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Abstract. We introduce a new family of directed, multi-state bootstrap percolation models that
naturally occur as the “convolution” of classical bootstrap percolation models as well as generalized
k-cross models studied by Bringmann, Gravner, Holroyd, Liggett, and Mahlburg. We prove bounds for
the probability of indefinite growth by relating the percolation process to sequences of random variables
that characterize the percolation growth combinatorics. The corresponding stochastic processes are
of independent interest, and we prove a general bound for the limiting density of their probability
distributions. We prove these bounds using new results for the convexity and monotonicity of linear
operators; these results are of independent interest and the techniques also apply to other stochastic
processes with “forbidden patterns”.

In the simplest case of the new multi-state percolation models, we prove a stronger result that gives
the precise asymptotic behavior for the limiting probability density of the corresponding stochastic
process. This follows from the surprising appearance of Ramanujan’s mock theta functions, whose
cuspidal asymptotics are closely connected to the limiting probabilities.

1. Introduction and statement of results

In this paper we build on work of Andrews, Gravner, Holroyd, Liggett, and the first two authors
in [3, 11, 16, 22], and study the relation between probability bounds for bootstrap percolation mod-
els, bounds for the probabilities of stochastic processes, the combinatorics of overpartitions, and the
cuspidal behavior of mock theta functions and modular forms. We introduce an infinite family of
percolation processes on the square lattice that can be understood as a nontrivial convolution of two
(directed) copies of the k-percolation models from [22] and [11]. In particular, the case k = 2 is a
“mixed” superposition of two copies of the classical directed bootstrap percolation model [24].

The process begins with an initial configuration that is generated by the Bernoulli random process
in which each site x ∈ N2 is independently set to one of four possible states, which are represented by
the following names/symbols:

Empty: ◻ , Right: →, Up: ↑, or Active: + .

The state of x is denoted by S(x).
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For a fixed parameter 0 ≤ q ≤ 1, the corresponding probabilities of each state are given by

P (S(x) = ◻ ) = q2, (1.1)

P (S(x) =→) = P (S(x) =↑) = q(1 − q),
P (S(x) =+ ) = (1 − q)2.

Note that if we interpret the state + as the union of → and ↑, then these probabilities are equivalent
to the Cartesian product of the disjoint two-state configurations with probabilities

P (◻ ) = q, P (→) = (1 − q), and (1.2)

P (◻ ) = q, P (↑) = (1 − q).
Given an initial configuration C, the system then evolves according to deterministic neighborhood
growth rules that are defined below. The viewpoint in (1.2) is essential for understanding a vital
feature of the system: it is “increasing” relative to each of the independent processes in the Right and
Up directions. This means a site that is Empty relative to either Right or Up states may eventually
become occupied, but an occupied Right or Up state will never become Empty. In other words, an
Empty site may evolve to a Right or Up state, which may then evolve to an Active state (which then
remains stationary throughout the remainder of the process).

An alternative characterization uses the following simple partial order on states:

◻ ≤→, ◻ ≤↑; →≤+ , ↑≤+ .

We also use the notation A +B to represent the ordered lattice join operation on two such states; for
example, → + ↑=+ . This lattice is represented graphically in Figure 1.

+

→ ↑

◻

≤ ≤

≤ ≤

Figure 1. Lattice ordering of percolation states

Then the percolation process has the property that the set of configurations in which some site x

eventually becomes active forms a lattice ideal. This can also be viewed at the level of individual
growth rules, which must also then be monotonic with respect to the partial order described above.

The specific growth of a lattice site x is determined by the states in the surrounding (k − 1)-cross,
which is the neighborhood defined by

N(x) = Nk(x) ∶= {x +w ∶ w = (v,0) or (0, v),−(k − 1) ≤ v ≤ (k − 1), v ≠ 0} . (1.3)

Definition 1.1. The k-convolution bootstrap percolation process on a given initial configuration C
evolves according to the following rules.

(i) Disjoint directed growth (see Figure 2):
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(R) Suppose S(x) = σ /≥→.
If S(x − (v,0)) ≥→ for all 1 ≤ v ≤ k − 1,

and S(x ± (0, v)) ≥→ for at least one 1 ≤ v ≤ k − 1,
then update S(x) ∶= σ + → .

(U) Suppose S(x) = σ /≥↑.
If S(x − (0, v)) ≥↑ for all 1 ≤ v ≤ k − 1,

and S(x ± (v,0)) ≥↑ for at least one 1 ≤ v ≤ k − 1,
then update S(x) ∶= σ + ↑ .

↑⇢

⇢

→→

⇢

⇢

⇡ ⇡ ⇡ ⇡

↑

Figure 2. The required configurations for Rule (i) parts (R) and (U), listed respec-
tively, when k = 3. The solidly marked states must all occur, and the dashed arrows
indicate that at least one of the specified states occurs.

(ii) Skew directed growth (see Figure 3):

(R) Suppose S(x) = σ ≠+ .

If S(x − (v,0)) =+ for all 1 ≤ v ≤ k − 1,
and S(x ± (0, v)) ≥↑ for at least one 1 ≤ v ≤ k − 1,

then update S(x) ∶=+ .

(U) Suppose S(x) = σ ≠+ .

If S(x − (0, v)) =+ for all 1 ≤ v ≤ k − 1,
and S(x ± (v,0)) ≥→ for at least one 1 ≤ v ≤ k − 1,

then update S(x) ∶=+ .

(iii) Gap jumping (see Figure 4):

(R) Suppose S(x) = σ ≠+ .

If S(x − (v,0)) =+ for all 1 ≤ v ≤ k − 1, and j is such that

S(x + (v,0)) =→ for all 1 ≤ v ≤ j − 1 ≤ k − 2, S(x + (j,0)) =+ ,

and S(x ± (0, v)) ≥→ for at least one 1 ≤ v ≤ k − 1,
then update S(x) ∶=+ .
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⇡

+

+

+ ⇢⇢⇢⇢+

⇡

⇡

⇡

Figure 3. The required configurations for Rule (ii) parts (R) and (U) when k = 3.
(U) Suppose S(x) = σ ≠+ .

If S(x − (0, v)) =+ for all 1 ≤ v ≤ k − 1, and j is such that

S(x + (0, v)) =→ for all 1 ≤ v ≤ j − 1 ≤ k − 2, S(x + (0, j)) =+ ,

and S(x ± (v,0)) ≥→ for at least one 1 ≤ v ≤ k − 1,
then update S(x) ∶=+ .

+

++ ⇡⇡⇡⇡

+

→ +

⇢

⇢

⇢

⇢

+

Figure 4. Two examples of the required configurations for Rule (iii) parts (R) and
(U) when k = 3. In the example shown for part (R), the gap is followed by a Right
state until another Active state occurs; in part (U), the gap is immediately followed by
an Active state.

Remark 1.2. We refer to these models as the “convolution” of individual directed bootstrap percolation
models due to the fact that if the growth rules are only considered relative to Right states, then the
growth rules allow for only adjacent growth to the right, but upward gap-jumping across at most k−1
empty sites. Similarly, relative to Up states, the process proceeds upward only one row at a time, but
can jump to the right across a gap of length k − 1.

The main question that we address concerns long-term behavior of the k-convolution percolation
process. We say that a configuration has indefinite growth if all of N2 eventually becomes active. In
order to describe the probability of indefinite growth, we define the function fk(u) to be the unique
solution to the functional equation

f
k

k = ufk−1
k + k∑

j=2

uj+1(1 − u)j−1fk−j
k (1.4)
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that satisfies fk(u) > u(1 − u) on (0,1). See Section 2 for a rigorous discussion of the existence of fk,
as well as its many useful properties. Using this function we define the constants

λk ∶= −∫ 1

0
log (fk (1 − e−z)) dz

z
. (1.5)

We will also see in Section 4 that the function fk is the “limiting density” of the probability for certain
sequences of random variables with “forbidden patterns” that arise in the characterization of growing
configurations in the k-convolution process.

The following theorem describes the probability of indefinite growth in the k-convolution process,
and is analogous to the growth bounds for local k-percolation models stated as Theorem 1.1 of [11]
and Theorem 1 of [16] in that it provides a double-sided bound with explicit second-order terms.

Theorem 1.3. If we write q = e−s with s ≥ 0, then for each k ≥ 1, there exists a sufficiently small n0,
and constants c1, c2 such that for s < n0 we have

exp (−2λks
−1 + c1s− 1

2 ) ≤ P(indefinite growth) ≤ exp (−2λks
−1 + c2s− 2k−1

2k (log s−1)2) .
Remark 1.4. This result is weaker than the theorems in [11, 16] because the second-order terms are

different s-powers, whereas in the earlier papers the upper bound also had s−1/2.

The proof of this theorem proceeds by first characterizing configurations with indefinite growth by
certain sequence conditions, and then by proving a general bound for the limiting densities of those
sequences. In particular, consider a sequence of independent random variables {Ej}nj=1 such that

P(Ej = A) = u2j , P(Ej = B) = P(Ej = C) = uj(1 − uj), P(Ej =D) = (1 − uj)2,
where 0 ≤ uj ≤ 1 for each 1 ≤ j ≤ n. Next, we consider events defined by certain “word” restrictions on
the sequence of random variables {Ej}nj=1. In particular, we define an event that satisfies the k-sequence

condition (cf. Section 3) and denote its probability by

ρk(n) ∶= P({Ej}nj=1 has no D,CB, or Ck), (1.6)

where Ck denotes a sequence of k consecutive Cs. Note that this event includes sequences that end
with at most k − 1 Cs.

The following result provides a very tight double-sided bound for the probabilities ρk(n).
Theorem 1.5. If 0 ≤ u1 ≤ ⋅ ⋅ ⋅ ≤ un ≤ 1, then

n∏
j=1

fk(uj) ≤ ρk(n) ≤
n∏
j=k

fk(uj).
Remark. The strength of these bounds is seen in the fact that the relative error is constant as n→∞.

Remark. If u1 = 0, then the first two expressions in the statement of Theorem 1.5 are zero, so we need
only consider the cases where 0 < u1.

The first two authors proved bounds for the probability of sequences without k-gaps in terms of the
analogous function fk in [11] (this work generalized and refined results in [16, 22]). The proofs in that
paper used rather intricate and specialized arguments involving monotonic functions on simplices. In
the current work we develop a new method for proving such bounds that instead follows from “spectral”
estimates for the eigenvalues of associated (Markov-type) stochastic processes. This approach is much
more adaptable and indeed shows that there are natural families of pattern-avoiding sequences that
satisfy similar bounds.
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In the application to k-convolution bootstrap percolation models, Theorem 1.5 is specialized by
setting

uj ∶= 1 − qn = 1 − e−ns
and letting n→∞ (cf. Section 3). Define Ak as the event that the corresponding probability sequence
{Ej}∞j=1 has no D,CB, or Ck.

Corollary 1.6. For k ≥ 2, we have the following asymptotic as s→ 0:

exp ( − λks
−1) ≤ P(Ak) ≤ s− (2k−1)2

(1+o(1)) exp ( − λks
−1).

The case k = 2 is also of number theoretical interest due to the striking appearance of one of
Ramanujan’s famous mock theta functions. Indeed, we will show in Section 6 that P(A2) is equal (up
to a q-power) to the product of quotients of elliptic theta functions and one of Ramanujan’s third-order
mock theta functions, namely (as in [26])

φ(q) ∶= ∑
n≥0

qn
2

∏n
j=1(1 + q2j) . (1.7)

Ramanujan introduced this and 16 other mock theta functions, each given by simple hypergeometric
q-series, in his final letter to Watson, and observed that they behave “nearly” like modular forms.
Although these functions were a frequent subject of study in the ensuing eighty years, it was not
until the doctoral thesis of Zwegers [28] that mock theta functions were put in a proper theoretical
framework. It is now understood that the mock theta functions are the holomorphic components of
harmonic weak Maass forms [12], the theory of which grew from Borcherds’ work on automorphic
representations [8].

The precise definitions of the above concepts are unnecessary for the present work, as the key feature
is simply that the complex analytic symmetries (so-called “modular transformations”) of modular and
mock modular forms provide extremely precise asymptotic expansions for such functions near their
zeros and poles. Our main result for the k = 2 case is therefore a significant improvement on the
general statement of Theorem 1.5, as instead of unequal lower and upper bounds, in this case we
describe the exact asymptotic behavior.

Theorem 1.7. As s→ 0+,

P(A2) ∼ 2√πs− 1

2 e−
π2

8s .

This case also combinatorially corresponds to overpartitions without sequences, which are the sub-
ject of further study in the first two authors’ work in progress with Holroyd [9]. This forthcoming

work will provide an alternative proof that λ2 = π2

8
(along with explicit formulas for other constants

related to overpartition asymptotics) by relating certain logarithmic integrals of algebraic functions
to Dilogarithm evaluations; see [4, 22] for the calculation of related constants. In this paper we will
instead follow the approach of Andrews [3], who used properties of another of Ramanujan’s mock
theta functions, χ(q), in the study of partitions without sequences and bootstrap percolation. We will
similarly prove Theorem 1.7 by relating the probability sequences to cuspidal asymptotics for modular
eta-quotients and φ(q).
Remark 1.8. Our present use of φ(q) and Andrews’ work on χ(q) illustrate the striking fact that the
mock theta functions naturally arise in the setting of stochastic processes.

Remark 1.9. The appearance of theta functions and mock theta functions has further applications. In
[10] the first two authors extended the Hardy-Ramanujan Circle Method in order to find very precise
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coefficient formulas for partitions without sequences; this method is also applicable to overpartitions
without sequences.

The remainder of the paper is structured as follows. Section 2 contains the proper definition of fk

and proofs of many useful properties, including the convexity of an important auxiliary function gk.
In Section 3 we explain how growing configurations in the k-convolution process can be characterized
by simple combinatorial sequence conditions on columns and rows. Section 4 is a self-contained
development of a new method for proving bounds for the limiting probability densities of certain
stochastic processes, which is then applied to the specific case of the probabilities from Theorem 1.5
and Corollary 1.6. In Section 5 we prove the probability bounds for the k-convolution process stated
in Theorem 1.3. The main body of the paper concludes in Section 6 with an explanation of the use of
q-series and mock theta functions in the case k = 2, as well as the proof of Theorem 1.7.

2. Properties of fk

In this section we rigorously study monotonicity properties of fk and the auxiliary function

gk(z) ∶= − log fk (1 − e−z) . (2.1)

These properties will be needed in order to apply variational results in later sections. The key insight
of this section is that the functional equation (1.4) can be re-scaled so that the resulting algebraic

equation is linear in the variable u; we therefore find that it is easiest to understand fk by studying
its inverse.

Proposition 2.1. Define Fk ∶ [0,1) → [0,∞) by Fk(x) ∶= x(1−xk)
(1−x)2

. The following statements then hold.

(i) The function Fk is smooth and increasing, with boundary values Fk(0) = 0 and lim
x→1−

Fk(x) =
+∞.(ii) The functional equation (1.4) has a unique solution that satisfies fk(u) > u(1−u) on u ∈ (0,1).
This solution is given by

fk(u) ∶= u(1 − u)
F−1
k
( 1
u
− 1) ,

where F−1k ∶ [0,∞) → [0,1) denotes the inverse function of Fk.

Proof. (i) This follows easily from the equivalent formula

Fk(x) = (x + x2 + ⋅ ⋅ ⋅ + xk) 1

1 − x
.

(ii) Consider the defining functional equation (1.4). Since the only solutions we are interested in
are non-zero and u ≠ 0 or 1, we may multiply both sides by 1−u

uf
k

k

:

1 − u

u
= 1 − u

fk

+

k∑
i=2

(u(1 − u)
fk

)i .
Subtracting

(1−u)2

fk

from both sides produces

1 − u

u
(1 − u(1 − u)

fk

) = k∑
i=1

(u(1 − u)
fk

)i .
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Since the right hand side is positive for all positive values of fk, 1 −
u(1−u)

fk

cannot be zero,

so the equation is equivalent to

1 − u

u
= Fk (u(1 − u)

fk

) .
The restriction fk > u(1 − u) is equivalent to u(1−u)

fk

∈ (0,1). Since 1−u
u
∈ (0,∞) and the map

Fk bijectively maps (0,1) to (0,∞) we conclude that fk is unique and fk(u) = u(1−u)

F−1
k
( 1
u
−1)

, as

required.
�

We will describe the behavior of fk and gk by carefully examining their Taylor series expansions,
and we thus present several simple technical results before proceeding further.

Lemma 2.2. Let {ai}∞0 ,{bi}∞0 be sequences of non-negative real numbers, and denote the partial
sums by a′n ∶= ∑n

i=0 ai, b
′
n ∶= ∑n

i=0 bi for n ∈ Z≥0. Define the power series a(x) = ∑∞n=0 anxn and b(x) =
∑∞n=0 bnxn (where any undefined coefficients are set to 0), and assume that their radii of convergence
are at least 1.(i) If all bn are positive and the sequence an

bn
is non-decreasing, then the sequence

a′n
b′n

is also

non-decreasing.(ii) If all bn are positive and the sequence an
bn

is non-decreasing and non-constant, then the ratio
a(x)
b(x) is an increasing function on (0,1).

(iii) If all b′n are positive and the sequence
a′n
b′n

is non-decreasing and non-constant, then the ratio
a(x)
b(x) is an increasing function on (0,1).

Proof. (i) For n ≥ 0, we calculate

a′n+1
b′n+1

−
a′n
b′n
= a′n + an+1

b′n + bn+1
−
a′n
b′n
= an+1b

′
n − a

′
nbn+1

b′n(b′n + bn+1) .

The denominator is positive and the numerator can be written as
n∑
i=0

(an+1bi − aibn+1),
where each summand is non-negative.(ii) Note that the conditions guarantee that b(x) > 0 for x ∈ (0,1). We differentiate the ratio to
obtain

(a(x)
b(x) )

′

= a′(x)b(x) − a(x)b′(x)
b(x)2 .

It is enough to check that the numerator is positive; we rewrite it as

a′(x)b(x) − a(x)b′(x) = ∑
0≤i<j

(j − i)(ajbi − aibj)xi+j−1.
It is clear that the right hand side has only non-negative terms with at least one being
positive. The claim then follows.(iii) This is an easy consequence of part (ii) using the observation that ∑∞n=0 a′nxn = a(x)

1−x and

∑∞n=0 b′nxn = b(x)
1−x .

�
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We are now prepared to state and prove the main result of this section.

Theorem 2.3. Assume the notation and definitions from above.(i) The function fk is positive and increasing on (0,1), with boundary limits limu→0+ fk(u) = 0,
and limu→1− fk(u) = 1.(ii) The function gk is convex, positive and decreasing on (0,∞), with boundary limits
limz→0+ gk(z) =∞, and limz→∞ gk(u) = 0.

Proof. First we note that Fk extends to an analytic function of x in a neighborhood of 0 and Fk(x) =
x+O(x2). This implies that F−1k extends to an analytic function in a neighborhood of 0 and F−1k (x) =
x +O(x2). Thus fk extends to an analytic function in a neighborhood of 1 and

fk(u) = u(1 − u)
1 − u +O((1 − u)2) = 1 +O(1 − u),

so that limu→1− fk(u) = 1.
When u tends to 0, the expression 1

u
− 1 tends to ∞, so limu→0+ F

−1
k ( 1u − 1) = 1, which implies

limu→0+ fk(u) = 0. The boundary values for gk follow immediately from those for fk.
We now introduce an auxiliary variable y ∶= F−1k ( 1u − 1), so that Fk(y) = 1

u
− 1. The corresponding

differential is then F ′k(y)dy = −du
u2 , which means that the logarithmic differential of f can be computed

as

d log fk(u) = du

u
−

du

1 − u
+

du

u2F ′
k
(y)y .

Using the fact that u = 1 − e−z and the corresponding differential du = e−zdz = (1 − u)dz, we further
compute

−
dgk(z)
dz

= (1
u
−

1

1 − u
+

1

u2F ′
k
(y)y)(1 − u). (2.2)

To show convexity of gk (which will imply the monotonicity of fk), it is now enough to check that
the right hand side of (2.2) is a positive decreasing function of z. Due to the monotonicity of the
changes of variables, this is equivalent to showing that it is a positive decreasing function of u, which
is further equivalent to showing that it is a positive increasing function of y. We thus rewrite the
expression as a function of y (recalling that u = 1

1+Fk(y)
), obtaining

(Fk(y) + 1 − Fk(y) + 1
Fk(y) +

(Fk(y) + 1)2
F ′
k
(y)y ) Fk(y)

1 + Fk(y) =
yFk(y)F ′k(y) + (1 + Fk(y))Fk(y)

yF ′
k
(y) − 1. (2.3)

Using the Taylor expansion Fk(y) = y +O(y2), we find that the limiting value of the right hand side
of (2.3) at y = 0 is exactly 0, so we need only prove that

ϕ(y) ∶= yFk(y)F ′k(y) + (1 +Fk(y))Fk(y)
yF ′

k
(y)

is an increasing function on (0,1).
Consider the two series defined by

a(y) = ∞∑
n=0

any
n
∶= (Fk(y)F ′k(y) + (1 + Fk(y))Fk(y)

y
) (1 − y)2,

b(y) = ∞∑
n=0

bny
n
∶= F ′k(y)(1 − y)2,
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so that ϕ(y) = a(y)
b(y) . We will show that this rational decomposition of ϕ(y) satisfies the requirements

of Lemma 2.2 part (iii), thus proving the required monotonicity.
By definition,

Fk(y)(1 − y) = k∑
i=1

yi, (2.4)

and thus the second term of a(y) can be expanded as

(1 + Fk(y))Fk(y)
y
(1 − y)2 = (1 + k∑

i=2

yi) k−1∑
i=0

yi. (2.5)

Differentiating (2.4) we obtain

F ′k(y)(1 − y) − Fk(y) = k−1∑
i=0

(i + 1)yi, (2.6)

which implies the following expansion for the first term of a(y) ∶
Fk(y)F ′k(y)(1 − y)2 = ( k∑

i=1

yi)(k−1∑
i=0

(i + 1)yi +Fk(y)) . (2.7)

Note that excluding the constant term (which is zero), all of the Taylor coefficients of Fk(y)F ′k(y)(1−y)2
are strictly positive. Furthermore, all of the Taylor coefficients of (1 + Fk(y))Fk(y)

y
(1 − y)2 are non-

negative, with constant term 1. Adding (2.5) and (2.7) then shows that an > 0 for all n.
We next explicitly determine an for 0 ≤ n ≤ k − 1, using the fact that Fk(y) = y

(1−y)2
+ O(yk+1).

Therefore F ′k(y) = 1
(1−y)2

+
2y

(1−y)3
+O(yk), and hence

(Fk(y)F ′k(y) + (1 + Fk(y))Fk(y)
y
)(1 − y)2 = y(1 − y)2 + 2y2(1 − y)3 + 1 + y(1 − y)2 +O(yk)

= 1 + 2y(1 − y)3 +O(yk) = 1 +
k−1∑
i=1

i(i + 1)yi +O(yk).
We have thus computed that a0 = 1 and an = n(n + 1) for 1 ≤ n ≤ k − 1.

To compute bn we use (2.6) to write b(y) as
F ′k(y)(1 − y)2 = Fk(y)(1 − y) + (1 − y) k−1∑

i=0

(i + 1)yi = k∑
i=1

yi +
k−1∑
i=0

yi − kyk = 1 + 2
k−1∑
i=1

yi − (k − 1)yk.
We see immediately that all b′n are positive. Moreover 1 = a0

b0
= a1

b1
< a2

b2
< ⋅ ⋅ ⋅ < ak−1

bk−1
, and Lemma 2.2

part (i) then implies that
a′
0

b′
0

≤ a′
1

b′
1

≤ ⋅ ⋅ ⋅ ≤ a′
k−1

b′
k−1

. Since an > 0 for all n, we have a′k−1 < a′k < . . . , but bn = 0
for n > k, so b′k−1 > b′k = b′k+1 = . . . . Thus a′

k−1

b′
k−1
< a′

k

b′
k

< . . . and all conditions of Lemma 2.2 part (iii) are
fulfilled. �

3. Column/row sequence characterization of growth

In this section we define column and row events that can be used to describe simple necessary and
sufficient conditions for a lattice to become Active.
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Definition 3.1. Suppose thatM is a finite (partial) row or column of length n in the square directed
lattice, so that for some r ∈ Z,

M = {(x, v) ∶ r ≤ v ≤ r + n − 1} or M = {(v, y) ∶ r ≤ v ≤ r + n − 1}.
All possible configurations forM are then split into the following four disjoint events:

A ∶ M contains two (possibly equal) sites x and y such that S(x) ≥→ and S(y) ≥↑.
B ∶ M contains x such that S(x) =↑, and no state ofM satisfies S(y) ≥→ .

C ∶ M contains x such that S(x) =→, and no state ofM satisfies S(y) ≥↑ .
D ∶ Every site inM satisfies S(x) = ◻ .

These four possible states forM are denoted by S(M).
Remark 3.2. Recalling (1.1) and (1.2), the corresponding probabilities for the four column/row events
of length n are

P(A) = (1 − qn)2, P(B) = P(C) = qn(1 − qn), P(D) = q2n.
We now consider sequences of (typically adjacent) columns or rows, and the following definition

helps characterize those which have “good” growth properties relative to the k-convolution process.

Definition 3.3. Suppose that {Mj}mj=1 is a sequence of finite columns or rows.

● The row k-sequence condition is satisfied if {Mj} contains no consecutive subsequence with

state sequences D,BC, or Bk.
● The column k-sequence condition is satisfied if {Mj} contains no consecutive subsequence

with state sequences D,CB, or Ck.

Remark 3.4. An alternative characterization of the row k-sequence condition is that the states contain
only subsequences of the form A,C, or BjA for 1 ≤ j ≤ k − 1 (the column k-sequence condition is
analogous, with B and C events interchanged).

The next result shows that the row and column conditions described above are a necessary condition
that any subconfiguration on a rectangular sublattice must satisfy in order for the process to conclude
with Active sites.

Proposition 3.5. Suppose that a rectangular lattice region of dimensions (m,n) becomes active in
the k-convolution percolation process. Then the rows {Rj}mj=1 (indexed bottom-to-top) and columns{Cj}nj=1 (indexed left-to-right) satisfy the row and column k-sequence conditions, respectively.

Proof. We present the proof for the column conditions only; the row conditions are entirely analogous,
with the role of B and C events interchanged. The argument is by contradiction, so suppose that{Cj}nj=1 does not satisfy the column k-sequence condition. Suppose that the first disallowed pattern

occurs at position m, so that for some j, Cm, . . . ,Cm+j has the state pattern D,CB, or Ck. We
may now use the monotonicity of the percolation process and assume without loss of generality that
Cm−k+1, . . . ,Cm−1 are completely filled with Active sites, adding additional columns with nonpositive
indices if m < k.

We first consider the case that S(Cm) = D, so that S(x) = ◻ for each site x in the m-th column.
It is clear that none of the growth rules from Definition 1.1 can lead to an increase in the state of x.
See the first image in Figure 5.

Next, consider the case that S(Cm) = C and S(Cm+1) = B. Then Definition 1.1 (i) allows us to
assign each site in Cm to state →. However, note that in order to increase the states in Cm+1, parts (ii)
and (iii) of Definition 1.1 require additional → states in Cm+1, which are precluded by the assumption
that S(Cm+1) = B. This case is depicted in the second image of Figure 5.
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Figure 5. Maximal configurations with the column subsequences D and CB.

Finally, if S(Cm+j) = C for 0 ≤ j ≤ k − 1, then Definition 1.1 (i) implies that each of these columns
can be increased to the state →, as seen in Figure 6. However, there is no further growth possible, as
the gap is then too large for Definition 1.1 (iii). This completes the proof, as the rectangle does not
become Active in the case of any of the restricted sequences.
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++

+

+
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→
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→
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→+

+

+

++

+
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Figure 6. Maximal configuration with the column subsequence Ck.

�

Next, we show that the column/row conditions also define a sufficient growth condition for certain
diagonal configurations that originate from the origin in the lower-left corner.

Definition 3.6. Consider the “stair-step” columns and rows defined such that for i ≥ k+1, the column
Ci at a distance i to the right of the origin has height i− k, and the row Ri at height i also has width
i− k. If b > a ≥ k, then the diagonal growth event Dk(a, b) is the event that the columns {Ca+1, . . . ,Cb}
and rows {Ra+1, . . . ,Rb} satisfies the k-sequence conditions for the k-convolution percolation process.

Proposition 3.7. If the lower-left square of side-length a is filled with Active sites and event Dk(a, b)
is satisfied, then some rectangle with dimensions (b− s, b− t) for 0 ≤ s, t,≤ k−1 is eventually filled with
Active sites. Furthermore, the final s columns will have state → in each cell (x, y) with a−s+1 ≤ x ≤ a
and 1 ≤ y ≤ a − t. Similarly, cells (x, y) with 1 ≤ x ≤ a − s and a − t + 1 ≤ y ≤ a will have state ↑.

Proof. Following Remark 3.4, we need consider only row/column sequences of the prescribed form.
Observe that if columns a + 1, . . . , a + j (of height a) and rows a + 1, . . . , a + ℓ (of width a) eventually
become Active, then by Definition 1.1 (ii), the lower-left square of length a +min{j, ℓ} will become
Active. Thus it is sufficient to prove that the permissible column and row events independently lead
to extended column and row growth.

Without loss of generality, consider the column states and the left-to-right growth of the percolation
process. If S(Ca+1) = A or B, then Definition 1.1 (ii) directly implies that the column becomes filled
with Active sites.

The other possibility is that the initial column states satisfy S(Ca+j) = C for 1 ≤ j ≤ m ≤ k − 1,
with S(Ca+m+1) = A. In this case, the evolution first proceeds according to Definition 1.1 (i), which
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b

Cb−1. . .Ca+1

Ra+1

⋮

Rb−1

a

b

a

Figure 7. The “stair-step” columns and rows defined for the event Dk(a, b) for k = 3.
implies that the columns Ca+j for 1 ≤ j ≤ m are completely filled with the state →. The same rule
also then applies to the sites of column Ca+m+1, which are therefore set to states S(x) ≥→, with strict
inequality for at least one x ∈ Ca+m+1; strictly speaking, the columns here are extended to height a.
Next, Definition 1.1 (iii) then implies that for any state x ∈ Ca+m+1 with S(x) =+ , the sites directly
to the left of x will also be set to the state + . Finally, Definition 1.1 (ii) then fills in the rest of
the columns Ca+j with Active sites, until the final column with states A or B is reached. Beyond this
point, there remain at most k − 1 columns with state C; Definition 1.1 (i) then fills their cells entirely
with → states. �

Remark 3.8. The above arguments show that a near-converse to Proposition 3.5 also holds: if S(C1) =
. . .S(Ck−1) = A and {Ck, . . . ,Cn} satisfy the k-column sequence conditions, then the process will evolve
such that every column Cj is completely Active for k ≤ j ≤ n−s, where 0 ≤ s ≤ k−1, and Cj is completely
filled with → states for n − s + 1 ≤ j ≤ n. The analogous statement holds for row sequences.

Thus the sequences of column/row events in a configuration give a natural description of both
necessary and sufficient conditions that the configuration eventually become Active. The next section
addresses such probabilistic sequence events in more generality, and we return to the specific setting
of k-convolution percolation in Section 5.

4. Bounds for the limiting probabilities of column/row sequences

In this section we present a new method for proving double-sided bounds for the probabilities
of stochastic sequences, which uses monotonicity properties of the eigenvalues and eigenvectors for
the associated Markov-type processes. In particular, we apply this method to probability sequences
satisfying the column k-sequence conditions from Definition 3.3 (the row k-sequence conditions are
equivalent following a simple renaming), and prove Theorem 1.5. The probability bounds in this
section are then a key part of the proof of Theorem 1.3. We note that some of our technical results
also follow from the theory of stochastic matrices [15] (for example, the uniqueness of the largest, real
eigenvalue is implied by the Perron-Frobenius theorem). However, we prefer the present approach, as
our situation is also rather special due to the nature of the characteristic polynomial, which is in turn
related to the defining functional equations for our fk. As previously mentioned in Section 2, this



14 KATHRIN BRINGMANN, KARL MAHLBURG, AND ANTON MELLIT

algebraic equation can be re-scaled so that it is linear in the inverse function, and we use this property
extensively as we prove the bounds.

4.1. Definitions and statement of probability bound. Consider a sequence of independent ran-
dom variables {Ej}∞j=1 such that

P(Ej = A) = u2j , P(Ej = B) = P(Ej = C) = uj(1 − uj), P(Ej =D) = (1 − uj)2.
Next, define notation for the probability of the events that satisfy k-sequence conditions, namely

ρk(m,n) ∶= P({Ej}nj=m has no D,CB,Ck),
for 1 ≤m ≤ n. Note that a sequence that ends with at most k − 1 Cs is allowed.

The following recurrence relation is easily verified by conditioning on the number of C events that
occur at the beginning of the sequence. For n ≥m + k − 1 we have

ρk(m,n) = um°
Em=A or B

ρk(m + 1, n) + k∑
j=2

um(1 − um)⋯um+j−2(1 − um+j−2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Em=⋅⋅⋅=Em+j−2=C

u2m+j−1´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
Em+j−1=A

ρk(m + j,n). (4.1)

The initial conditions for the recurrence are defined by recalling the “extendable” property of the
sequences. The values are most easily described by first setting ρk(n + 1, n) ∶= 1, and then using a
modified, truncated recurrence, which states that for n ≤m + k − 2,

ρk(m,n) = umρk(m + 1, n) + n−m+1∑
j=2

um(1 − um)⋯um+j−2(1 − um+j−2)u2m+j−1ρk(m + j,n) (4.2)

+ um(1 − um)⋯un(1 − un)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Em=⋅⋅⋅=En=C

.

The first term and summation record similar events as in (4.1), and the final term is due to the fact
that the sequence is allowed to end with a truncated string of at most k − 1 Cs.

The limiting density for these probabilities is found by setting all uj ∶= u in (4.1), and replacing each

ρk(m,n) by f
m−n+1

k . This immediately gives the functional equation (1.4), and also leads to a simple
inductive proof of Theorem 1.5 in the case that all uj are equal. Indeed, this is nothing more than the
standard approach for finding the limiting distribution of a Markov chain with fixed probabilities [19].

4.2. A “Markov-type” stochastic process with variable transition probabilities. In order
to address the general case of (monotonic) unequal ujs, we modify the simple Markov process that
naturally corresponds to the case where all uj = u. The states of this Markov process encode the
number of consecutive C events at the end of the sequence of random variables, and the transition
probabilities are polynomial functions of u. Adapting these ideas to the present case, we refine the
probabilities ρk(m,n) by also encoding the number of C events at the end of the sequence. In
particular, for 0 ≤ a ≤ k − 1, define

ρk(a;m,n) ∶= P({Ej}nj=m has no D,CB,Ck and ends with exactly a Cs).
This last condition means that En−a ≠ C and En−a+1 = ⋅ ⋅ ⋅ = En = C.

Heuristically, we are now considering a Markov-type process in which the transition probabilities
after j steps are a function of uj . This means that we can easily describe recurrence relations between
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the ρk(a;m,n), namely

ρk(a;m,n + 1) = ⎧⎪⎪⎨⎪⎪⎩
u2n+1∑k−1

j=0 ρk(j;m,n) + un+1(1 − un+1)ρk(0;m,n) if a = 0,
un+1(1 − un+1)ρk(a − 1;m,n) if 1 ≤ a ≤ k − 1. (4.3)

In the case a = 0, the sequence ends with exactly zero Cs, which means that the final event is A or
B. If En+1 = A, it may be preceded by any number of Cs up to length k − 1, which accounts for the
first term in the top formula above, whereas if En+1 = B, it must be preceded by an A or B, which is
the second term. The cases 1 ≤ a ≤ k − 1 are simpler, because if {Ej}n+1m ends with exactly a Cs, then
En+1 = C and {Ej}nm ends with exactly a − 1 Cs.

We now use these relations in order to rewrite our probabilities ρk(m,n) in terms of linear transfor-
mations. For the remainder of the section, we will frequently suppress the subscript k for notational
convenience. Define the vectors

P k(m,n) = P (m,n) ∶= (ρ(0;m,n) ρ(1;m,n) ⋯ ρ(k − 1;m,n))T .

Observe that the probabilities can then be recovered as

ρk(m,n) = ∥P (m,n)∥
1
= sTP (m,n),

where s = sk ∶= (1 ⋯ 1)T is a k-dimensional vector. Furthermore, the relations (4.3) are easily
rewritten as

P (m,n) =M(un)P (m,n − 1),
where the transition matrices are given by

M(u) =Mk(u) ∶=
⎛⎜⎜⎜⎜⎜⎝

u u2 ⋯ ⋯ u2

u(1 − u) 0 ⋯ ⋯ 0
0 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮

0 ⋯ 0 u(1 − u) 0

⎞⎟⎟⎟⎟⎟⎠
.

Finally, the initial conditions described in (4.2) are then seen to be equivalent to setting P (n+1, n) =
e, where

e = ek ∶= (1 0 ⋯ 0)T .

This then means that

ρ(m,n) = sTP (m,n) = sTM(un)P (m,n − 1) = ⋅ ⋅ ⋅ = sTM(un)⋯M(um)P (m,m − 1)
= sT M(un)⋯M(um) e = eT M(um)T⋯M(un)T s; (4.4)

the final equality follows because the expression is a scalar overall, and is thus its own transpose.
It is well known from the theory of vector spaces over a field F that a matrix of the form

M =
⎛⎜⎜⎜⎜⎜⎝

αk−1 1 0 ⋯ 0
αk−2 0 ⋱ ⋱ ⋮

⋮ ⋮ ⋱ ⋱ 0
⋮ ⋮ ⋱ 1
α0 0 ⋯ ⋯ 0

⎞⎟⎟⎟⎟⎟⎠
corresponds to the linear action given by multiplication by x on the vector space

V = ⟨xk−1, . . . , x,1⟩ ≅ F[x]/p(x),
where p(x) ∶= xk−αk−1x

k−1−⋅ ⋅ ⋅−α0. Furthermore, the characteristic polynomial of this transformation
is also equal to p(x), and the eigenvector corresponding to an eigenvalue λ is simply the vector whose
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coordinates are the coefficients of p(x)/(x − λ). Throughout this section we also index vectors in this

linear space with respect to the corresponding polynomial degrees, writing v = (vk−1 ⋯ v0)T .

Returning to the situation at hand, consider the scaled transformation

1

u(1 − u)M(u)T =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1 − u
1 0 ⋯ 0

u

1 − u
0 ⋱ ⋱ ⋮

⋮ ⋮ ⋱ ⋱ 0
⋮ ⋮ ⋱ 1
u

1 − u
0 ⋯ ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which then has the characteristic polynomial

Q(u;x) = Qk(u;x) ∶= xk − 1

1 − u
xk−1 −

u

1 − u
(xk−2 + ⋅ ⋅ ⋅ + 1) . (4.5)

Now let λ(u) = λk(u) denote the positive real root of Q(u;x); a unique such root exists by Descartes’
Rule of Signs and the fact that the constant term of Q(u;x) is negative (as u > 0). Note that in fact

λk(u) = fk(u)
u(1 − u) , (4.6)

as the characteristic polynomial of Mk(u)T is easily seen to be

uk(1 − u)kQk (u; x

u(1 − u)) = xk − uxk−1 − u3(1 − u)xk−2 − ⋅ ⋅ ⋅ − uk+1(1 − u)k−1,
which can be compared with (1.4). We continue working with the normalized matrix as it will simplify
various computations.

Proposition 4.1. The eigenvalue λ(u) is a strictly increasing function of u, with boundary values

λ(0) = 1 and λ(1) =∞.

Proof. By definition, the eigenvalue satisfies

λ(u)k − 1

1 − u
λ(u)k−1 − u

1 − u
(λ(u)k−2 + ⋅ ⋅ ⋅ + 1) = 0. (4.7)

Differentiating this equation with respect to u gives

∂

∂x
Q(u;x)∣

x=λ
⋅
dλ

du
−

1(1 − u)2 (λk−1
+ ⋅ ⋅ ⋅ + 1) = 0.

From the definition of λ(u) as the unique (and therefore largest) positive root of Q(u;x), the derivative
∂
∂x

Q(u;x) is positive at x = λ(u), and thus we find that dλ
du

is always positive.

For the boundary values, it is clear that the positive real root of Q(0;x) = xk − xk−1 is λ(0) = 1. It
is also clear that as u→ 1−,

λ(u)k ≥ u

1 − u
→∞.

�
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4.3. Proof of lower bound for Theorem 1.5. In order to prove the lower probability bound, we
work with the scaled transpose matrices 1

u(1−u)Mk(u)T . We begin by calculating the eigenvectors as-

sociated to λ(u) and will next prove monotonicity properties about their entries. Using the polynomial
vector space basis, the eigenvectors are

Λ(u) = Λk(u) = xk−1 + k−2∑
j=0

aj(u)xj ∶= Qk(u)
x − λk(u) . (4.8)

Comparing with (4.5), we find that

xk −
1

1 − u
xk−1 −

u

1 − u
(xk−2 + ⋅ ⋅ ⋅ + 1) = xk − λ(u)xk−1 + k−2∑

j=0

aj(u)xj(x − λ(u)).
Comparing like powers of x gives the recurrences aj = λ −1 (aj−1 + u

1−u
) for 1 ≤ j ≤ k − 2, which leads to

the formulas

aj = u

1 − u
(λ −1 + ⋅ ⋅ ⋅ + λ −(j+1)) (4.9)

for 0 ≤ j ≤ k − 2. We also have ak−1(u) ≡ 1.
Proposition 4.2. For 0 ≤ j ≤ k − 2, the coefficients aj(u) are increasing functions of u. Furthermore,
aj(0) = 0 and aj(1) = 1.
Proof. By Proposition 4.1, the first statement is equivalent to the claim that aj(u) is an increasing

function of λ(u). Recall from (4.7) that λ(u) is defined by an algebraic expression linear in u; solving
gives

u = λ
k
− λ

k−1

λ
k
+ λ

k−2
+ λ

k−3
+ ⋅ ⋅ ⋅ + 1

.

Combined with (4.9) this implies that

aj = λ
k−j−2 (λj+1

− 1) (λ − 1)
λ
k
− 1

. (4.10)

Write t ∶= λ −1, so that

aj = (1 − tj+1) (1 − t)
1 − tk

. (4.11)

By Proposition 4.1 we have the range 0 ≤ t ≤ 1, so aj is clearly nonnegative. Our task is now to show
that the expression in (4.11) is a decreasing function of t on [0,1].

In fact, we observe that 1− t is a decreasing function of t, and then also show that Fa,b(t) ∶= 1−ta

1−tb
is

decreasing in t for any 0 < a < b. The derivative with respect to t of this rational function is

F ′a,b(t) = ata−1(tb − 1) − btb−1(ta − 1)(tb − 1)2 ,

and thus we need to show that the numerator is negative. This is equivalent to showing that

tb ≤ b − a

b
ta+b +

a

b
ta,

which follows directly from Jensen’s inequality applied to the convex function z ↦ tz (with both
t, z > 0).

For the boundary values, simply evaluate (4.11) at t = 0 and t = 1 (which correspond to u = 1 and
u = 0, respectively). �
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We can now easily complete the proof of the lower bound of Theorem 1.5. We adopt a partial order
on vectors given by v ≤ w if and only if vj ≤ wj for each individual component (recall that we denote

the vector components by v = (vk−1 ⋯ v0)T ). Note that this ordering is compatible with (positive)
matrix transformations: if all of the coefficients of M are nonnegative, then v ≤w implies Mv ≤Mw.

Recalling (4.4), (4.6) and the eigenvectors from (4.8), we have

ρ(1, n) = eT M(u1)T⋯M(un)T s (4.12)

≥ eT M(u1)T⋯M(un)T Λ(un) = fk(un) ⋅ eT M(u1)T⋯M(un−1)T Λ(un),
where the inequality follows from Proposition 4.2, which gives aj(u) ≤ 1. We now use the assumption
that the uj are increasing. The monotonicity property found in Proposition 4.2 then also implies that

Λ(uj+1) ≥ Λ(uj) for all j, and we apply this iteratively to (4.12), finding

ρ(1, n) ≥ fk(un) ⋅ eT M(u1)T⋯M(un−1)T Λ(un−1)
= fk(un−1)fk(un) ⋅ eT M(u1)T⋯M(un−2)T Λ(un−1)
≥ ⋅ ⋅ ⋅ ≥ fk(u1)⋯fk(un) ⋅ eT Λ(u1) = fk(u1)⋯fk(un).

For the final equality we used the fact that eT Λ(u1) = ak−1(u1) ≡ 1.
4.4. Proof of upper bound for Theorem 1.5. In this section we will at times vary k, and thus
it is much more important that we take care with these subscripts in formulas. In order to study
the upper bound, we now work directly with the matrices Mk(u). The calculation of the eigenvalues
is unchanged from Section 4.3, and we again denote the unique positive eigenvalue of 1

u(1−u)Mk(u)
by λk(u) = fk(u)

u(1−u) . However, without the transpose matrix we now no longer have a polynomial ring

representation of the vector space. Fortunately, the eigenvectors of Mk(u) have a very simple explicit

form; in particular, the normalized eigenvector corresponding to the eigenvalue fk(u) is
Λ̃k(u) ∶= (λk(u)k−1 λk(u)k−2 . . . 1)T

λk(u)k−1 + λk(u)k−2 + ⋅ ⋅ ⋅ + 1 .

For the proof of the upper bound, we use a different partial ordering on vectors; this order is simply
a continuous version of the natural “dominance order” for partitions from the theory of representations
of finite symmetric groups [23].

Definition 4.3. For vectors in R
k,

v ⪯w if and only if sk(i)Tv ≤ sk(i)Tw for all 1 ≤ i ≤ k,
where sk(i) ∶= (1 ⋯ 1 0 ⋯ 0)T denotes the length k vector with exactly i 1s.

We state several simple properties of the matrices Mk(u) that describe the compatibility of the
partial ordering with vector and sequence inequalities (recall once more that we index vectors as

v = (vk−1 ⋯ v0)T ).
Proposition 4.4. Suppose that v,w ∈ Rk

≥0 and u ∈ [0,1].
(i) The vector norm satisfies ∥Mk(u)v∥1 ≤ ∥v∥1.(ii) If v ⪯w, then Mk(u)v ⪯Mk(u)w.(iii) If vk−1 ≥ ⋅ ⋅ ⋅ ≥ v0, then v′k−1 ≥ ⋅ ⋅ ⋅ ≥ v

′

0 as well, where v′ ∶=Mk(u)v.(iv) If vk−1 ≥ ⋅ ⋅ ⋅ ≥ v0 and u ≤ u′, then Mk(u)v ⪯Mk(u′)v.
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(v) If u ≤ u′, then Λ̃k(u) ⪯ Λ̃k(u′).
Proof. (i) Direct computation shows

∥Mk(u)v∥1 = (2u − u2) vk−1 + u (vk−2 + ⋅ ⋅ ⋅ + v1) + u2v0 ≤ vk−1 + ⋅ ⋅ ⋅ + v0 = ∥v∥1.(ii) For any 1 ≤ i ≤ k, a simple computation shows that

sk(i)TMk(u) = u(1 − u) sk(1)T + u sk(i)T ,
and thus Definition 4.3 implies the conclusion.(iii) This follows from the computation

Mk(u)v =
⎛⎜⎜⎜⎝
uvk−1 + u

2 (vk−2 + ⋅ ⋅ ⋅ + v0)
u(1 − u)vk−1

⋮

u(1 − u)v1
⎞⎟⎟⎟⎠
, (4.13)

combined with the observation that u ≥ u(1 − u).(iv) Using (4.13), we calculate

sk(i)TMk(u)v = ⎧⎪⎪⎨⎪⎪⎩
uvk−1 + u

2 (vk−2 + ⋅ ⋅ ⋅ + v0) if i = 1;(2u − u2) vk−1 + u (vk−2 + ⋅ ⋅ ⋅ + vk−i+1) + u2 (vk−i + ⋅ ⋅ ⋅ + v0) if 2 ≤ i ≤ k.
The proof is completed by noting that all terms are increasing functions of u.(v) The statement is equivalent to showing that sk(i)T Λ̃k(u) is an increasing function of u for
each i. Explicitly, this expression is

sk(i)T Λ̃k(u) = λk(u)k−1 + ⋅ ⋅ ⋅ + λk(u)k−i
λk(u)k−1 + ⋅ ⋅ ⋅ + 1 = λk(u)k−i (λk(u)i − 1)

λk(u)k − 1 .

Recalling (4.10) and the proof of Proposition 4.2, as well as Proposition 4.1, we find that we
have already proven that this expression is increasing in u.

�

We will also need an additional monotonicity property of the eigenvalues λk(u), as we will shortly
compare their values for different k in an inductive argument.

Proposition 4.5. For fixed u, λk−1(u) ≤ λk(u).
Proof. By (4.5),

Qk(u;x) = xQk−1(u;x) − u

1 − u
.

Therefore, using the definition of λk−1(u) as the positive root of Qk−1(u;x), we find that

Qk(u;λk−1(u)) = − u

1 − u
.

But Qk(u;x) > 0 for any x > λk(u), and thus the contrapositive proves the claimed statement. �

We require one more preliminary result before proving the upper bound.

Proposition 4.6. For all k ≥ 1,

Mk(u)k−1ek ⪯ Λ̃k(u).



20 KATHRIN BRINGMANN, KARL MAHLBURG, AND ANTON MELLIT

Proof. The proof proceeds by induction on k, and the base case k = 1 is immediate. For general k, it
is clear due to the shape of Mk that

Mk(u)k−1ek =Mk(u) ⋅Mk(u)k−2ek =Mk(u)((Mk−1(u)k−2ek−1)T 0)T . (4.14)

By induction, this final vector satisfies

((Mk−1(u)k−2ek−1)T 0)T ⪯ (λk−1(u)k−2 . . . 1 0)T
λk−1(u)k−2 + ⋅ ⋅ ⋅ + 1

Plugging this in to (4.14) and expanding gives

Mk(u)k−1ek ⪯Mk(u)(λk−1(u)k−2 . . . 1 0)T
λk−1(u)k−2 + ⋅ ⋅ ⋅ + 1

= u(1 − u) ⋅ (λk−1(u)k−1 λk−1(u)k−2 ⋯ 1)
λk−1(u)k−2 + ⋅ ⋅ ⋅ + 1 ;

the equality follows by recalling the definition of λk−1(u).
We now claim that

u(1 − u)
λk−1(u)k−2 + ⋅ ⋅ ⋅ + 1 ≤

1

λk−1(u)k−1 + ⋅ ⋅ ⋅ + 1 . (4.15)

We first use the bound

λk−1(u)k−1 ≤ 1

1 − u
(λk−1(u)k−2 + ⋅ ⋅ ⋅ + 1) ,

which is immediately implied by the fact that λk(u) is a root of (4.5). This then reduces (4.15) to the
simple inequality

u ≤ 1

2 − u
,

which holds for u ∈ [0,1]. The proof is now finished by applying Proposition 4.5. �

With all of these technical results, the upper bound of Theorem 1.5 is now a simple calculation.
Recall (4.4) and observe that if n ≤ k, then the statement is trivial, so we henceforth assume that
n > k. We implicitly use Proposition 4.4 (i) in all of the following calculations. First, by Proposition
4.4 parts (iii) and (iv),

ρk(1, n) = sTk Mk(un)⋯Mk(u1) ek
⪯ sTk Mk(un)⋯Mk(uk)Mk(uk−1)k−1 ek.

Proposition 4.6 then implies

ρk(1, n) ⪯ sTk Mk(un)⋯Mk(uk) Λ̃k(uk−1).
We conclude the proof by successively using the definition of the Λ̃k as the eigenvectors of the Mk, as
well as Proposition 4.4 (v) to obtain the bounds

ρk(1, n) ⪯ sTk Mk(un)⋯Mk(uk) Λ̃k(uk)
= fk(uk) ⋅ sTk Mk(un)⋯Mk(uk+1) Λ̃k(uk+1)
⪯ ⋅ ⋅ ⋅ ⪯ fk(uk)⋯fk(un) ⋅ sTk Λ̃k(un)
= fk(uk)⋯fk(un).
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The final equality follows from the fact that Λ̃k(u) is a normalized eigenvector.

4.5. Proof of Corollary 1.6. This proof is analogous to the proofs in Section 3 of [22] and in
Section 6 of [11], and we therefore provide only a brief sketch. Since the events from Theorem 1.5
form a decreasing, nested sequence, we may specialize to uj = 1 − e−js and take the limit as n → ∞,
which gives

exp
⎛⎝−

∞∑
j=1

gk(js)⎞⎠ ≤ P(Ak) ≤ exp⎛⎝−
∞∑
j=k

gk(js)⎞⎠ .
Note that (2.1) implies that we can rewrite the constants from (1.5) as

λk = ∫ 1

0
gk(z) dz

z
. (4.16)

We next use the Integral Comparison Theorem and the fact that gk(z) is a decreasing, convex
function (cf. Theorem 2.3) to obtain

exp
⎛⎝−

∞

∫
0

log gk(zs)dz⎞⎠ ≤ P(Ak) ≤ exp⎛⎜⎝−
gk(ks)

2
−

∞

∫
0

gk(zs)dz +
k

∫
0

gk(zs)dz⎞⎟⎠ .
The main exponential term follows from the definition of λk in (4.16), and the error terms in the upper
bound follow similarly as in [11], where the only key difference is the asymptotic

gk(z) ∼ log z−1
as z → 0+; the corresponding statement in [11] was scaled by a factor of 1/k.

5. Growth bounds for k-convolution percolation

We now follow the approach of Gravner and Holroyd in [17, 16] (which the first two authors gener-
alized and optimized in [11]) in order to prove Theorem 1.3. We will need to bound the probability
that an initial configuration with parameter q on the square of side length L eventually becomes
Active under the k-convolution percolation process. Much of the technical machinery is similar to
the preceding works, and thus we primarily focus on the new adjustments that are necessary in the
current k-convolution models. The differences mainly arise in the combinatorics of growth events, as
the multiple states of the present models lead to significantly different properties than those seen in
previously studied examples of bootstrap percolation. Most importantly, the concept of “internally
spanned” configurations from [2] is no longer valid for the upper bounds in Section 5.2.

5.1. Lower bound. In this section we prove the lower bound in Theorem 1.3 by generalizing the
combinatorial construction used in [17] and [11]. The general idea is to consider configurations that
are sufficient for growth and that occur with large enough probability to give a good lower bound.

For a rectangle R = {a, . . . , c} × {b, . . . , d} in N
2, denote its dimensions by

dim(R) ∶= (c − a + 1, d − b + 1) .
We also let R(a, b) denote a rectangle with dimensions (a, b) whose position may or may not be
specified. Moreover, we visualize (0,0) as the lower-left corner of the quarter-lattice N

2.
Recall the event Dk(a, b) from Definition 3.6, which we now use to characterize “diagonal” growth;

this signifies the case where R(a, a) grows to R(a + 1, a + 1), then to R(a + 2, a + 2), and so on until
R(b, b) is active (with deviations from the diagonal of at most distance k). Following [11], we also
introduce an additional (horizontal) “skew” event, where growth occurs first in the horizontal direction
only, and then continues in the vertical direction only.
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Definition 5.1. Suppose that b − a ≥ 3, let Ca+i have height a + i − k for 1 ≤ i ≤ k, and let all other Ci
have height a + 1 (a + k + 1 ≤ i ≤ b). For the rows, let Ra+1 have width a − k + 1, let Ra+2 have width

b−1, and let Ri have width b for a+3 ≤ i ≤ b. The (horizontally) skew event J k(a, b) is the event that
the following occur:

● S(Ra+1) = S(Ca+1) = S(Rb) = S(Cb) = A,
● S(Ra+2) =D,

● the cell x = (b, a + k + 1) has S(x) ≥→,
● {Ca+2, . . . ,Cb−1} satisfy the k-convolution column conditions, and {Ra+k+2, . . . ,Rb−1} satisfy
the k-convolution row conditions.

b

D

A

A

A

A

→

Cb−1. . .Ca+1

Ra+1

⋮

Rb−1

a

b

a

Figure 8. The columns and rows defined in the event J k(a, b) for k = 3.
Note that since a single empty row is the minimal obstruction to growth in this model, regardless of
k, the dimensions of this definition are slightly modified from [11].

The growth rules (1.1) immediately imply that both types of events will lead to further growth; the
case of Dk events was already addressed in Proposition 3.7.

Proposition 5.2. Given a configuration C, consider those rectangles whose lower-left corner is at 0.
If R(a− s, a− t) eventually becomes Active for some 0 ≤ s, t ≤ k − 1, with S(Cj) = C for a− s+ 1 ≤ j ≤ a
and S(Rj) = B for a − t + 1 ≤ j ≤ a, and J k(a, b) also occurs, then R(b, b) also becomes Active.

Proof. Using the monotonicity of the growth process, consider the worst case in the given conditions,
which occurs when s = t = k − 1. The first column of the J k event has height a − k + 1 and has
S(Ca+1) = A. Since columns Cj are entirely filled with + sites for j ≤ a − k, Definition 1.1 (iii) then
successively fills each column Ca−k+1, . . . ,Ca with + sites up to height a − k. Analogous arguments
show that the rows Ra−k+1, . . . ,Ra are similarly filled with Active sites. Definition 1.1 (ii) then also
fills Ra+1 and Ca+1 with Active sites.

Next, use the result described in Remark 3.8 and the fact that S(Cb) = A to conclude that all
columns become filled with Active sites up to height a + 1. By minimal assumption, S((b, a + 2)) ≥→,
and thus Definition 1.1 (ii) then fills all of Ra+2 with Active sites. Finally, Remark 3.8 now fills in all
remaining rows with Active sites. �
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Definition 5.3. For 2 ≤ a1 ≤ b1 ≤ . . . am ≤ bm ≤ L with bi − ai ≥ 3 for all i, define the growth event
corresponding to these parameters as

Ek(a1, b1, . . . , am, bm) ∶=Dk(k, a1) ∩ m⋂
i=1

J k(ai, bi) ∩m−1⋂
i=1

Dk(bi, ai+1) ∩Dk(bm,L − 1)
⋂{(k × k) lower left rectangle and cells (1,L − 1), (L − 1,1) are Active} .

Again following previous work, define a collection of disjoint events which each lead to a square filled
completely with Active sites. The proof of the following result is analogous to Lemma 4.5 from [11],
relying on Propositions 3.7 and 5.2 from above in order to show that the growth occurs as claimed.

Lemma 5.4. Suppose that {ai, bi} satisfy the conditions in Definition 5.3.(i) The various events appearing in the definition of single occurrence of Ek(a1, . . . , bm) are
independent.(ii) If Ek(a1, . . . , bm) occurs, then R(L,L) is eventually Active.(iii) For different choices of a1, . . . , bm the events Ek(a1, . . . , bm) are disjoint.

The next result bounds the probabilities of the events Dk and J k in terms of the function gk. The
proof is analogous to that of Lemma 3.7 in [11], and is based in part on the fact that the combinatorics
of the events Dk and J k are similar in shape to the events Dk and Jk from the previous paper. In
particular, in the stated range of dimensions a, b, the probability of the required states in the events
Jk are simply polynomials in q that can be uniformly bounded. The proof also requires the fact that
gk is both decreasing and convex (cf. Theorem 2.3).

Lemma 5.5. The probability of the growth events satisfies the following lower bounds.(i) If b > a ≥ k, then
P(Dk(a, b)) ≥ exp⎛⎝−2

b−k∑
i=a−(k−1)

gk(is)⎞⎠ .
(ii) Let c− < c+ be positive constants, s ∈ (0, 1

2
), and b ≥ a + k + 2, with a, b ∈ [c−s−1, c+s−1]. Then

P(J k(a, b)) ≫
unif

s exp
⎛⎝g′k(c−)s(b − a)2 − 2

b−k∑
i=a−(k−1)

gk(is)⎞⎠ ,
where the asymptotic inequality is uniform over all a, b in the given range.

The remainder of the proof of the lower bound in Theorem 1.3 follows the arguments from Section
3 of [16], which were also modified and used in Section 4 from [11], which is where similar bounds
for bootstrap percolation and bootstrap k-percolation were proven in both papers. The argument
proceeds by using a simple combinatorial estimate for the number of distinct events Ek, appealing to
Lemma 5.4, and then writing all bounds in terms of gk using Lemma 5.5. As there are no serious
additional technicalities that arise, we do not provide any further details here.

5.2. Upper bound. We now turn to the upper bound in Theorem 1.3, whose proof roughly follows
the arguments outlined in Section 5 of [11]. We modify the definition of “rectangle growth sequences”
from [11] in order to encode the row and column sequence conditions that can occur in growing
configurations in the k-convolution models. One key difference for the k-convolution percolation
process is that the notion of “internally spanned” sets is no longer valid; such sets were a vital tool in
the study of both global and local bootstrap percolation models in [2, 20, 17, 16].

In order to illustrate this important difference, consider the 3-by-5 configuration C in which the first
column has state + in the bottom cell, the middle three columns each have state ↑ in the middle
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cell, and the fifth column has state + in both the bottom and the top cell (see Figure 9). This is a
growing configuration for the case k = 2, but it has the property that there is no proper subrectangle
and corresponding subconfiguration that becomes completely Active.

+

↑↑↑

+

+

Figure 9. An internally spanned configuration with no internally spanned subrect-
angles for k = 2.

In [11] the first two authors showed that the use of internally spanned rectangles in [16] was not
essential. Instead, growing configurations were characterized by row/column sequence conditions
for k-percolation. We use this same approach to precisely characterize growing configurations in
k-convolution percolation.

Following the general approach of [11], one can find the optimal parameter choices for various
constants. For simplicity, we simply state these values and fix them as definitions. In particular, set

(Lower dimension) A ∶= s− 2k−1
2k log s−1,

(Upper dimension) B ∶= s−1 log s−1,
(Growth ratio) D ∶= s 2k−1

2k .

Next, we define the new combinatorial structure that we will use to encode and approximate the
spread of active sites in the k-convolution percolation model.

Definition 5.6. A rectangle growth sequence for an initial configuration C on N
2 is denoted by Ω(C),

and is defined to be a sequence of rectangles

Ω(C) ∶= {0 = R′1 ⊊ ⋅ ⋅ ⋅ ⊊ R′m ⊊ . . . }
such that(i) S(C) is empty if the origin is not Active in C, and otherwise R′1 = {0}.(ii) Each R′i satisfies the k-convolution row and column sequence conditions.(iii) R′i+1 ∖R

′

i is contained in Shell(R′i), where Shell(R) is defined to be the width 1 boundary in
the upward and right directions around any rectangle R.

As in [11], we are only interested in the maximal growth sequences, which are those sequences that
continue as long as the row and column conditions are still satisfied.

Definition 5.7. A good configuration is an initial configuration C on N
2 such that any maximal

rectangle growth sequence is infinite.

Lemma 5.8. If C has indefinite (Active) growth, then C is a good configuration.

Proof. The proof proceeds by contradiction. If C is not a good configuration, then both the row and
column sequences must end in disallowed states. Although there are several possible combinations of
such states, corresponding to all pairings of disallowed sequences in Definition 3.3, the proofs for all
cases proceed similarly. We therefore only present the details for one specific pair of disallowed states.

Consider the case that there is a rectangle R of dimensions (s, t) in the growth sequence such that
S(Cs) = C with S(Cs+1) = B, and S(Rt) = B with S(Rt+1) = C. Note that the upper-right corner
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therefore has S((s, t)) = ◻ . By the monotonicity of the growth process, we may assume that all other
sites in Cs have state →, all other sites in Rt have state ↑, and all other sites in R have state + . This
maximal situation is illustrated in Figure 10. However, reviewing Definition 1.1 shows that there are
no growth rules that can lead to any further activity in Cs,Cs+1,Rt, or Rt+1, which contradicts the
assumption that the sequence leads to an entirely Active configuration.

+

Rt

Rt+1

Cs+1Cs

↑

↑

↑

↑↑↑↑↑

→

→

→

→→→→→

+

++

++

++

++

++

++

++

+

++

++

++

++

+++

+

++

+

++

+

++

+

Figure 10. A maximal configuration with (diagonal) column sequence CB and row
sequence BC.

�

We can thus use good configurations as an upper bound for indefinite growth, and we follow [11, 16]
in further classifying good configurations into two types of behavior.

Definition 5.9. A rectangle growth sequence escapes if there is an R′i with dimensions (a′, b′) such
that a′ ∈ [B,B + 1] and b′ ≤ A, or such that a′ ≤ A and b′ ∈ [B,B + 1].
Definition 5.10. A good sequence is a sequence of rectangles 0 ∈ R1 ⊊ . . . ⊊ Rn+1 that satisfies the
following conditions on the dimensions dimRi = (ai, bi):(i) min{a1, b1} ∈ [A,A + 1](ii) an + bn ≤ B(iii) an+1 + bn+1 > B(iv) For i = 1, . . . , n we have si ≥ aiD or ti ≥ biD, where si ∶= ai+1 − ai and ti ∶= bi+1 − bi are the

successive dimension differences.(v) For i = 1, . . . , n we have si < aiD + 2 and ti < biD + 2.
For a rectangle R define the event

G(R) ∶= {R satisfies the column and row k-sequence conditions}.
Furthermore for two rectangles R ⊆ R′ whose lower-left corners coincide, we define the subrectangles
S1, S2, S3 (some of which may be empty).

Definition 5.11. Let D(R,R′) denote the event that the rectangle S1 ∪ S2 satisfies the column k-
sequence condition, and that S2 ∪ S3 satisfies the row k-sequence condition.
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R

R′

S1

S2S3

Figure 11. The subrectangles S1, S2 and S3.

As in [11], the dichotomy in the next result follows by considering dimensions in rectangle growth
sequence.

Lemma 5.12. A good configuration C either has a good sequence R1 ⊊ . . . ⊊ Rn+1 such that G(R1)
and

n⋂
i=1

D(Ri,Ri+1) occur, or Ω(C) escapes.
We have now characterized the upper bound for growth in the k-convolution process solely in terms

of combinatorial sequence conditions on rows and columns, and the proof framework from Section 5.2
of [11] can now be translated directly (with one exception noted below), where occurrences of fk and

gk are replaced by fk and gk, and some of the precise constants and exponents are modified due to
the technical estimates

gk(z) ∼ log z−1 for z ∼ 0+, (5.1)

g′k(z) ∼ z−1 for z ∼ 0+,
gk(z) ∼ c ⋅ e−2z for z →∞.

The proofs of these asymptotics are analogous to those for Lemma 3.1 of [11].
The precise probability estimates are as follows.

Lemma 5.13. If s is sufficiently small, then there exists a constant c > 0 such that

P(Ω(C) escapes) ≤ exp (−cB log s−1) .
Lemma 5.14. Let R1, . . . ,Rn+1 be a good sequence of rectangles and let a0 = b0 = A, s0 = a1 − a0,
t0 = b1 − b0. Then we have for some constant c > 0

P(G(R1)) ≤ exp ( − s0gk(b0s) − t0gk(a0s) + cA−1B).
Lemma 5.15. If R ⊆ R′ are two rectangles with dimensions (a, b) and (a+ ℓ, b+m), respectively, then
P(D(R,R′)) ≤ exp ( − (m − 2(k − 1)) gk(as) − (ℓ − 2(k − 1)) gk(bs) + ℓms exp (k (gk(as) + gk(bs)) )).
The following analog to Corollary 5.14 of [11] relies on a variational principle from [20], which again

requires the fact that gk is convex (cf. Theorem 2.3).

Lemma 5.16. If s is sufficiently small, then there exists a constant c > 0 such that

n∑
i=1

(sigk(bis) + tigk(ais)) ≥ 2λks
−1
− c (A log s−1 − s−1 exp(−2Bs) −B exp(−Bs)) .
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The primary reason that the upper bound in Theorem 1.3 does not share the same s-powers as the
lower bound is due to the fact that the asymptotics in (5.1) are uniform in k, which was not the case
for the asymptotics of gk in [11]. This difference also necessitates a modified version of Lemma 5.15
(ii) from [11], which is replaced by the following result, whose proof is also analogous.

Lemma 5.17. Let n and ai, bi(i = 1, . . . , n+1) be positive integers and denote the successive differences
by si ∶= ai+1 − ai ≥ 0 and ti ∶= bi+1 − bi ≥ 0 for i = 1, . . . , n. Further assume that the dimensions satisfy
all of the properties of a good sequence. Then as s→ 0,

n∑
i=1

siti

aki b
k
i

≪
D

A2k−2
.

We continue with two final technical estimates following [11].

Lemma 5.18. The number of good sequences of rectangles is at most

exp (cD−1 (log s−1)2) ,
where c > 0 is some constant.

Lemma 5.19. In the range 0 ≤ a ≤ B, there is a uniform asymptotic bound

egk(as) ≪
unif

B

a
as s→ 0.

Proof of Theorem 1.3 Upper Bound. Continuing to follow Section 5.3 of [11], we have now reached the
overall upper bound

P (indefinite growth) ≤ P (Ω(C) escapes) + ∑
good sequences
{R1,...,Rn+1}

P (G(R1)) n∏
i=1

P (D (Ri,Ri+1)) . (5.2)

Lemmas 5.13 – 5.19 lead to the upper bound

exp( − 2λks
−1
+ c(A log s−1 +A−1B +D−1 (log s−1)2 + sA−(2k−2)B2kD + s−1e−2Bs

+Be−Bs)),
which upon recalling the parameter values, implies the stated upper bound. �

6. The case k = 2 and mock theta functions

In this section we explain the connection between the case k = 2 and Ramanujan’s mock theta
function φ(q) from (1.7), which allows us to prove the precise asymptotic result of Theorem 1.7.
Following the approach in [22], we write

P(A2) = ∑
Sequences {Xj}

∞
1

Xj∈{A,B,C,D}
No D,CC or CB

∏
j∶Xj=A

(1 − qj)2 ∏
j∶Xj=B or C

qj (1 − qj) ∏
j∶Xj=D

q2j .

This can be factored and rewritten as

P(A2) = ∏
n≥1

(1 − qn)2 ∑
Sequences {Xj}

∞
1

Xj∈{A,B,C}
No CC or CB

∏
j∶Xj=A

1 ∏
j∶Xj=B

qj

1 − qj
∏

j∶Xj=C

qj

1 − qj
. (6.1)
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We introduce additional notation for the above sum, writing

φ∗(q) ∶= P(A2)
∏
n≥1

(1 − qn)2 . (6.2)

This is equal to a hypergeometric q-series of combinatorial interest.

Proposition 6.1. For 0 < q < 1,
φ∗(q) ∶= 1 + 2∑

n≥1

qn

1 − qn

n−1∏
j=1

1 + q2j

1 − qj

Proof. We present a brief proof using the combinatorics of overpartitions with sequence restrictions,
which are studied in greater detail in [9]. The equality of (6.2) and the hypergeometric series in the
proposition statement follows from the further observation that

φ∗(q) = ∑
n≥0

p2(n)qn,
where p2(n) denotes the number of overpartitions of n without sequences (following [13] and [22]).
Precisely, these overpartitions must satisfy either the upper or lower sequence property, which states
that if an overlined part m occurs, then there are no regular or overlined parts of size m+ 1 or m − 1,
respectively (a simple bijection shows that the two characterizations lead to the same overpartition
function p2(n), cf. [9]).

It is then easy to see that (6.2) generates overpartitions with the upper sequence property, as the
event Aj corresponds to no parts of size j, Bj corresponds to only regular parts of size j, and Cj

corresponds to an overlined part of size j. The hypergeometric series generates overpartitions with
the property that if m occurs and m is not the largest part size, then m must also occur at least once.
Under conjugation, this is equivalent to overpartitions with the lower sequence property. �

The combinatorial q-series φ∗(q) is also closely related to one of Ramanujan’s famous third-order
mock theta functions. In particular, Ramanujan defined the third-order mock theta function φ(q) as
in (1.7), and in equation (26.32) on page 57 of [14], Fine showed the alternative representation

φ(q) = ∏
n≥1

1 − qn

1 + q2n
⋅ φ∗(q). (6.3)

Using (6.2) and (6.3), we can therefore write the sequence probability in the case k = 2 as the following

product of a weight 1/2 weakly holomorphic modular form (up to a factor of q1/8) and a mock theta
function:

P(A2) = ∏
n≥1

(1 − qn) (1 − q4n)
1 − q2n

⋅ φ(q). (6.4)

Proof of Theorem 1.7. By writing (6.4), we have reduced the evaluation of the limiting behavior to a
simple cuspidal calculation using the modular inversion map. A standard result from the theory of
modular forms (found, for example, as a special case of Theorem 3.4 of [5]) states that as s→ 0+,

∏
n≥1

(1 − qn) ∼
√

2π

s
e−

π2

6s .
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Furthermore, although there is also a similar theory of modular transformations for mock theta func-
tions [26], the required asymptotics can also be evaluated directly from (1.7), giving

φ(q) ∼ ∑
n≥0

1

2n
= 2, as s→ 0+.

Applying these asymptotics to (6.4) proves the theorem statement. �
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