term arises from j = −1.
After further rewriting the sum, we apply (2.4) twice, obtaining

∑
j∈Z

(−1)j+1qj+1
(
q; q2

)
j

(
1 + qj+1

)
(q2; q2)j+1

=
−q

1− q2
∑
j∈Z

(−1)jqj
(
q; q2

)
j

(
1 + qj+1

)
(q4; q2)j

= − q

1− q2

(
(1− q2)(−1; q2)∞
(1− q)(−q; q2)∞

+

(
−q−1; q2

)
∞

(−q2; q2)∞

)

= − 2q(−q2; q2)∞
(1− q)(−q; q2)∞

− q(−q; q2)∞
(1− q)(−q2; q2)∞

.

Plugging in to (2.9) and recalling (2.10), the resulting expression simplifies to

χ(1, 1, q) =
(−q; q)2∞(−q; q2)∞

(−q2; q2)∞
,

which is similarly equivalent to (1.3) by (2.1).
As in the remark after Theorem 1.1, we immediately find the general linear formula

χ (a, b; q) =

(
q2; q2

)2
∞

(q; q)
2
∞

(
a ·

(
q2; q2

)3
∞

(q4; q4)
2
∞ (q; q)∞

+ (−a+ b) ·
(
q4; q4

)2
∞ (q; q)∞

(q2; q2)
3
∞

)
.
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3. The LMW polynomials and the affine Lie algebra ŝl2

In this part we connect the Lusztig-Macdonald-Wall polynomials with certain representations
of the affine Lie algebra

ŝl2 = sl2 ⊗ C
[
t, t−1

]
⊕ Cc.

Here c denotes the central element and sl2 = span{e, f, h}, equipped with the standard bracket
relations. Throughout we write x(n) for x⊗ tn, x ∈ sl2.

It is well known that ŝl2 admits two basic (i.e., level one integrable highest weight) irreducible
representation usually denoted by L(Λ0) and L(Λ1) [7]. Basic representations played a fundamental

role in the pioneering work of Lepowsky and Wilson on the principal realization of ŝl2 [8]. But
rather than working within principal realization here we consider closely related Frenkel-Kac and
Segal’s homogeneous realization [7]. In this setup, we can make the following identification

(3.1) L(Λ0) = S(h<0)⊗ C[L], L(Λ1) = S(h<0)⊗ eα2 C[L],

where L = Zα is the root lattice of sl2, h = Ch, and C[L] = span{emα,m ∈ Z} is the group algebra
of L. If we let vi be the highest weight vectors of L(Λi), then the N-grading on L(Λi) is introduced
as follows: wt(vi) = 0, and

wt (x1(−i1) · · ·xk(−ik)vi) := i1 + · · ·+ ik,

where xi ∈ sl2. By using (3.1) we obtain the following well-known character formulae [7]:

ch[L(Λ0)](q) =

∑
n∈Z q

n2

(q; q)∞
,(3.2)

ch[L(Λ1)](q) =
2
∑
n≥0 q

n(n+1)

(q; q)∞
,(3.3)

where ch[L(Λi)](q) is the q-generating series of graded dimensions of L(Λi). Note that these agree
with limn→∞ χ2n−1(1, 1, q) and 2 limn→∞ χ2n−1(0, 1, q), respectively.

Now we describe subspaces Fn ⊂ L(Λ0), n ≥ 1, each equipped with a nice bigraded monomial

basis (via standard generators of ŝl2) whose character is χ2n−1(1, 1, q).

Theorem 3.1. (LMW subspaces) For n ∈ N, we define subspace Fn ⊂ L(Λ0):

(3.4) Fn :=
⊕
j∈Z

span{h(−i1) · · ·h(−ik)emα : 1 ≤ ij ≤ 2n+ j, 0 ≤ k ≤ n− 2j}.

Then

χ2n−1(1, 1, q) = ch[Fn](q).

In particular, L(Λ0) admits an increasing filtration Fi, for i ≥ 0,⋃
n≥1

Fn = L(Λ0).
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Proof. From the Frenkel-Kac realization we see with j ≥ 1

ejα = e(−2j + 1) · · · e(−3)e(−1)v0; j ≥ 1, e−jα = f(−2j + 1) · · · f(−3)f(−1)v0.

Thus

(3.5) wt(ejα) = j2; j ∈ Z.

Also,

wt(h(−i1) · · ·h(−ik)v0) = i1 + · · ·+ ik.

We view q-binomial
[
m+n
n

]
q

as a generating function for the partitions in at most n parts whose

parts are of size at most m. For any j, the graded dimension of the j-th direct summand in (3.4)

equals
[

2n
n+2j

]
q
. By summing over all j, together with (3.5), we get

ch[Fn](q) =
∑
j∈Z

qj
2

[
2n

n+ 2j

]
q

.

To finish the proof, we apply (1.5). �

By using the second relation in (1.5) one can prove a similar result for 2χ2n−1(0, 1, q) and L(Λ1).
Note that the subspaces Fn are bigraded due to h-grading (by ”charge”) of L(Λ0). If we use z

as the charge variable we immediately get

ch[Fn](z, q) =
∑
j∈Z

zjqj
2

[
2n

n+ 2j

]
q

.

Example. We have (n=2)

χ3(1, 1, q) = 2q

[
4

0

]
+

[
4

2

]
= 1 + 3q + 2q2 + q3 + q4.

A monomial basis of F3 is v0, e(−1)v0, f(−1)v0, h(−1)v0, h(−1)2v0, h(−2)v0, h(−2)h(−1)v0 and
h(−2)2v0.

We end with several remarks and open questions.

Remark. It would be highly desirable to give a canonical construction of Fn.
It is easy to see (by induction on n) that χ2n−1(1, 1, 1) = dim(Fn) = 22n−1, n ≥ 1. Interestingly,

these are also dimensions of Demazure modules D(nθ) of L(Λ0). Demazure modules also provide
an increasing subspace filtration of L(Λ0), but their structure is different from Fn. At this point we
do not see any connection between the two subspaces except for their dimensions.

Remark. There is yet another representation theoretic objects whose character is given by the
right hand-side in (3.2) . According to [5], the principal subspace W (Λ0) of the vacuum level one

ŝl3 basic module satisfies

(3.6) ch[W (Λ0)] =
∑

n1,n2≥0

qn
2
1+n

2
2−n1n2

(q; q)n1
(q; q)n2

=

∑
n∈Z q

n2

(q; q)∞
.
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This subspace has a combinatorial monomial basis in terms of nilpotent ŝl3 elements. Moreover, in
[4], q-difference equations and exact sequences are used among certain finite-dimensional subspaces
of W (Λ0). It may well be that [4] already contains (albeit implicitly) natural candidates for the
subspaces Wn ⊂ W (Λ0) such that, for n ≥ 1, ch[Wn](q) = χ2n−1(1, 1, q) and that exact sequences
among these subspaces lead to q-recurrences (1.1-1.2) To support this, notice that the second identity
in (3.6) was in fact instrumental in Andrews’ proof of Wall’s conjecture [A]. We leave the problem
of identifying Wn for further investigations.

Remark. As a consequence of q-binomial convolution identity we get the following identity

(3.7)
(
−q 1

2 z; q
)
n

(
−q 1

2 z−1; q
)
n

=
∑
j∈Z

znq
j2

2

[
2n

n+ j

]
q

.

This can be considered as a finite form of (2.1). This identity can be also interpreted as a conse-
quence of ”finitized” boson-fermion correspondence in conformal field theory (the left hand-side is
”fermionic” while the right hand-side is ”bosonic”). Due to similarity of bilateral summations in
Andrews’ formula for χ2n−1(1, 1, q) and in (3.7) it seems feasible to expect that Fn admits a fermonic
realization which would lead to new formulas for the LMW polynomials.
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